

Digital Arithmetic

This Page Intentionally Left Blank

Digital Arithmetic
Milo: D. Ercegovac

C O M P U T E R S C I E N C E D E P A R T M E N T

U N I V E R S I T Y O F C A L I F O R N I A , L O S A N G E L E S

Tomiis Lang
D E P A R T M E N T OF E L E C T R I C A L A N D C O M P U T E R E N G I N E E R I N G

U N I V E R S I T Y OF C A L I F O R N I A , I R V I N E

M O R G A N K A U F M A N N P U B L I S H E R S

A N I M P R I N T O F E L S E V I E R S C I E N C E

S A N FRANCISCO SAN DIEGO NEW YORK BOSTON

L O N D O N SYDNEY T O K Y O

Senior Editor
Publishing Services Manager
Project Manager
Project Management
Editorial Coordinator
Cover Design Manager
Cover Design Coordinator
Cover Art
Cover Photos

Text Design
Composition
Printer

Denise E. M. Penrose
Simon Crump
Justin Palmeiro
Graphic World Publishing Services
Alyson Day
Cate Rickard Barr
Elisabeth Beller
@ Jasper Johns/Licensed by VAGA, New York, NY
@ CNAC/MNAM/Dist. R~union des Mus&s
Nationaux/Art Resource, NY
Johns, Jasper. Zero of Figures 0-9. 1960-1971.
Lithograph, re-worked with paint, fiber collage and
Japanese papers. Dimensions: 12 3/4" • 101/2". Inv.:
Am 1983-314(1). Photo: Philippe Migeat. Musee
National d'Art Moderne, Centre Georges
Pompidou, Paris, France.
Johns, Jasper. One of Figures 0-9. 1960-1971.
Lithograph, re-worked with paint, fiber collage and
Japanese papers. Dimensions: 12 7/8" • 101/2". Inv.:
Am 1983-314(2). Photo: Philippe Migeat. Musee
National d'Art Moderne, Centre Georges
Pompidou, Paris, France.
Frances Baca Design
International Typesetting and Composition
Maple-Vail, York

Designations used by companies to distinguish their products are often claimed as
trademarks or registered trademarks. In all instances in which Morgan Kaufmann
Publishers is aware of a claim, the product names appear in initial capital or all capital
letters. Readers, however, should contact the appropriate companies for more complete
information regarding trademarks and registration.

Morgan Kaufmann Publishers
An imprint of Elsevier Science
340 Pine Street, Sixth Floor
San Francisco, CA 94104-3205, USA
www.mkp.com

@ 2004 by Elsevier Science (USA)
All rights reserved.
Printed in the United States of America

07 06 05 04 03 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means--electronic, mechanical, photocopying, or otherwisemwithout
the prior written permission of the publisher.

Library of Congress Control Number: 2002114337

ISBN: 1-55860-798-6

This boo k is printed on acid free paper.

About the Authors

M i l o ~ D . Ercegovac is a professor and chair in the UCLA Computer
Science Department. He earned an MS (1972) and PhD (1975) in computer sci-
ence from the University of Illinois, Urbana-Champaign, and a BS in electrical
engineering (1965) from the University of Belgrade, Yugoslavia. Dr. Ercegovac
specializes in research and teaching in digital arithmetic, digital design, and com-
puter system architecture. His research contributions have been extensively pub-
lished in journals and conference proceedings. He is a coauthor of two textbooks
on digital design and a monograph in the area of digital arithmetic. Dr. Ercegovac
has been involved in organizing the IEEE Symposia on Computer Arithmetic
since 1978. He served as an editor of the IEEE Transactions on Computers and
as a subject area editor for the Journal of Parallel and Distributed Computing.
Dr. Ercegovac is a fellow of the IEEE Computer Society and a member of the
ACM.

Tomfis Lang is a professor in the Department of Electrical and Computer
Engineering at the University of California, Irvine. Previously he was a profes-
sor in the Computer Architecture Department of the Polytechnic University of
Catalonia, Spain, and a faculty member of the Computer Science Department at
the University of California, Los Angeles. He received an electrical engineering
degree from the Universidad de Chile in 1965, an MS from the University of
California Berkeley in 1966, and the PhD from Stanford University in 1974.
Dr. Lang's primary research and teaching interests are in digital design and
computer architecture, with current emphasis on high-speed and low-power nu-
merical processors and multiprocessors. He is a coauthor of two textbooks on
digital systems, two research monographs, one IEEE Tutorial, and the author
or coauthor of numerous research contributions to scholarly publications and
technical conferences.

This Page Intentionally Left Blank

Contents

About the Authors v
Preface xvii
Symbols and Notation xxiii

C H A P T E R 1

Review of the Basic Number Representations and
Arithmetic Algorithms 3

1.1 Digital Arithmetic and Arithmetic Units 3
1.2 Basic Fixed-Point Number Representation Systems 5

1.2.1 Representation of Nonnegative Integers 5
1.2.2 Representation of Signed Integers 9
1.2.3 Sign Detection 15
1.2.4 Converse Mapping between Bit-Vectors and Values 15
1.2.5 Extension to Fixed-Point Representations 16

1.3 Addition, Change of Sign, and Subtraction 17
1.3.1 Addition and Subtraction of Positive Integers 17
1.3.2 Addition, Change of Sign, and Subtraction of Signed

Integers 18
1.4 Range Extension and Arithmetic Shifts 26

1.4.1 Range Extension 26
1.4.2 Arithmetic Shifts 27

1.5 Basic Multiplication Algorithms 29
1.5.1 Multiplication of Positive Integers 30

vii

viii Contents

1.5.2

1.6 Basic Division Algorithms 34
1.6.1 Restoring Division 35

1.6.2 Nonrestoring Division
1.7 Exercises 40
1.8 Further Readings 46

1.9 Bibliography 47

Multiplication of Signed Integers (Radix-2) 31

38

C H A P T E R 2

Two-Operand Addition
2.1
2.2

2.3
2.4

2.5

2.6

2.7

2.8

2.9
2.10

2.11

51

About Carries 53
Basic Carry-Ripple Adder (CRA) and FA Implementation
2.2.1 Implementations of Full-Adder 60
Reducing the Adder Delay 63
Switched Carry-Ripple (Manchester) Adder 63

2.4.1 Delay 64
Carry-Skip Adder 65
2.5.1 Delay 66
2.5.2 Group Size 70
Carry-Lookahead Adder (CLA) 71
2.6.1 One-Level Carry-Lookahead Adder (1-CLA)
2.6.2 Two-Level Carry-Lookahead Adder 75
2.6.3 Three and More Levels 77
2.6.4 Choice of Group Size and Number of Levels
Prefix Adder 79
2.7.1 Increasing the Number of Levels 82
2.7.2 Increasing the Number of Cells 82
Carry-Select and Conditional-Sum Adders 85
2.8.1 Carry-Select Adder 86
2.8.2 Conditional-Sum Adder 87
Pipelined Adders 91
Variable-Time Adder 91
2.10.1 Type 1: With Self-Timed Carry Circuit 92
2.10.2 Type 2: With Parallel Carry Completion Sensing
Two's Complement and Ones' Complement Adders 95

71

79

59

94

Contents ix

2.12 Adders with Redundant Digit Set
2.12.1 Carry-Save Adder (CSA)
2.12.2 Signed-Digit Adder 102

2.13 Concluding Remarks 112
2.14 Exercises 115
2.15 Further Readings 124
2.16 Bibliography 129

97
98

C H A P T E R 3

Multioperand Addition
3.1
3.2

137

3.3

3.4

3.5
3.6
3.7
3.8

Bit-Arrays for Unsigned and Signed Operands 137
Reduction 139
3.2.1 [p:2] Adders for Reduction by Rows 140
3.2.2 (p :q] Counters for Reduction by Columns
Sequential Implementation 151
3.3.1 Unsigned and Signed Operands 151
Combinational Implementation 151
3.4.1 Reduction by Rows: Array of Adders 151
3.4.2 Reduction by Columns with (p :q] Counters
3.4.3 Pipelined Adder Arrays 166
Partially Combinational Implementation 167
Exercises 169
Further Readings 175
Bibliography 177

144

156

C H A P T E R 4

Multiplication
4.1

181

4.2

Sequential Multiplication with Recoding 182
4.1.1 Sign-and-Magnitude 183
4.1.2 Two's Complement 192
Combinational Multiplication with Recoding
4.2.1 Generation of Multiples and Bit-Array
4.2.2 Addition of the Bit-Array 205

193
194

x Contents

4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

4.2.3
Form 210

Partially Combinational Implementation 212
Arrays of Smaller Multipliers 215
Multiply-Add and Multiply-Accumulate (MAC)
Saturating Multiplier 219
Truncating Multiplier 219
Rectangular Multipliers 221
Squarers 221
Constant and Multiple-Constant Multipliers 223
Concluding Remarks 225
Exercises 227
Further Readings 233
Bibliography 237

Final Adder for Converting Product to Conventional

217

C H A P T E R 5

Division by Digit Recurrence
5.1
5.2

247

5.3

5.4
5.5

5.6
5.7

Definition and Notation 248
Algorithm and Implementation of Fractional Division 249
5.2.1 Recurrence Step 249
5.2.2 Initialization, Number of Iterations,

and Termination 254
5.2.3 On-the-Fly Conversion 256
Implementations of the Division Algorithm 259
5.3.1 Examples of Algorithms and Implementations 261
Integer Division 278
Quotient-Digit Selection Function 280
5.5.1 Containment Condition and Selection Intervals
5.5.2

5.5.3
5.5.4
Concluding Remarks
Exercises 309

282
Continuity Condition, Overlap, and Quotient-Digit
Selection 283
Quotient-Digit Selection Using Selection Constants
Use of Redundant Adder 296

309

287

Contents xi

5.8 Further Readings 313
5.9 Bibliography 319

C H A P T E R 6

Square Root by Digit Recurrence
6.1
6.2
6.3

6.4
6.5
6.6

331

Recurrence and Step 331
Generation of Adder Input F [j] 334
Overall Algorithm, Implementation, and Timing
6.3.1 Examples of Implementations 336
Combination of Division and Square Root 343
Integer Square Root 345
Result-Digit Selection 347
6.6.1 Selection Intervals 348
6.6.2 Staircase Selection Using Redundant Adder
6.6.3 Selection Function for Radix 2 with

Carry-Save Adder 354
6.6.4 Selection Function for Radix 4 with

Carry-Save Adder 355
6.7 Exercises 357
6.8 Further Readings

6.9 Bibliography 362
360

336

349

7.1.2
7.1.3
7.1.4

7.2 Division 380
7.3 Square Root 381

C H A P T E R 7

Reciprocal, Division, Reciprocal Square Root, and Square
Root by Iterative Approximation 367
7.1 Reciprocal 368

7.1.1 Newton-Raphson Method for Reciprocal
Approximation 368
Multiplicative Normalization Method 371
Initial Approximation 373
Implementation and Additional Errors 375

xii Contents

7.4
7.5
7.6
7.7
7.8

7.3.1 Newton-Raphson Method 381
7.3.2 Multiplicative Normalization Method 382
7.3.3 Implementation and Error Issues 383
Example of Implementation of Division and Square Root
Concluding Remarks 385

Exercises 387
Further Readings 391
Bibliography 392

383

C H A P T E R 8

Floating-Point Representation, Algorithms, and
Implementations 397

8.1 Floating-Point Representation 397
8.1.1 Significand, Exponent, and Base 398
8.1.2 Advantage: Dynamic Range 398
8.1.3 Disadvantages: Less Precision, Roundoff Error,

and Complex Implementation 399
8.1.4 Range of Significand and Unit in the

Last Position (ulp) 400
8.1.5 Normalized, Unnormalized, and Denormalized

Representation 401
8.1.6 Values Represented and Their Distribution 402
8.1.7 Choice ofb 403
8.1.8 Representation of Significand 404
8.1.9 Representation of Exponent 405
8.1.10 Special Values 407
8.1.11 Exceptions 407

8.2 Roundoff Modes and Error Analysis 407
8.2.1 Round to Nearest (Unbiased, Tie to Even) 410
8.2.2 Round Toward Zero (Truncation) 412
8.2.3 Round Toward Plus and Minus Infinity 414

8.3 IEEE Standard 754 414
8.3.1 Representation and Formats 415
8.3.2 Rounding 416
8.3.3 Operations 416

Contents xiii

8.4

8.5

8.6

8.7
8.8
8.9
8.10

8.3.4 Exceptions 417
Floating-Point Addition
8.4.1
8.4.2
8.4.3
8.4.4
8.4.5
8.4.6
8.4.7

417
Basic Algorithm 418
Basic Implementation 420
Guard Bits and Rounding 422
Exceptions and Special Values
Denormal and Zero Operands
Delay and Pipelining 426
Alternative Implementations

425
426

426
Floating-Point Multiplication 435
8.5.1 Basic Implementation 435
8.5.2 Exceptions and Special Values 437
8.5.3 Denormals 438
8.5.4 Delay and Pipelining 438
8.5.5 Alternative Implementation 438
8.5.6 Floating-Point Multiply-Add Fused (MAF)
Floating-Point Division and Square Root 451
8.6.1 Division: Algorithm and Basic Implementation
8.6.2 Division: Rounding 453
8.6.3 Square Root: Algorithm and Implementation
8.6.4 Comparison between Digit Recurrence and

Multiplicative Methods 463
Concluding Remarks 465
Exercises 466

Further Readings 476
Bibliography 479

445

451

461

C H A P T E R 9

Digit-Serial Arithmetic
9.1 Introduction 489

9.2

489

9.1.1 Modes of Operation and Algorithm and
Implementation Models 490

LSDF Arithmetic 496
9.2.1 LSDF Addition and Subtraction 496

xiv Contents

9.3

9.4
9.5
9.6
9.7

9.2.2 LSDF Multiplication 498
MSDF: Online Arithmetic 502
9.3.1 Addition/Subtraction 503
9.3.2 A Method for Developing Online Algorithms 507
9.3.3 Generic Form of Execution and Implementation 513
9.3.4 Algorithms and Implementations 514
Concluding Remarks 534
Exercises 534
Further Readings 540
Bibliography 542

C H A P T E R 10

Function Evaluation 549

10.1
10.2
10.3

10.4

10.5

10.6

10.7
10.8
10.9
10.10

Argument Range Reduction 551
Correct Rounding and Monotonicity 551
Polynomial Approximations and Interpolations 552
10.3.1 Polynomial Approximations 553
10.3.2 Piecewise Interpolation 557
10.3.3 Reduction, Approximation, and Reconstruction
Bipartite and Multipartite Table Method 562
10.4.1 Implementation 563
10.4.2 Comparison 565
10.4.3 Multipartite Table Approach 565
Rational Approximation 566
10.5.1 MSDF Polynomial/Rational Function Evaluator
Linear Convergence Method 576
10.6.1 Multiplicative Normalization 577
10.6.2 Exponential by Additive Normalization 587
10.6.3 Trigonometric and Inverse Trigonometric

Functions 593
Concluding Remarks 593
Exercises 594
Further Readings 597
Bibliography 601

560

567

Contents xv

C H A P T E R 11

CORDIC Algorithm and Implementations
11.1

11.2

11.3

11.4

11.5

11.6

11.7

11.8
11.9
11.10
11.11

609

Rotation and Vectoring Modes 612

11.1.1 Rotation Mode 612

11.1.2 Vectoring Mode 614

Convergence, Precision, and Range 616
11.2.1 Convergence 616

11.2.2 Range and Error for n Iterations and Truncation

Compensation of Scaling Factor 619

Implementations 620

11.4.1 Word-Serial Implementation 620

11.4.2 Pipelined Implementation 621

Extension to Hyperbolic and Linear Coordinates 623

11.5.1 Hyperbolic Coordinates 623

11.5.2 Linear Coordinates 625
11.5.3 Unified Description 626

11.5.4 Other Functions 626
Redundant Addition and High Radix 626

11.6.1 Redundant Representation 627
11.6.2 Higher Radix 631
11.6.3 Example: 24-Bit Unit 632

Application-Specific Variations 633

11.7.1 Only Rotation 633
11.7.2 Vectoring Followed by Rotation 634
Concluding Remarks 634
Exercises 635
Further Readings 638
Bibliography 642

618

Bibliography

Index 701

649

This Page Intentionally Left Blank

Preface

Objectives and Importance
Our main objective in preparing this book is to provide a comprehensive dis-
cussion of the main ideas and concepts in digital arithmetic, reflecting both the
theory and design aspects, and to help students and practicing engineers develop
a good understanding of the "arithmetic style" of algorithms and designs. The
research in digital arithmetic continues to be active, and new areas of applications
are being introduced, making such a book useful in understanding the state of the
art in digital arithmetic in order to develop sound solutions and avoid mistakes
and repetitions. Lastly, a thorough exposition of digital arithmetic is likely to
stimulate interest in the field.

Digital arithmetic has continued to play an important role in the design of
digital processors and application-specific (embedded) systems found in signal
processing, graphics, and communications. In spite of a mature body of knowl-
edge, it is not unusual that in each new generation of processors or digital systems
new arithmetic design problems need to be solved. A good solution benefits
greatly from a comprehensive exposition to digital arithmetic as provided in this
book.

Audience
The material covered in this book is intended for graduate students in computer
engineering/electrical engineering and computer science who are interested in the
design of digital arithmetic for general-purpose processors, application-specific
and embedded digital systems, and signal processing systems. It will also be useful
to practicing digital design engineers involved in logic and circuit design of arith-
metic and floating-point units and in their implementation in VLSI technologies.
The background expected consists primarily of college-level mathematics, digital

xvii

xviii Preface

systems and logic design, and, for those interested in applying the material to im-
plementation, a knowledge of VLSI design tools.

Features and Approach
The main feature of our approach has been in providing a unified treatment of
digital arithmetic, tying the underlying theory and design practice in a technology-
independent manner. We consistently use an algorithmic approach in defining
arithmetic operations, illustrate with examples of designs at the logic level, and
discuss cost/performance characteristics. To enhance learning, we developed a
large set of exercises with solutions and extensive reading lists. These are included
in each chapter, and general references (books and compilation of articles) are
given in Chapter 1. For instructors we have developed a complete set of lecture
viewgraphs.

Ways of Use
The main use of this book is as a text for a graduate course. As such, it can be
covered completely in a semester course or alternatively, by eliminating some ma-
terial, in a quarter course. Many options exist for what is not covered, depending
on the emphasis required. For instance, for an emphasis in floating-point units,
the most-detailed parts of Chapters 9 and 11 can be skipped; on the other hand,
if the emphasis is on other applications, such as signal processing, it might be
better to skip parts of Chapter 8. In our opinion, it would be best to cover the
chapters in order, to make best use of the knowledge acquired before; however,
other sequences are possible. For instance, the chapter on floating point could be
covered earlier since it does not depend much on the details of previous chapters.
The exercises at the end of the chapters allow for practice and extension of the
material and can be used for design and implementation projects. The "Further
Readings" sections and extensive bibliography provide material for additional
self-study.

The book can also be used as a reference for designers of hardware for
numerical applications. In this case, if they have not had a comprehensive course
on the topic, the most profitable approach would be to study complete chapters,
instead of only particular algorithms or implementations. This approach would
provide the basis to experiment with alternative designs to choose the best for the
particular requirements and constraints.

Preface xix

Additional Resources
The book is supported with a Web site (http://www.cs.ucla.edu/digital_arithmetic)
that contains

�9 Appendix A: Material for instructors, consisting of solutions to all exercises,
sample exams, and source files for lecture viewgraphs. This material will be
available to instructors in a password-protected section of the Web site.

�9 Appendix B: One-third of solutions to exercises.
�9 Appendix C: Lecture viewgraphs associated with each chapter (in PS and

PDF forms).
�9 Appendix D: Short notes on selected topics.
�9 Appendix E: Comments and errata.

Overview of Topics
The book begins with a review of basic material in terms of representations and
algorithms for the basic operations (Chapter 1) and provides an introduction to
the notation and description formats used. It then concentrates on a thorough pre-
sentation of alternative algorithms and implementations for addition/subtraction
(of two and more than two operands), multiplication, division, and square root
(Chapters 2-7). These algorithms and implementations can be directly used for
fixed-point applications.

Chapter 8 concentrates on floating-point representation and on the corre-
sponding algorithms and implementations. It contains an extensive discussion of
alternative implementations for floating-point addition/subtraction and multi-
plication and describes the basic approaches to produce correctly rounded results
in division and square root.

Chapter 9 presents serial arithmetic, both least-significant-digit first (LSDF)
and most-significant-digit first (MSDF). The LSDF approach is effective for
algorithms consisting only of additions and multiplications, whereas MSDF can
be used for cases that include also division, square root, and comparisons. After
considering the basic operations, the chapter illustrates their use in composite
operations and in multimodule systems.

Chapters 10 and 11 discuss methods for function generation. Two main ap-
proaches are considered: (1) approximations based on multiplications, additions,
and table lookup and (2) recurrences with linear convergence. The first approach

xx Preface

results in polynomial approximations (also included are methods based only on
addition and table lookup) and is applicable to a large variety of functions. On
the other hand, the second method is based on multiplicative and additive nor-
malization and is practical only for some important functions, such as logarithm,
exponential, sine, cosine, and arctan. In particular, the CORDIC algorithm pre-
sented in Chapter 11 is attractive for the multivariable functions rotation by an
angle, modulus of a vector, and arctan(y/x). The discussion in that chapter also
considers the generalization to hyperbolic and linear coordinates.

Topics Not Covered
Several major areas of digital arithmetic, such as residue number system arith-
metic, logarithmic number system arithmetic, modular arithmetic, asynchronous
multiplication and division, design for low-power arithmetic, arithmetic error
codes, and verification and testing, are not included in this book. This does not
imply that the omitted topics are less important than the ones presented; there
will be short notes and a bibliography on the Web site.

Acknowledgments
We thank the many people who have influenced us in developing this book
and, in particular, our colleague at UCLA, Algirdas Avizienis, for his work in
digital arithmetic and contributions to the graduate course CS 252A (Arithmetic
Algorithms and Processors). In addition, seminal works of James E. Robertson,
Daniel E. Atkins, and Antonin Svoboda had a strong impact on our work.

We have benefited greatly from interactions and collaborations with nu-
merous colleagues from academia and industry including Elisardo Antelo, Jean-
Claude Bajard, Javier Bruguera, Neil Burgess, Luigi Dadda, Luigi Ciminiera,
Jordi Cortadella, Warren Ferguson, Michael Flynn, David Goldberg, Mary Jane
Irwin, Graham Jullien, William Kahan, Simon Knowles, Israel Koren, Peter
Kornerup, Willy McAllister, David Matula, Paolo Montuschi, Jean-Michel
Muller, Vojin Oklobdzija, Stott Parker, Michael Schulte, Renato Stefanelli, Earl
Swartzlander, Naofumi Takagi, George Taylor, Alexandre Tenca, Arnaud
Tisserand, Julio Villalba, and Dan Zuras. We thank them all and in particu-
lar those that reviewed the manuscript and provided constructive comments.

Preface xxi

Our former and current students provided comments that helped us in
developing this book: Charles Chien, Raffi Dionysian, John Fernando, Ian
Ferguson, Abdolali Gorji-Sinaki, John Harding, Zhijun Huang, Jeong-A Lee,
Marianne Louie, Robert McIlhenny, Peter Montgomery, Alberto Nannarelli,
Vojin Oklobdzija, John Pipan, Alexandre Tenca, Paul Tu, Dean Tullsen, and
Osaaki Watanuki. We thank them all for their suggestions and interest.

We have been very pleased working with our publisher, Morgan Kaufmann.
Our thanks to our editor, Denise Penrose; editorial coordinator, Alyson Day;
production manager, Jodie Allen; and production editor, Carol O'Connell for
their effort and excellent guidance. The secretarial help of Terry Valai at UCLA
has been invaluable and enjoyable.

This Page Intentionally Left Blank

Symbols and Notation

.(+)

(p:

:q]

[3:2]

[4:2]

(P:q]

[p:2]

CLA

CLG

CMPL

CPA

CRA

CS

CSA

CSK

logical AND (logical OR)

a column of p bits

a row of q bits (weighted)

reduction of 3 to 2 digit-vectors ([3:2] adder; [3:2] carry-
save adder (CSA))

reduction of 4 to 2 digit-vectors ([4:2] adder; [4:2] carry-
save adder)

p-input, q-output counter

reduction ofp to 2 digit-vectors ([p :2] adder (compressor))

base of floating-point representation x -- Mx x b t~x

bias in floating-point representation of exponent

carry-lookahead adder

carry-lookahead generator

complementer

carry-propagate adder

carry-ripple adder

carry-save form

carry-save adder

carry-skip adder

' xxiii

xxiv Symbols and Notation

EOP

FA

G

HA

INCR

L k

LOD

LOP

LSDF

LZA

MAC

MAF

MG

MSDF

MUX

NAN

q j

p - - a / (r - 1)

on-line delay: number of initial cycles in online operation

number of bits of estimate of divisor/argument in
division/square root

effective operation

full-adder

guard bit

half-adder

incrementer

lower (upper) boundary of selection interval

leading-one detection

leading-one prediction

least-significant-digit-first mode of computation

leading-zeros anticipation

multiply-accumulate

multiply-add fused

multiple generator

most-significant-digit-first mode of computation

multiplexer (selector)

not-a-number

overflow condition

j th quotient digit

radix (base) of number representation

round bit

redundancy factor for maximum digit valuea and radixr

Symbols and Notation xxv

REC

-r

SD

T

ulp

VAND (VOR)

wF]

~ (~

ws (wc)

X - - (X n - l , . . . , XO)

x[i]

Xi

{x}t

X

recoder

j th square root digit

signed digit

sticky bit

unit in the last place

vector AND (OR) gate

residual

upper bound (lower bound) of w

pseudosum (stored-carry) bit-vectors

n-digit vector

digit-vector X at step (iteration) j

digit in the i th position of a digit-vector

x truncated to t fractional bits

bit-complement of vector X

low-precision estimate of the scaled residual rw[j]

This Page Intentionally Left Blank

CHAPTER I Review of Basic Number
Representations and
Arithmetic Algorithms

In this chapter we briefly review basic number representations and algorithms
used in digital arithmetic. The treatment is very concise; readers that need a more
detailed review should consult some of the references listed at the end of the
chapter. More advanced algorithms as well as the implementations are the topic

of later chapters.

1 .1 Digital Arithmetic and Arithmetic Units
Digital arithmetic encompasses the study of number representations, algorithms
for operations on numbers, implementations of arithmetic units in hardware, and
their use in general-purpose and application-specific systems.

An arithmetic unit (processor) is a system that performs operations on num-
bers. We limit ourselves to the most common cases in which these numbers are

1. fixed-point numbers

�9 integersI = { - N , . . . , N}
�9 rational numbers of the form x = a / 2 f ("binary" rationals), a ~ I and

f positive integer

floating-point numbers x • b E, x rational number, b the integer base, and
E integer exponent. The floating-point numbers approximate real
numbers and facilitate computations over a wide dynamic range.

Collectively, we refer to these numbers as DA (digital arithmetic) numbers.

.

4 c H A P T E R I Review of Basic Number Representations and Arithmetic Algorithms

An arithmetic processor operates on one, two, or more operands depending
on the operation. The operands are characterized by a representation and a set of
values as defined in the next section. The operation is selected from an allowable
set, which usually includes addition, subtraction, multiplication, division, square
root, change of sign, comparison, and so on. The results can be DA numbers,
logical variables (conditions), and/or singularity conditions (exceptions). Logical
results occur for operations such as comparison, check for zero, and the like.
Singularity conditions correspond to overflow, divide by zero, square root of a
negative number, hardware error, and so on.

The parameters that describe the processor to the user include the number
representation and precision, the operation set, the time required to execute each
operation, the cost of the processor, and its energy consumption.

The function (functional description)of the arithmetic processor can be given
at three levels:

1. Abstract (mathematical) level. The domain ofoperands and results is the
set of numbers. The operations are specified as functions (sets of pairs).
Also, some abstract properties such as commutativity, associativity, and
distributivity can be given. At this level the objective is a functional
specification (description). This is also known as high-level description. It
has no implementation details.

2. Arithmetic-algorithm level. The numbers are represented by vectors of
digits (digit-vectors), and the operations are described by algorithms
composed of primitive operations (transformations) that are performed on
these digit-vectors. This level provides a behavioral description, typically
using arithmetic expressions and composition of functions. It introduces
constraints affecting implementation.

3. Implementation level. The digit-vectors are encoded on bit-vectors. The
operations are described by register-transfer algorithms. The description at
this level is structural, specifying the modules, their interconnection, and
the control flow.

In this text, we discuss arithmetic processors at the arithmetic-algorithm and
implementation levels.

In the next section we introduce the basic number systems for fixed-point
representation, which are used in the following chapters. Other representations

Basic Fixed-Point Number Representation Systems 5

are discussed in later chapters together with their uses. We then present the basic

algorithms.

to2 Basic Fixed-Point Number Representation Systems
To perform operations on fixed-point numbers at the arithmetic-algorithm level,
a specific number representation is required. In a digital representation, such a
number is represented by an ordered n-tuple. Each of the elements of the n-tuple
is called a digit, and the n-tuple is called a digit-vector. The number of digits n
is called the precision of the representation. We begin with the representation
of nonnegative integers, followed by the representation of signed integers, and
concluding with an extension to fixed-point numbers.

1 ~ Representation of Nonnegative Integers
The digit-vector that represents the integer x is denoted by

X = (Xn--l, Xn--i, . . . , X~, Xo) 1.1

Note that we use a zero-origin, leftward-increasing indexing.
The number system to represent x consists of the following elements:

1. The number ofdigitsn.

2. A set of (numerical) values for the digits. We call Oi the set of values of Xi.
The cardinality of set Di is denoted by]Di I. For example, {0, 1, 2, . . . , 9}
is the digit set for the conventional decimal number system with cardinality

10.

3. A rule of interpretation. This rule corresponds to a mapping between the set
of digit-vector values and the set of integers.

There are many number systems differing in these elements.
The set of integers, each represented by a digit-vector with n digits, is afinite

n--1 set with at most K -- 1-Ii=0]Oi] different elements since this is the maximum
number of different digit-vectors. For example, in a conventional decimal system
a digit-vector of six digits can represent a million values. Sets that have been found

6 c H A P T E R ~ Review of Basic Number Representations and Arithmetic Algorithms

generally useful to perform basic arithmetic operations include, for example, all
integers from 0 to K - 1.

A number system is nonredundant if each digit-vector represents a different

integer; that is, if the representation mapping is one to one. It is redundant if

there are integers that are represented by more than one digit-vector. Redundant

number systems are sometimes used to reduce the complexity of the arithmetic
algorithms and increase the speed of execution.

The number systems most frequently used are weighted systems. For them
the representation mapping is

n - 1

x =ff~'XiWi
i=0

1.2

where W - - (W n _ l , . . . , W 0) is the weight-vector.
A radix number system is a weighted number system in which the weight-

vector is related to the radix-vector R -- (R n - 1 , . . . , RO) as follows:

Wo = 1; IV,. = W i _ 1 �9 Ri-1 (1 < i < n -- 1) 1.3

This is equivalent to

i -1

W 0 - 1 ; W i - - H R j 1.4
j=0

Radix number systems are classified according to the radix-vector into fixed-radix
and mixed-radix systems.

In afixed-radix system all elements of the radix-vector have the same value r
(the radix). Consequently, the weight vector is

W__(rn-1 2 1) �9 . . ~ ' ~'~ 1.5

and

n - 1

X - - ~ X i . r i
i=0

1.6

Basic Fixed-Point Number Representation Systems 7

The most frequently used radices are powers of two, such as 2 (binary), 4 (qua-

ternary), 8 (octal), and 16 (hexadecimal). The corresponding weight-vectors are
W = (. . . , 16, 8, 4,2, 1) for r = 2, W = (. . . , 256, 64, 16, 4, 1) for r -- 4, and
so on. The other radix that is sometimes used is 10 (decimal); this is done because
of our familiarity with this representation and because the interface with humans
is more convenient in decimal. Because some arithmetic algorithms are simpler

in binary than in decimal, in many systems the input-output is decimal but the
internal processing is done in binary. Conversion is therefore required between
these representations.

In a mixed-radix system the elements of the radix-vector are different. For
example, the representation of time in terms of hours, minutes, and seconds in a
24-hour period uses a radix-vector R = (24, 60, 60). The corresponding weight-
vector is W = (3600, 60, 1). Consequently, the digit-vector X = (5, 37, 43)
represents 20,263 seconds.

According to the set of digit values, the radix number systems are classified
into canonical and noncanonical systems.

In acanonicalsystem the set of values for Di is {0, 1, . . . , Ri - 1 } with]Di] =
Ri. For example, the canonical digit sets in the binary, quaternary, octal, and
hexadecimal number systems are respectively {0, 1}, {0, 1, 2, 3}, {0, 1, 2, . . . , 7},
and {0, 1, 2, . . . , 15}. The corresponding range of values of x represented with
n radix-r digits is

0 < x < r n - - 1 1.7

In a noncanonical system the set of digit values is not canonical. For example,
Di -- {--4, --3, - 2 , --1, 0, 1, 2, 3, 4, 5} is a digit set in a noncanonical decimal
system and {-1 , 0, 1} and {0, 1, 2} in noncanonical binary systems.

A noncanonical digit s e t Di such that IDil > Ri produces a redundant
system allowing more than one representation of a value; for example, in the
{ -1 , 0, + 1} binary system the vectors (1, 1, 0, 1) and (1, 1, 1, - 1) both represent
the integer "thirteen. ''1

A system with fixed positive radix r and canonical set of digit values is
called a radix-r conventional number system. These are by far the most commonly

1. To distinguish the integer from its radix-10 representation, we give the name of the
number as its decimal representation in letters.

8 c H A P T E R ~ Review of Basic Number Representations and Arithmetic Algorithms

Number System Digit Vector

Conventional radix-2 system (binary)

Conventional radix-3 system

Conventional radix-4 system

Conventional radix- 10 system

Radix-2 system with digit set {-1 = 1, 0, 1}

Residue system with P = (17, 13, 11, 7, 5, 3, 2)

0011110

0001010

0000132

0000030

0011110

01000i0

(13)482000

T A B L E 1.1 Representations of the integer "thirty."

used number systems. As indicated, the favored radices are powers of 2 and

10 (decimal). In the following sections we discuss algorithms for these systems
emphasizing the conventional binary system.

There exist also nonradix number systems in which weights are not defined
recursively as in (1.3). One example is the residue number system (RNS), where for
a given set of pairwise relatively prime integers P = (Pn-1 , . . . , P0), a positive

n-1
integer x (for 0 < x < I-Ii=0 Pi) is represented by the vector X such that

Xi = x mod Pi 1.8

This is a nonredundant system that allows fast implementation of addition and
multiplication. In this system there is no notion that the digits on the left are
more significant than the digits on the right. In that sense, there is no notion
of "weight," and RNS is sometimes classified as a nonweighted system. As an
example, we represent in Table 1.1 the integer "thirty" in several number systems
using a digit-vector with seven components.

In this text we use fixed radix and mainly radix 2.

Bit- Vector Representation

For the implementation of arithmetic algorithms in (binary) digital systems, it is
necessary to represent the digit-vectors by bit-vectors. This is done by defining a
code for a digit and mapping the digit-vector by mapping each digit according to
this code.

Basic Fixed-Point Number Representation Systems 9

In the binary (conventional) number system, the code is direct: the binary-
digit values 0 and 1 are represented by the binary-variable values 0 and 1,
respectively.

For higher power-of-two radices the most common code is the binary code
in which a digit d is represented by a bit vector (dk_l, . . . , do) ofk = log 2 r bits
such that

k-1

d -- ~ d i 2i
i=0

1.9

The use of this code for each digit results in a bit-vector for x that is the same for
any power-of-two radix, the only difference being the way the bits are grouped to
form a digit. In the binary case, each bit corresponds to a digit, while in the radix-r
case, groups of log 2 r bits form a digit. Therefore, conversion from a bit-vector in
a radix-2 representation to a radix-r representation and vice versa is trivial. For
example, the bit-vector

X -- (1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1)

-- ((1, 1, 0), (0, 0, 1), (0, 1, 1), (1, 0, 1))

-- ((1, 1, 0, 0), (0, 1, 0, 1), (1, 1, 0, 1))

1.10

corresponds tothe octal digit-vector (6, 1, 3, 5) and the hexadecimal digit-vector
(C, 5, D). 2

The fact that the bit-vectors are identical permits the use of some binary
algorithms to perform operations on integers represented in these higher radices.

1 ~2o2 Representation of Signed Integers
In the previous section we presented the representation of nonnegative integers.
We now extend the discussion to the representation of signed integers (positive
and negative). Two representations are by far the most common: the sign-and-
magnitude representation and the true-and-complement representation; these
are the topic of this section.

2. The integers 10, 11, . . . , 15 are denoted with letters A, B, . . . , F, respectively.

10 c H A P T E R ~ Review of Basic Number Representations and Arithmetic Algorithms

S i g n - a n d - M a g n i t u d e (S M) Sys tem

A signed integer x is represented in the SM system by a pair (Xs, Xm), where Xs

is the sign and Xm is the magnitude (positive integer). The two values of the sign
(+, -) are represented by a binary variable, where traditionally 0 corresponds to
-t-and 1 t o - .

The magnitude can be represented by any system for the representation of
positive integers. If a conventional radix-r system is used, the range of signed
integers, for n digits in the representation of the magnitude, is

0 ___< X m ~___ r n - 1 1.11

Note that zero has two representations: Xs - 0, X m m 0 (positive zero) and
X s -- 1, Xm -- 0 (negative zero).

T r u e - a n d - C o m p l e m e n t (T C) Sys tem

In the true-and-complement system there is no separation between the represen-
tation of the sign and the representation of the magnitude, but the whole signed
integer is represented by a positive integer. Consequently, this representation
involves an additional mapping as indicated in Figure 1.1.

The signed integer x is represented by a positive integer x R, which in turn is
represented by the digit-vector X. Map 2 defines the mapping between integers

Signed integer X

True-and-complement
system

Positive integer X R

Map 1

Code Map 2

Digit-vector X

IF I G U R E 1.1 Signed integer represented by positive integer.

Basic Fixed-Point Number Representation Systems 11

and digit-vectors as discussed in the previous section. We now define the mapping

Map 1 for the true-and-complement system.

A signed integer x is represented in the t rue-and-complement system by a

positive integer xR such that

xR -- x mod C 1.12

where C is a positive integer, called thecomplementation constant. By the definition

of the rood function, for max Ix l < C, this is equivalent to

{C if x > 0 1.13
x R - - - [x] - - C + x i fx < 0

In order to have an unambiguous representation, the region for x > 0 should not

overlap with the region for x < 0. This requires that

max Ix l < C /2 1.14

The converse mapping is

xR i fxR < C/2
x -- 1.15

x R - C i fxR > C / 2

When xR = C / 2 is representable, it is usually assigned to x - - C / 2 , making

the representation asymmetrical.

The representations of positive integers are called true forms, and those of

negative integers, complement forms.
The positive integer x R can be represented in any system for positive integers.

For a digit-vector of n digits, the range is

0 < x R < r ~ - 1 1.16

The usual choices for the complementation constant are C = r n (Range Comple-
ment System (RC)) and C = r n - 1 (Digit Complement System (DC)). We now

consider a radix-2 representation and leave as an exercise the more general radix-r

CaSC.

The choice C -- 2 n defines the two's complement system. The corresponding

mapping is illustrated in Table 1.2. In this system the value xR - C is outside

the range, and, therefore, there is only one representation of x - 0. The value

X R -- 2 "-1 could represent either x - - 2 n-1 or x - - --2 n-l , resulting in an

asymmetric representation. It is usual to make the second choice in order to

12 C H A P T E ~ I Review of Basic Number Representations and Arithmetic Algorithms

EXAMPLE 1.1

X X R

2 n-1 1

__2n-1

- (2 n - l - 1)

- 2

1

2 n-1 1

2 n --1

2 n-1 + 1

2 n - - 2

2 n 1

T r u e f o r m s

(positive)

X R - ' -X

Complement forms

(negative)

xR = 2 ~ Ix l

T A B L E 1.2 Mapp ing in the two's complement system.

simplify the sign detection, as discussed later in Section 1 . 2 . 3 . The range of

signed integers is

- - 2 n -1 < x < 2 n -1 - - 1 1.17

T h e choice C = 2 n - 1 defines the ones' complement system. The corresponding

ma p p i n g is shown in Table 1.3. In this system xR = C is representable with n

digits so that there are two representat ions o f x -- 0: xR = 0 and xR = 2 n - 1.

T h e range of signed integers is

- (2 n-1 - 1) < x < 2 n-1 - 1 1.18

Re p re s en t - 4 < x < 3 in the two's c o m p l e m e n t and ones ' c o m p l e m e n t

systems. T h e m a p p i n g s

x --+ xR ---~ X

Basic Fixed-Point N u m b e r Representation Systems 13

2 n -1

(2 n-1

- 2

- 1

0

XR

2 n-1 1

2 n -1

2 n 3

2 n 2

2 n 1

T r u e forms

(positive)

X R ~ X

Complement forms

(negative)

X R = 2 n 1 Ix l

T A 8 L E 1 .S Mapping in the ones' complement system.

and

X - . . + X R -.-~ x

are s h o w n in Tables 1.4 and 1.5, respectively.

The fol lowing properties of the two's complement and ones' complement systems

can be seen f rom the previous example:

�9 The representat ion of zero is unique in the two's complement system since

the complementa t ion constant C -- 2 n is not representable by an n-bi t

vector. In the ones' complement system there are two representations of

zero since C -- 2 n - 1 is representable as (1, 1, . . . , 1).

�9 T h e range in the two's complement system is not symmetrical since

x -- - 2 n-1 is representable but x -- 2 n-1 is not. T h a t is, the range is

[- - 2 n - l , 2 n - l - 1] 1.19

This means that the system is not closed under the change of sign operation. T h e

range in the ones' complemen t system is symmetrical:

[--(2 n - l - 1), 2 n - l - 1] 1.20

14 c g ~ P::~:E ~i{ ,~ Review of Basic Number Representations and Arithmetic Algorithms

- 0

1

2

3

4

Two's Ones'

Complemen t C o m p l e m e n t

(c = 8) (c = 7)

xR X x~ X

3 011

2 010

1 001

0 000

7 111

6 110

5 101

4 100

3 011

2 010

1 001

0 000

7 111

6 110

5 101

4 100

T A B L E 1.4 Two's and ones' complement representations for n = 3: mapping from value to

bit-vector.

X xR

Two's Ones '

C o m p l e m e n t C o m p l e m e n t

(c = 8) (c = 7)

X X

000 0 0

001 1 1

010 2 2

011 3 3

100 4 - 4

101 5 3

110 6 2

111 7 - 1

3

2

- 1

0

T A B L E 1 .S Two's and ones' complement representations for n -- 3: converse mapping from

bit-vector to value.

Basic Fixed-Point Number Representation Systems 15

1 . 2 , 3

1 . 2 , 4

S i g n D e t e c t i o n

We now present algorithms for sign detection in the sign-and-magnitude and
true-and-complement systems. Let

0 i f x > 0
- - - 1.21 sign(x) 1 i f x < 0

which allows representation of positive and negative 0s.

In the sign-and-magnitude system, the sign detection is trivial since there is

a sign bit.

In the true-and-complement system, since Ix l < C/2, the sign is determined
as follows: 3

0 i f x R < C / 2
s i g n (x) = 1 i f x R > C / 2 1.22

Consequently, in the two's complement and ones' complement systems the sign

is determined from the most-significant bit as follows:

0 if X n_l = 0 1.23

s i g n (x) = 1 i f X n _ l - - 1

that is,

sign(x) = Xn-1 1.24

C o n v e r s e M a p p i n g b e t w e e n B i t - V e c t o r s a n d V a l u e s

Since X n _ 1 corresponds to the sign, it is straightforward to perform the converse
mapping using the bit-vector X as follows:

1. Xn-1 = 0 indicates a positive x and, consequently,

n--2

x -- XR = 0 • 2 n-1 -+- ~ X i 2 i 1.25
i=0

2. Xn-1 = 1 indicates a negative x. In this case x = XR -- C.

3. Assigning XR = C/2 to represent x = -C /2 allows a simple sign detection based on the
most-significant bit of X.

16 c H A p T E ~ 1 Review of Basic Number Representations and Arithmetic Algorithms

�9 For C = 2 n, we have

n - 2 n - 2

x - - l x 2 n - - l + E x i 2 i - - 2 n - - - - 1 • 2 n - l + E Xi2i
i=0 i=0

1.26

Combining both cases we get for two's complement

n-2
= 2 n-1 2 i X - -Xn-1 - ~ - ~ X i

i=0

1.27

In other words, in convert ing a bit-vector to a value, we use the fact

that the most-significant bit of X has a negative weight while the

remaining bits have positive weights. For example,

X - - (l l O l l) ~ - 1 6 + 8 + 2 + 1 = - 5 - - x

For C -- 2 n - 1, we get

n -2 n -2
x -- 1 • 2 n-1 -+- - - ~ Xi 2i - (2 n - 1) -- - 1 • (2 n-1 - 1) + ~ Xi 2i

i=0 i=0
1.28

Again, after combining both cases we get for ones' complement

converse mapping

n-2

x = - - X n _ l (2 n-1 -- 1) + ~ Xi 2i
i=0

For example,

1.29

X = (10101) ---> - (1 6 - 1) + 4 + 1 -- - 1 0 = x

1 .2~5 Extension to Fixed-Point Representations

A fixed-point representat ion of a number x = x m r + xvR consists of integer and

fraction components represented by m and f digits, respectively. Consequently,

it is convenient to use the following notation:

X -- (X(m_l) . . . Xl X o . X - 1 . . . X_f) 1.30

Addition, Change of Sign, and Subtraction 17

1,3

so that
m--1

X - - ~ X i r i 1.31

- f
7 For example, 0 < x < 7g is represented in radix-2 as X - (X 2 X 1 X o . X - 1 X - 2 X-3).

When representing fractions (no integer part), the convention used sometimes
is to assign positive indices to the fractional part. That is,

so that

X - - (X 1 X 2 . . . X f) 1.32

f
x - - ~ X i r - i

1

1.33

Addition, Change of Sign, and Subtraction
In this section, we discuss addition, subtraction, change of sign, and overflow
detection.

1 .3 .1 Addition and Subtraction of Positive Integers

Consider the operation z = x + y in which the operands and the result are positive
integers, represented in a conventional radix-r number system. If the operands
are represented by a digit-vector of n digits, the result is represented by a digit-
vector of n + 1 digits, where the most-significant digit (Zn) has values in the set
{0, 1 }. To limit the number of digits of the result to n digits, an additional binary
variable is introduced (the carry-out Cout) for the additional digit. Moreover, a
carry-in (Cin) is included so that

Cout 1" n .~_ Z - - X "~- y + C in 1.34

resulting in

z -- (x + y + Cin) mod r n 1.35

and

1 if(x + y + Cin) ~ r n

Cout -- 0 otherwise
1.36

18 r H A P 1" E R t Review of Basic Number Representations and Arithmetic Algorithms

In terms of the digit vectors we can write

(Co.t, Z) = A D D (X , Y, ci,,) 1.37

which is implemented by an adder. As indicated on page 9, for power-of-two
radices and using the binary code for the digits, the bit-vectors are the same
independent of the radix. As a consequence, at the bit level, the adder is the same

for these radices.
The Cout signal can be used to indicate an overflow (OVF), which indicates

that the sum has a value outside the range representable by Z.

Similarly, for subtraction

-bout rn + d = x - y - bin 1.38

and the algorithm is described as

(bout, D) = SU B(X, Y, bin) 1.39

1 . 3 ~ Addition, Change of Sign, and Subtraction of Signed Integers

We now describe algorithms for the addition and subtraction of signed integers.
Specifically, let x and y be signed integers represented by the digit-vectors X
and Y, respectively. The addition algorithm A D D S produces the digit-vector Z
representing the signed integer z = x + y. That is,

Z = A D D S (X , Y) 1.40

For the difference d = x - y, since d = x + (- y) , it is sufficient to consider the
algorithms A D D S and CS (change of sign). That is,

D = A D D S (X , CS(Y)) 1.41

If the range of integers represented by Z is the same as that of X and Y, the result
of the addition or subtraction might not be representable by Z. In such a case the
result of the algorithm cannot be correct and an overflow (OVF) signal indicates

this situation.
The complexity of implementing the A D D S and CS algorithms in

hardware depends on the representation system used for the signed integers.

Addition, Change of Sign, and Subtraction 19

We now consider these algorithms for the sign-and-magnitude and true-and-

complement systems. Although the representation in sign-and-magnitude might

seem more natural, and therefore a candidate to be considered first, the algorithm

for addition is simpler in the true-and-complement system. Consequently, we

consider this first, since the algorithm for sign-and-magnitude makes use of this

algorithm.

Addition in the True-and-Complement System

Consider the case where there is no overflow, that is, the result is representable.

If this is not the case, the overflow is detected as described later on page 25. In the

true-and-complement system z -- x + y is obtained by computing

zR = (XR + YR) mod C 1.42

where xR, yR, and z R are the positive integers representing x, y, and z in this

number system, and C is the complementation constant.

To prove the correctness of this algorithm consider

(xR + yR) mod C 1.43

We now show that it corresponds to z R, the representation of the sum z. By
definition of the representation,

xR = x mod C; yR = y mod C 1.44

so that

(x R + y R) m o d C - - (x m o d C + y m o d C) m o d C 1.45

This can be simplified because (a mod C + b mod C) mod C = (a + b) mod C

and consequently,

(x R + y R) m o d C = (x + y) m o d C = z m o d C 1.46

20 c N A p T E R 1 Review of Basic Number Representations and Arithmetic Algorithms

x y

13 9

13 - 9

-13 9

-13 - 9

XR YR ZR z

13 9

13 55

51 9

51 55

22

68 mod 64 = 4

60

106 mod 64 = 42

TABLE 1.6 Examples oftrue-and-complementaddition(C = 64).

22

4

- 4

-22

and by definition

z mod C - zR 1.47

This means that to perform the addition of two signed integers represented in the

true-and-complement system, we add the (positive) representations and obtain

the residue (mod) of the sum with respect to the complementation constant C.

Table 1.6 illustrates several cases of addition for C = 64 and - 3 2 < x, y,

z < 3 1 .
The algorithm consists of two steps: the addition of the positive represen-

tations and the mod operation. The first step is done by the algorithm ADD

discussed in Section 1 3 . 1 . We now consider the mod operation.

Let wR -- x R + YR. Then, since X R, Y R < C, we have that wR < 2C.

Therefore, the mod operation results in

- - w R m o d C - - [{wR ZR ! wR - - C

ifwR < C

i fC < w R < 2 C
1.48

Consequently, this operation consists of determining if wR > C and, if so, sub-

tracting C from it. The complexity of this operation depends on the value of the

complementation constant. We now consider the two's complement and ones'

complement systems.

Two's C o m p l e m e n t Sys tem

In the two's complement system the complementation constant is C = 2 n. Since

wR < 2C, the representation ofwR is the digit-vector W = (Wn, Wn-1, . . . , Wo)

ofn + 1 digits (bits). Consequently, to determine whether wR > C, it is sufficient

Addition, Change of Sign, and Subtraction 21

Discard

COU t -- Cn

t *f tZ /'l

ADDER

zt"

I Cin = 0

r

F I G U R E 1 .2 Two's complement adder.

to check the most significant digit (bit) of W:

<2 n i f W , , - - O
WR - - 2n

> i f W n -- 1
1.49

In the first case, WR mod 2 n -- WR and its representation is W. In the second
situation, it is necessary to subtract 2 n from WR. This is simple to do since the
representation of 2 n is a 1 followed by n 0s. Consequently,

WR mod 2 n ~ (1, W n _ l , . . . , Wo) --(1, 0, . . . , 0) = (W,,-1, . . . , W0) 1.50

That is, the mod operation is performed by discarding the most-significant bit.
Note that this bit corresponds to the carry-out of the adder that adds XR and yR

to produce WR.

In summary, in the two's complement system the result of the addition cor-
responds to the output of the adder, discarding the carry-out. We describe this by
the following bit-level algorithm:

ADDS2,s (X , Y) . Z -- A D D (X , Y, O) 1.51

where A D D is a bit-level algorithm for the addition of positive integers and
the third operand corresponds to the carry-in. The two's complement addition
scheme is shown in Figure 1.2.

E X A M P L E 1 . 2 We now show two examples of addition of signed integers in the two's com-

plement number system.

22 ~i~ ~.~ i~ ~ ~i~i ~ :~ Review of Basic Number Representations and Arithmetic Algorithms

n = 4 C = 2 4

X = 1011 x R = l l x = - 5

Y = 0 1 0 1 y R = 5 y = 5

W -- 10000 wR -- 16

Z = 0000 zR = 0 z = 0

n = 8 C = 2 s

X = 11011010 xR = 218 x = - 3 8

Y = 11110001 yR = 241 y = - 1 5

W = 111001011 WR -- 459

Z = 11001011 zR = 203 z = - 5 3

Ones" Complemen t System

W e n o w consider the m o d opera t ion in the ones ' c o m p l e m e n t system. In this

system the c o m p l e m e n t a t i o n cons tant is 2 n - 1. To pe r fo rm z R = wR m o d (2 n - 1)

consider the fo l lowing three cases:

1. I f w R < 2 n - - 1, then wR m o d (2 n - - 1) = wR and Wn = O.

2. I f w R -- 2 n -- 1, then wR m o d (2 n - 1) = 0 and Wn = 0.

3. I f (2 n - 1) < wR < 2(2 n - 1), then wR m o d (2 n - 1) -- WR -- (2 n -- 1) ---

(WR -- 2 n) + 1 and W, = 1.

Consequen t ly ,

�9 if Wn = 0, the result is equal to W, and

�9 if Wn = 1 the result is ob ta ined by d i scard ing Wn (subtract ing 2 n) and

a d d i n g 1. N o t e tha t this p roduces a result vector o f (l , 1 , . . . , 1) in case 2,

wh ich is correct since this is ano the r represen ta t ion of 0 in the ones '

c o m p l e m e n t system.

Since the bit W, is p r o d u c e d as the car ry-out of the adder , the addi t ion of 1

can be accompl i shed by an end-around carry as show n in F igu re 1.3. T h e effect

Addition, Change of Sign, and Subtraction 23

Cou t = C n

ADDER
c in

End-around carry

F I G U R E 1.3 Ones' complement adder.

of this end-around carry on the implementation is discussed in Chapter 2. The

corresponding bit-level algorithm is

ADDSls , (X , Y): Z -- A D D (X , Y, Cn) 1.52

Change o f Sign in the True-and-Complement System

The change of sign operation consists of obtaining the representation of z such

that z - - x where z and x are signed integers. Since x and z are represented in

the true-and-complement system by x R and zR, we have

ZR = (--X)R = (--x) mod C = C - x m o d C = C -- xR 1.53

Consequently, the change of sign operation consists of subtracting x R from the

complementation constant C. The complexity of this operation depends on the
value of the complementation constant. We now discuss this operation for the the
two's complement and ones' complement systems. 4

Ones' Complement System. In this case the complementation constant is 2 n - 1,

which is represented by the digit-vector (1, 1, . . . , 1). Therefore the subtraction
is performed by complementing each digit of X with respect to 1, obtaining the
vector X. Therefore, the change of sign bit-level algorithm is

CSis (X): Z = X 1.54

4. Note that we discuss first the ones' complement system; this is because the algorithm is
simpler and is used as a component in the algorithm for the two's complement system.

24 c N ApT E R 1 Review of Basic Number Representations and Arithmetic Algorithms

EXAMPLE 1 .3 T h e fo l lowing example i l lustrates the change of sign in the ones ' c o m p l e m e n t

system wi th n - 4, C -- 24 - 1"

X 1100 x -- - 3

Z -- X 0011 z - - 3 �9

Two's Complemen t System. In this case the complementa t ion constant is 2 n . The

direct subtraction 2 n - x R requires a complete subtraction, which is complex. Since

2 n = (2 n - 1) + 1 and the complement with respect to 2 n - 1 is per formed by

complement ing each digit, the change of sign operation is done in two parts:

1. Complemen t each digit with respect to 1.

2. Add 1.

The addition of 1 can be accomplished by setting tin - - 1. The corresponding

bit-level a lgor i thm is

CS2,s(X)" Z -- A D D (X , O, 1) 1.55

EXAMPLE 1 .4 W e give an example of the change of sign in the two's c o m p l e m e n t system.

Fo r n -- 4, C -- 24, and x - - 3 we have

X 1101 x -- - 3

+

X 0010

0 0000

co 1

Z 0011 z -- 3 �9

Subtraction in the True-and-Complement System

As already indicated, to per form subtraction we combine change of sign and

addition since d -- x - y -- x + (- y) . The corresponding bit-level algori thms

a r e

SUB2,s" D -- ADD(X,_Y, 1) 1.56

SUBls,: D = A D D (X , Y, cn)

Addition, Change of Sign, and Subtraction 25

Addition~Subtraction in the Sign-and-Magnitude System

The direct algorithm for addition in sign-and-magnitude requires the comparison
of the signs, performing an addition if the signs are equal or a subtraction if they
are different, and in the latter case a comparison of magnitudes to determine the
order of the operands in the subtraction. This is significantly more complex than
the algorithm for true-and-complement, in which the operation is always the
same, independent of the signs and the relative magnitudes. As a consequence
of this, addition in sign-and-magnitude is usually performed by converting the
operands to true-and-complement representation, performing the addition in
the true-and-complement system, and finally converting the result to sign-and-
magnitude. Variations of this algorithm are presented in Section 8.4.

Overflow Detection

An overflow exists whenever the magnitude of result of addition or subtraction
exceeds the largest representable magnitude. If this occurs, the result is incorrect
and, consequently, it is necessary to detect this situation. Since, as indicated above,
even in sign-and-magnitude, the actual addition is performed in the true-and-
complement system, we consider only this case.

In the true-and-complement system, an overflow exists when the operands
are of the same sign and the result of the addition represents an integer of opposite
sign. Since in a ones' complement or two's complement system the sign is deter-
mined by the most-significant bit (bit n - 1), the overflow detection is specified
by the following switching expression: 5

f OVF - - X l n _ l �9 Yrn_ 1 �9 Z n _ 1 + X n _ 1 �9 Y n - l " Z n _ 1 1.57

Moreover, in the two's complement system, the overflow can also be detected by
checking the two most significant carries of the adder (see Exercise 1.16).

OVF = c n (~ O n _ 1 1.58

5. We use ',- and + to represent the logical NOT, AND and OR functions.

26 e x ApT E R I Review of Basic Number Representations and Arithmetic Algorithms

1.4 Range Extension and Arithmetic Shifts
We now present algorithms for range extension and arithmetic shifts for signed in-

tegers represented in the radix-2 system. The generalization to radix-r is straight-

forward. These operations are useful in the implementation of multiplication and

division.

1.4,'J Range Extension

The range extension algorithm is performed when it is necessary to represent

the value x by a digit-vector of m digits, given its representation by a vector of n
digits (m > n). That is,

z = x 1.59

and

Z - - (Z m _ l , Zm_2, . . . , Z o) , X - - (Xn_l, Xn_2 , . . . , Xo) 1.60

For example, if a single-precision operand is to be added to a double-precision

operand, its range must be extended to double precision before the operation.
This is also used in multiplication and division algorithms.

In t h e s i g n - a n d - m a g n i t u d e s y s t e m , f o r x = (Xs, X) a n d z = (Zs, Z), the range
extension algorithm is

Zs = X s (sign)

Zi - - O, i = m - 1, m - 2, . . . , n

Z i = X i , i = n - I , . . . , 0

1.61

This is illustrated in Figure 1.4(a). The proof is straightforward, resulting directly
from the definition ofrange extension. For example, forr = 2,n = 3,andxs = 1,
X = (1, 0, 1), the extension to m -- 5 is Zs = 1, Z = (0, O, 1, O, 1).

In the t r u e - a n d - c o m p l e m e n t sys tem, the range extension algorithm is

Z i = X n _ l , i = m - 1, . . . , n

Z i = X i , i = n - I , . . . , 0
1.62

This is illustrated in Figure 1.4(b). A proof is left as Exercise 1.19. As an example
consider the case r = 2, n = 4, m -- 7, and X = (1, 0, 1, 1). Then in the ones'

complement system, Z -- (1, 1, 1, 1, 0, 1, 1).

Range Extension and Arithmetic Shifts 27

t ~ 1 7 6

(a)

Xs
J

0 0 0

Zs Zm.1 Zn+ l Zn

x,.1 x,_2 Xo

Zn-1 Zn-2 Zo

(Xn-1 = 0 or 1) Xn. 1 Xn. 2 X 0

(b) (s ign ex tens ion) �9 **

Zm-1 Zn+l Zn Zn.1 Zn-2 ZO

F t G O R E 1.4 Range extension. (a) Sign-and-magnitude. (b) True-and-complement.

Arithmetic Shifts

Two elementary arithmetic operations that are used in multiplication and division

are the left and right arithmetic shifts. They correspond to scaling operations
(multiplying and dividing by the radix).

A left arithmetic shift is defined in a conventional radix-2 number system for
integers as

z = 2x 1.63

and a right arithmetic shift as

z = 2 - 1 x - - 6 ,]61 < 1 1.64

The value of E is such that it makes z an integer. Note that E can be positive or
negative. Its sign depends on the representation, as discussed below.

These operations are denoted by SL(X) and SR(X) in the algorithms devel-
oped later.

Assuming that overflow does not occur, the algorithms to perform these shift
operations are as given below.

Arithmetic Shifts in the Sign-and-Magnitude System

The left arithmetic-shift algorithm is

Zs = X s (sign)

Z i + l - - X i , i = 0 , . . . , n - 2 1.65

Z 0 = 0

28 e H A P T E R 1 Review of Basic Number Representations and Arithmetic Algorithms

EXAMPLE 1 .5

Xs Xn.1 Xn.2 Xo Xs Xn.1 Xn.2 Xo

(lost) ""e 0 0 �9 �9149 (lost)
/ / \

z~ z~.l z~.2 Zo z~ z~.l z~_2 Zo

OVF if Xn. 1 - 1

(a) (b)

F I G U R E 1.5 Sign-and-magnitude shift operations. (a) Left shift. (b) Right shift.

The right arithmetic-shift algorithm is

Zs = X s

Z i _ 1 = X i , i = 1 , . . . , n - 1 1.66

Z n _ 1 - - 0

Note that in this case, the sign of ~ is the sign ofx.
The proof of these algorithms is straightforward. They are illustrated in

Figure 1.5.

For binary SM representation with 8-bit magnitude and x = - 4 5 , the

arithmetic-shift operations result in

(Xs , X) - (1,00101101)

S L (X) -- (1,01011010)

SR(X) = (1,00010110) �9

Arithmetic Shifts in True-and-Complement Systems

In the two's complement system the left arithmetic-shift algorithm is

Zi+i = Xi, i = 0 , . . . , n - 2 1.67

Z 0 = 0

In the ones' complement system, the algorithm is

Zi+l = Xi, i = 0 , . . . , n - 2
1.68

Z0 = X~-I

Basic Multiplication Algorithms 29

x.q x..2 Xo

(" l j~ 1
(los t) �9 � 9 1 4 9 0

/ /
Zn.l Zn-2 ZO

OVF unless Xn. 1 = Xn. 2

Xn.1 Xn.2

Zn.1 Zn-2

XO /

Zo

OVF unless Xn. 1 = Xn. 2

x,,q x,,.2 Xo

Zn-1 Zn-2 Zo

F ! G U R E 1 . 6 True-and-complement shift operations for r -- 2. (a) Two's complement left

shift. (b) Ones' complement left shift. (c) TC right shift.

The two's and ones' left arithmetic-shift algorithms are illustrated in Figure 1.6(a)

and (b). Proofs are left as Exercise 1.20.
In both the two's and ones' complement systems, the right arithmetic-shift

algorithm is

Z n _ 1 ~ X n _ 1

Z i _ 1 - - X i , i = l , . . . , n - 1
1.69

In this case, E is always positive.
The true-and-complement right shift algorithm is illustrated in Figure 1.6(c).

EXAMPLE 1 .6 Table 1.7 shows examples of the left and right arithmetic shifts in the true-
and-complement system. Signed integers are given in decimal. �9

1.5 Basic Multiplication Algorithms
In this section we discuss the basic multiplication algorithms on positive and
signed integers. More advanced algorithms and implementations are discussed

in Chapter 4.

30 c ~4 A. p ~ E ~ I Review of Basic Number Representations and Arithmetic Algorithms

Two's Complement System

Bit-Vector Signed Integer

Ones' Complement System

Bit-Vector Signed Integer

X
SL(X)

s R (x)

Y
SL(Y)

SR(Y)

001101 13
011010 26
000110 6

110101 -11
101010 -22
111010 - 6

001111 15
011110 30
000111 7

111010 - 5
110101 -10
111101 -2

1o5ol

TABLE 1.1 Examples of arithmetic shifts in the true-and-complement system.

Multiplication of Positive Integers

For simplicity we first consider an algorithm for the multiplication of positive
integers. Later we extend this algorithm to operate on signed integers. Let x and
y be the multiplicand and the multiplier, represented by the n-digit vectors X
and Y in the radix-r conventional number system. The multiplication operation
produces p = x x y, with p being represented by the digit-vector P of 2n digits.
The usual method of multiplication is described by the expression

n-1

p = x ~ Yi ri
i=0

n-1

-- ~ xriyi
i--0

1.70

1.71

This expression indicates that one first computes the n terms xriYi and then
performs the summation. The computation of the i th term requires an i-position
arithmetic left shift of X and a multiplication by the single radix-r digit Yi. The
direct use of this expression leads to a combinational multiplication unit.

If, instead of using n - 1 adders, a single adder is reused, the sequential
algorithm is

p[0] = 0

p[j + 1] = r - l (p [j] -] - xrnyj)
p -- p[n]

fo r j -- 0, 1 , . . . , n - 1 1.72

Basic Multiplication Algorithms 31

1 . 5 ~

I
n :

x r y j I

p[./] J
I

I

Multiplicand Xr" !

k
Vector-digit multiplier r

1 " J

I
rp[j+l] I ~ I i
p [j + l] ' ~ i

1 1 ,
,

ADDER

\

yj digit of
multiplier Y

Shift right

FIGURE 1.7 Relative position ofoperands in multiplication recurrence.

Since the expansion of this recurrence results in p[n] = x • y , the product is
obtained in n steps. Each step consists of the multiplication of x by a radix-r
digit to form x Y j , followed by a two-operand addition, and by a one-position
arithmetic right shift. The factor r n multiplying x indicates only that X has to be
aligned with the most significant half of the partial product.

This form of recurrence, using a right shift, is chosen so that the multipli-
cation can proceed from the least-significant digit of the multiplier, while the
multiplicand retains the same position with respect to the single-precision adder.
This is illustrated in Figure 1.7. Note that the adder has n + 1 digits because x Y j

can have n + 1 digits (except for the radix-2 case in which n digits are sufficient).
An example of the execution of the algorithm for radix-2 is given in Figure 1.8.

Note that a temporary overflow, indicated by (*) in the figure, may occur in the
process of forming the partial products, but it is immediately corrected by the
right shift in the following step. Also note that only the significant part of the
partial products ((n + j) bits of the 2n bits) is shown; this is consistent with the
implementation of the multiplication algorithm, as described in Chapter 4.

Multiplication of Signed Integers (Radix-2)
The extension of the previous multiplication procedure to signed integers in
radix-2 representation is considered next. The operands are represented with n
bits (including sign) and the product with 2n - 1 bits.

32 C:blA P*r~ R I Review of Basic Number Representations and Arithmetic Algorithms

n -- 5 x -- 23 (X - - 10111) y -- 26(Y -- 11010)

p[O] 00000

25x Yo 00000

p[1]

25xY1

p[2]

25xY2

p[3]

25xY3

p[4]

25xY4

00000

00000 0

10111

10111

01011

00000

0

10

01011

00101

10111

10

110

11100

01110

10111

110

0110

(*) 100101 0110

p[5] 10010 10110 = 598

FIGURE 1.S Example of magnitude multiplication.

.

Sign-and-magnitude algorithm. The algorithm presented before produces
the correct magnitude of the product. Therefore, the extension consists only
in computing the sign Ps by the common rule of signs: Ps = Xs ~ ys.

Two's complement algorithm. The value of the multiplier in the two's
complement system can be expressed as in (1.27):

n-2
2n-1 ~ ' ~ 2 i y = - Y n - I + / _ ~ Yi 1.73

i=0

Therefore,

n-2
= ~ ' ~ -- 2n-1 x y x Yi 2 i X Yn-1

i=0

1.74

Basic Multiplication Algorithms 33

n = 5 , r = 2 x = - 3 (X = 11101) y -- - 4 (Y = 11100)

p[O]

25xYo

p[1]

25xy1

p[2]

25xY2

p[3]

25xY3

p[4]

-25xY4

0 00000

0 00000

0 00000

0 00000

0 00000

0 00000

0 00000

1 11101

0

O0

1 11101

1 11110

1 11101

O0

100

1 11011

1 11101

0 00011

100

1100

p[5] 0 00000 1100 = xy = 12

F ! G U R E 1.9 Example of two's complement multiplication.

.

Consequently, the algorithm for multiplication of signed integers in the
two's complement system consists of performing the basic recurrence for
the first n - 1 steps and then subtracting (instead of adding) the multipli-
cand in the last step.

To avoid losing the sign of the partial product in the case of a tem-
porary overflow, the multiplicand, and the partial product are extended one
bit to the left (sign extension). An example is given in Figure 1.9.

Ones' complement algorithm. The multiplication algorithm for operands
in the ones' complement system also requires a corrective step that can be
specified in a manner similar to the two's complement case. However, since
the change of sign is a simple operation in this system, an alternative
approach is to make the negative multiplier positive before applying the

34 c N A p T E R ~ Review of Basic Number Representations and Arithmetic Algorithms

multiplication algorithm, in which case the product should be comple-

mented at the end.

1o6 Basic Division Algorithms
Here we consider integer division. 6 That is, the dividend x, the divisor d, the

quotient q, and the remainder w are integers such that

x = q d + w 1.75

with the restriction 0 < Iwl < Idl and the sign of the remainder is equal to the

sign of the dividend.

We first consider the case of positive integers. These are all represented in
a radix-r number system. To obtain a quotient with n digits (0 < q < r n - 1),

the dividend should have 2n digits and the divisor n digits. We consider the case

0 < d and x < r nd , which precludes division by zero and quotient overflow.

The basic division algorithm consists ofn iterations of the following residual

recurrence:

w[0] -- x 1.76

w[j + 1] = r w [j] - d*qn_l_j j = 0, . . . , n - 1 1.77

n - - 1 i * n where q = ~-]4-0 q ir and d -- d r ; that is, the divisor is aligned with the
most-significant half of the residual. In each iteration one digit of the quotient is

determined by the quotient-digit selection function

qj+] - S E L (w [I '] , d) 1.78

The value of the quotient digit is such that the next residual w[j + 1] is bounded,

such that

0 < w[/" + 1] < d* 1.79

We now consider the selection function for the restoring and nonrestoring algo-

rithms.

6. Non-integer division for floating-point operation is discussed in Chapters 5 and 8.

Basic Division Algorithms 35

I

I - (k+ 1)d*
4 - - 7

I

I

I - k d *
I"I--7 7
I

I I
I

I I
I

I I
I , D,

0 w[j+l] d* rw[j]

F I G U R E 1.10 Selecting quotient d ig i tqn_l_j -- k.

Restoring Division

In the restoring algorithm, the quotient-digit set is the nonredundant set {0, 1,
2, . . . , r - 1 }. In this case, to achieve the residual bound w[j] < d ' , it is necessary
to use the following quotient-digit selection function:

qn-l- j = k if d* k < rw[jl < d'(k + 1) (O<k < r - l) 1.8o

This selection is illustrated in Figure 1.10. Its implementation requires compar-
isons ofrw[l"] with multiples ofd ' . To avoid the need of several comparators, it is
possible to subtract the divisor repetitively until the resulting residual is smaller
than d*. This would still need one comparator with d*. The implementation can
be further simplified if the subtraction is continued until the sign of the tentative
residual is negative, in which case an addition of d* produces the correct resid-
ual. This addition step is called a restoring step. Because of the large number of
subtractions required for high radices, this algorithm is only suited for radix-2.
In this case, an iteration consists of the following two substeps:

1. A tentative residual is calculated as

t~[j + 1] -- 2w[j] - d* 1.81

The quotient digit is selected according to the sign of the tentative residual
tF[j + 1], namely:
If tF[j + 1] > 0 then

q n - l - j = 1 and w[j + 1] - t~[j + 1] 1.82

36 e H A P T E R ~ Review of Basic Number Representations and Arithmetic Algorithms

If t~[j + 1] < 0 then

q n - l - j - - 0 and w [/ + 1] = 2w[j] = ~ [j + 1] + d * 1.83

That is, depending on the sign of the tentative residual, the value of the quo-
tient digit is selected. Moreover, when the tentative residual is negative, the new

residual is obtained by adding d ' . This restoring division procedure is formalized
in Algorithm RD.

Algorithm RD: Restoring Divide

1. [Initialize]
w[0] = x

2. [Recurrence]
for j = 0 . . . n - 1

2.1 tF[j" + 1] = 2w[j] - d*
2.2 if t~[j + 1] > 0 then
qn- l - j = 1; w[j + 1] = ~[j]

else
qn- l - j -- 0; w[j + 1] = t~[j] + d*

end for

In an implementation the tentative and the true residuals are stored in the
same register. Thus a restorauon operation w + d is performed whenever the
tentative residual is negative.

EXAMPLE 1.7 An example of binary restoring division with n - 4 is given in Figure 1.11.
Note that the subtractions are performed by adding the two's complement
of the divisor d ' . In order to preserve the sign of the shifted residual, the
representations of the residuals and divisor are extended by one additional bit
to the left. �9

The restoring division algorithm is simple to implement but is relatively slow. In

order to obtain an n-digit quotient, n subtractions, n shifts, and n/2 restoration
additions (on the average) are required.

Basic Division Algorithms 37

D i v i d e n d x = 1110 -- (00001011)2, d iv isord = 2 = (0010)2

w[0] = 0 0000

2w[0] = 0 0001

- d * = 1 1110

1011

0110

t~[1] = 11111

+ d " = 0 0010

0110 q 3 = O

restore

w[1] -- 0 0001

2w[1] = 0 0010

- d " = 1 1110

0110

1100

t~[2] = 0 0000

2w[21 = 0 0001

- d " = 1 1110

1100

1000

q 2 = 1

t~[3] = 1 1111

+ d " = 0 0010

1000 q l = O

restore

w[3] = 0 0001

2w[3] = 0 0011

- d " = 1 1110

1000

0000

t714] = 0 0001 0000 q 0 = 1

w[4] = t714]

Quot ient q = (0101) z = 5, remainder w = (0001) z = 1. Check: 11 = 2 • 5 + 1.

F ! G U R E 1 .1t Example of radix-2 restoring division.

The restoring a lgor i thm can be made faster by not storing the tentative

residuals at all and thus avoiding the restoration steps. Such an a lgor i thm is

called nonperforming division, and it is specified in Algor i thm N P D . N o w in each

iteration, the register has to be loaded either with 2w[j] or with the result of the

subtraction.

38 c H A PT E R I Review of Basic Number Representations and Arithmetic Algorithms

Algorithm NPD: Nonperforming Divide

1. [Initialize]
w[0] = x

2. [Recurrence]
for j - - 0 . . . n - 1
if 2 w [j] - d* > 0 then

q n-j-1 = 1; w[j + 1] = 2 w [j] - d*
else

q n - j - 1 --- 0; w [j -~- 1] = 2w[j]
end for

1 . 6 . 2 N o n r e s t o r i n g D i v i s i o n

The speed of the restoring division algorithm can also be improved in the fol-

lowing manner. It is easily observed that the restoration of the j th residual w[/]

can be combined with the next subtraction of the divisor. When restoration is

required; that is, when t~[j] < 0, qn- j --" O, then

t~[/ + 1] = 2w[j] - d* = 2(~[./] + d*) - d* -- 2t~[./] + d* 1.84

and when no restoration is necessary; that is, when iF[j] > 0, q n- j -- 1, then

t~[j + 1] = 2w[j] - d" -- 2t~[./] - d" 1.85

Therefore, an equivalent algorithm can be implemented in which iF[j] is
the residual (instead of w[j]). These residuals can be positive or negative and are
bounded by

I~F]I < d" 1.86

Since the residuals can be negative and we want a positive final remainder, the

last step of the procedure is modified to assure a positive remainder.

The nonrestoring algorithm is described in Algorithm NRD. To simplify

the notation we use w[j] to denote this new residual. This algorithm requires n

shifts and n additions/subtractions to obtain an n-digit quotient, and is therefore

faster than the restoring one.

Basic Division Algorithms 39

Algorithm NRD: Nonrestoring Divide

1. [Initialize]
w[0] = x

2. w[1] = 2w[0]-d*
3. [Recurrence]

forj = 1 . . . n - 1
if w[j] > 0 then
qn-l-j = 1; w[j + 1] = 2w[J'] -- d"

else
q n - l - j - - O; w[j + 1] = 2w[/'] + d"

4. [Correct]
if w[n] < 0 then
q0 = 0; w[n] = w[n] + d*

else
q 0 = l

endfor

EXAMPLE 1 .8 An example of nonrestoring division of positive fractions is given in Figure
1.12. Note that the subtractions are performed by adding the two's complement
of the divisor d ' . In order to preserve the sign of the shifted residual, the
representations of the residuals and divisor are extended by an additional bit
to the left. �9

An alternative description of the nonrestoring algorithm consists in defining the
digit set for the quotient as { - 1, + 1} instead of the canonical {0, 1} and to perform
directly the recurrence with the quotient-digit selection

qn--j--1 = 1 if w[j] > 0 and --1 otherwise 1.87

For compatibility reasons, usually the quotient eventually has to be transformed
to the canonical representation. If this transformation is done digit by digit during
the division process, the NRD algorithm results.

40 c H APT E R ~ Review of Basic Number Representations and Arithmetic Algorithms

t . 7

1.1

Dividend x = 1110 --" (0 0 0 0 1 0 1 1) 2, divisor d = 2 = (0010) 2

w[O] = o oooo

2w[0] -- 0 0001

- d * = 1 1110

1011

0110

w[1] = 11111

2w[1] = 1 1110

+ d " = 0 0010

0110 q3 = 0

1100

. ,[2] = o oooo

2w[2] = 0 0001

- d * = 1 1110

1100 q2 = 1

1000

w[3] = 11111

2w[3] = 1 1111

+ d " = 0 0010

1000 ql = 0

0000

w[4] = 0 0001 0000 qo = 1

Quot ien t q = (0101) 2 = 5, r emainder w = (0001) 2 = 1. Check: 11 = 2 • 5 + 1.

F ! G U R E 1 . 1 2 Example of radix-2 nonrestoring division.

E x e r c i s e s

R e p r e s e n t a t i o n o f P o s i t i v e I n t e g e r s

(a) De te rmine how many digits are necessary to represent integers in the range 0

to (297) 10 using

1. radix-2 conventional system

2. radix-8 conventional system

3. radix-17 conventional system

4. mixed-radix system with radix vector R = (n + 1, n, . . . , 3, 2) and

canonical digit-set

(b) W h a t is the largest integer that can be represented by the digit-vectors of

the size de te rmined in each of the cases?

Exercises 41

1 . 2

1 . 3

1 . 4

1 . 5

1 . 6

1 . 7

(c) Specify a coding for the digits and determine the number of bits of the
bit-vector that represents these integers. Determine the efficiency of each repre-
sentation, defined as the ratio of the number of bits in the binary representation
and the number of bits required by the digit-vector.

Represent the integers 0, 13, 15, 19, 22, and 127 using a residue number system
with P = (7, 5, 3, 2) as the set of moduli. Specify a bit coding for the digits and
determine the efficiency of the representation.

What happens if the moduli used in a residue number system are not relatively
prime?

A processor word has eight bits. Determine the set of positive integers repre-
sentable with two words for the following representation systems. Determine the
efficiency of the representations.

1. Conventional, radix-2

2. Conventional, radix-10, BCD

3. Conventional, radix-16

Representation of Signed Integers

Given the digit-vector

X - (1 , 0 , 1 , 0 , 1 , 1) r

(a) Determine its representation value x R in decimal for r = 2, 8, 10, and 16.
(b) What is the greatest value of xR that a six-component vector X can

represent for r -- 2, 10, and 16 ?

Show the bit-vectors that represent x, - 6 < x < 6, in the binary true-and-
complement systems with complementation constants C -- 16, 15, 19, and 127.
Use the minimum number of bits required by the number system.

Given the digit-vector

X = (1, O, 1, 1)r

(a) determine the representation value x R in a weighted, radix-r representa-
tion system for the radices 2, 7, and 16;

42 c M APT E R I Review of Basic Number Representations and Arithmetic Algorithms

(b) determine the value x in the following cases:

r Attributes

Integer, two's complement

Integer, digit complement

Integer, digit complement

1 .8 Complete the following table, assuming (a) conventional number system, r =

4, range complement, n = 6 digits (b) conventional number system, r = 2,

ones' complement, n - 8 bits (c) conventional number system, r = 2, two's

complement, n - 5 bits.

Value x Value x R Digit Vector X

(a)
(b)
(c)

-3910

21510

11101

1 .9

Number
System

Complete the following table. All values are given in the decimal system.

Radix Number of
r Digits n Value x Value x R Digit-Vector X

SM

Two's compl.

Range compl.

Range compl.

Ones' compl.

Two's compl.

Digit compl.

Ones' compl.

10

2

3

8

2

2

8

2

-837

--37

--83

- - 1 9 / 6 4

- 19/64

363

110010

6527

1 .10 Given the digit-vector

X = (X6, Xs, . . . , Xo)

Exercises 43

1.11

1 . 1 2

1 . 1 3

1 . 1 4

1 . 1 5

and the radix r = 2, if the radix point is between bits X4 and X3, determine

the values of the most positive number Xmax and the most negative number Xmin

and show their corresponding digit-vector representation in (a) the sign-and-

magnitude system (b) the two's complement system (c) the ones' complement

system.

Determine the value x, represented by the digit-vector X = (1, 0, 1, 0, 1) for the

following cases:
(a) Values are integers, r -- 2, and the two's complement system is used.
(b) As in (a), but the ones' complement system is used.
(c) As in (a), but the sign-and-magnitude system is used.

(d) Repeat (a), (b), and (c), assuming that the values are fractions (signed).

Given the four-component vector X = (1, 0, 1, 1) 2:
(a) Assuming that X represents the integer x, represent x with the six-

component vector Y using the two's complement and ones' complement systems.

(b) Repeat (a), assuming that the given X represents the fraction x. Do not
change the position of the radix point when extending X to the six-component

vector.

Algorithms and Implementations for Addition,
Subtraction, and Change of Sign

Perform the operations x + y, y - x, x - y, - x - y, - y - x, and Ix - y[on
digit vectors X and Y that represent the integers x = - 1 7 and y = 9 in the
radix-2 sign-and-magnitude, two's complement, and ones' complement number
systems. Determine the minimal number of digits so that no overflow will occur.

Show an algorithm for the computation

- I x l - lyl

where the signed integers x, y, and z are represented in the two's complement

system.

Prove that the following bit-serial algorithm performs the "change of sign" op-

eration in the two's complement system. Let

2 - - (2 n _ l , 2 n _ 2 , . . . , 20) 2

44 c HA PT E R I Review of Basic Number Representations and Arithmetic Algorithms

1 .16

1 .17

and

X = (Xn-1, X n - 2 , . . . , X0)2

represent z and x such that z -- - x .
Algorithm: Ifk is the index of the rightmost bit of X that is 1,

Zi=Xi i = 0 , 1 , . . . , k

Zi=X~ i = k + l , . . . , n - 1

(a) Show that the overflow in addition in the two's complement system can be
detected by the exclusive-or of the carry-in and the carry-out of the most significant
bit.

(b) Show that the last expression does not work properly in the ones' com-
plement system.

In many computers two types of integers are represented: signed integers and
unsigned (positive) integers. This is done to use more effectively the available
number of bits in a word.

(a) Determine the range of signed and unsigned integers that can be rep-
resented by a 16-bit word. In the signed case consider the sign-and-magnitude,
two's complement, and ones' complement systems.

(b) Suppose we want to perform the operations of addition and subtraction
for both types of integers. The basic module used for these operations is a 16-bit
adder and four flags: the zero flag Z is set to 1 when the result is zero, the sign
flag SGN is loaded with bit 15 of the result vector, the carry flag CO is loaded
with the carry-out of the adder (used for multiprecision operations), and the
overflow flag OVF is set to one if there is an overflow in the addition (assuming
true-and-complement representation). Indicate whether the same algorithms can
be used for addition and subtraction for both types of integers. Consider the
two cases for the representation of signed integers: two's complement and ones'
complement.

(c) Consider the operation of comparison. The operation is performed by
a subtraction (without storing the result) and setting the flags. Determine the
values of the flags for greater, equal, and smaller for both types of integers.
Consider the three representations in the signed case. Suppose that the computer
has conditional branch instructions that branch or not depending on the result
of a previous comparison (branch on greater, branch on equal, and branch on

Exercises 45

1 .18

1 .19

1 . 2 0

1.21

1 .22

1 .23

1 . 2 4

1 . 2 5

smaller). Indicate whether the same instructions can be used if the comparison

was done on unsigned integers or on signed integers. If not, determine how the
flags would be used by the branch instructions in each case.

Algorithms for Range Extension and Arithmetic Shifts

Given the digit-vectors A = (7, 3, 6, 2) and B = (3, 2, 1, 6):

(a) Determine the integers represented in a range complement decimal system

and in a digit complement decimal system.

(b) Extend the vectors to six digits; that is, represent the same numbers using
six digits.

(c) Obtain the representation for the integers 10a and a/10 using vectors with
seven digits.

Prove the algorithm presented in the text for t rue-and-complement range exten-

sion.

Prove the algorithms presented in the text for arithmetic shifts in true-and-

complement systems.

For the digit-vectors X -- 00101101 and Y - 11010110 apply the arithmetic-shift

algorithms for two's complement and ones' complement radix-2 systems. Check
the results.

Determine conditions for overflow in the right arithmetic-shift algorithm.

For A = (1, 1, 0, 1), B = (1, 1, 0), C -- (0, 1, 0, 1), and D -- (1, 0, 1, 0, 1),
obtain X representing x -- (a + b) + 8c - 2d in the two's complement
system.

Multiplication

Perform the multiplication of x -- 21 and y = 14 using the basic multiplication
algorithm for positive integers and r - 2.

Perform multiplication of x = 21 and y -- - 17 using algorithms for

�9 two's complement

' p l �9 ones com ement

46 c H,~0, ~ ~'~ ~ ~ Review of Basic Number Representations and Arithmetic Algorithms

1 . 2 6

1 .27

1 . 2 8

1 . 2 9

1 . 3 0

assuming radix 2. What is the minimum number of bits necessary to represent
the operands and the result?

Determine the execution time of the basic multiplication algorithm for n-bit non-
negative integers assuming that a partial product of each iteration is stored in a
register and

�9 tva time to perform vector-digit multiplication

�9 t=aa addition time

�9 treg register loading time

Propose a modification to the algorithm so that the execution time is reduced to
about 50% of the original time.

Derive a recurrence for multiplication of positive integers assuming that the
multiplier digits are used from left to right; that is, the algorithm begins with
y~-l. Show a figure indicating relative position ofoperands, partial products, and
the adder. Is there an effect on the execution time compared with the original
right-to-left multiplication algorithm?

Division

Prove the nonrestoring division algorithm.

Perform nonrestoring division ofx -- 14 by d -- 3. Use conventional binary repre-
sentation and perform subtraction by adding the two's complement of the divisor.

Derive a nonrestoring algorithm for two's complement operands.

Further Readings
The basic concepts of digital arithmetic are covered in many books on digital
design and computer organization such as Wakerly (2001) and Hennessay and
Patterson (1995). A broader and more detailed treatment of number systems and
arithmetic operations can be found in books on digital arithmetic such as Parhami
(2000), Knuth (1998), Omondi (1994), Koren (1993), Scott (1985), Cavanagh (1984),
Wasser and Flynn (1982), Kulisch and Miranker (1981), Spaniol (1981), Gosling

Bibliography 47

(1980), and Hwang (1978). Some of the papers cited in this book as well as other
papers are reprinted in a comprehensive two-volume collection (Swartzlander
1990). Oklobdzija (1999) presents an extensive collection of papers on high-
performance circuits, logic, and system design, many of them related to digital
arithmetic. A survey of digital arithmetic in the 1950s and 1960s, when many of
the most important ideas in number representation, algorithms, and implemen-
tations were introduced, appears in Garner (1965). A view of the several levels
involved in the specification and implementation of arithmetic processors is pre-
sented in Avizienis (1971). A theoretical treatment of basic digit sets for radix
representation is given in Matula (1982). A classic book on residue arithmetic
is Szabo and Tanaka (1967). A tutorial on residue number system appears in
Taylor (1984), and a collection of papers on residue number system arithmetic is
provided in Soderstrand et al. (1986). Numbers, various representation systems,
and their long history are the subject of many books (Gazale 2000; Guedj 1996;
McLeish 1991; Ifrah 1985; Dantzig 1954). Sweitz (1987) describes how arithmetic
was done in the 15th century. There is also a dictionary of curious and interesting
numbers (Wells 1997).

1o9 Bibliography
Avizienis, A. (1971). Digital computer arithmetic: A unified algorithmic speci-

fication. In Proceedings of the Symposium on Computers and Automata, pages
509-25, April 13-15.

Cavanagh, J. (1984).Digital Computer Arithmetic.McGraw-Hill, New York.
Dantzig, T. (1954). The Number: The Language of Science.Free Press (Macmillan

Publishing Co.), New York.
Ercegovac, M. D. and T. Lang, (1985). Digital Systems and Hardware/Firmware

Algorithms. John Wiley & Sons, Inc., New York.
Garner, H. L. (1965). Number systems and arithmetic. In Advances in Computers,

volume 6, pages 131-94. Academic Press, New York.
Gazale, M. (2000). Number from Ahmes to Cantor. Princeton University Press,

Princeton, New Jersey.
Gosling, J. B. (1980).Design of Arithmetic Units for Digital Computers. Springer-

Verlag, New York.

48 c H APT E ~ I Review of Basic Number Representations and Arithmetic Algorithms

Guedj, D. (1996).Numbers: The Universal Language.Harry B. Abrams, Inc., New
York.

Hennessy, J. L. and D. A. Patterson, (1995). Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, San Francisco, 2nd edition.

Hwang, K. (1978). Computer Arithmetic Principles, Architecture and Design. John
Wiley & Sons, Inc., New York.

Ifrah, G. (1985). From One to Zero: A Universal History of Numbers. Viking, New
York.

Knuth, D. E. (1998). The Art of Computer Programming: SeminumericalAlgorithms.
Addison Wesley, Reading, Massachusetts, 3rd edition.

Koren, I. (1993). Computer Arithmetic Algorithms. Prentice Hall, Englewood Cliffs,
New Jersey.

Kulisch, U. W., and W. L. Miranker, (1981). Computer Arithmetic in Theory and
Practice. Academic Press, New York.

Matula, D. W. (1982). Basic digit sets for radix representation.Journal ofthe ACM,
29(4):1131-43.

McLeish, J. (1991).Number.Fawcett Columbine, New York.
Oklobdzija, V. G. editor (1999). High-Performance System Design: Circuits and

Logic. IEEE Press, Piscataway, New Jersey.
Omondi, A. R. (1994). Computer Arithmetic Systems, Algorithms, Architecture and

Implementations. Prentice Hall International Series in Computer Science,
Englewood Cliffs, New Jersey.

Parhami, B. (2000).ComputerArithmetic:AlgorithmsandHardwareDesigns. Oxford
University Press, New York.

Scott, N. R. (1985). Computer Number Systems & Arithmetic.Prentice Hall, Engle-
wood Cliffs, New Jersey.

Soderstrand, M., W. Jenkins, G. Jullien, and F. Taylor (1986). Residue Number
System Arithmetic: Modern Applications in Digital Signal Processing. IEEE
Press, New York.

Spaniol, O. (1981). Computer Arithmetic: Logic and Design. John Wiley & Sons,
Inc., New York.

Swartzlander, E. E. editor. (1990). Computer Arithmetic, Vol. 1 and Vol. 2. IEEE
Computer Society Press, Los Alamitos, California.

Sweitz, F. J. (1987). Capitalism & Arithmetic: The New Math of the 15th Century.
Open Court, La Salle, Illinois.

Bibliography 49

Szabo, N. S., and R. I. Tanaka (1967). Residue Arithmetic and Its Applications to
Computer Technology. McGraw-Hill, New York.

Taylor, F. (1984). Residue arithmetic: A tutorial with examples.IEEE Computer
Magazine, 17(5):50-62.

Wakerly, J. F. (2001). Digital Design Principles & Practices. Prentice Hall, Engle-
wood Cliffs, New Jersey.

Wasser, S., and M. J. Flynn (1982).Introduction to Arithmetic for Digital Computers.
Holt, Rinehart, Winston, New York.

Wells, D. (1997). Curious and Interesting Numbers.Penguin Books, New York.

C s ~.IQ'=i"s I's ~ Two-Operand Addition

We begin by considering the addition of two positive fixed-point operands in

fixed-radix representation. We first present algorithms and implementations for

conventional representation and then consider the case of redundant representa-

tions. The adders can then be used for addition of signed operands in alternative
representations, such as sign-and-magnitude and two's complement.

The algorithms and implementations we present are for radix 2. However,

this includes other power-of-two radices with binary coding of the digits, since

in that case the bits of the representation are the same as those of a radix-2

representation.

A binary n-bit adder, shown in Figure 2.1(a), has two operands 0 < x, y <

2 n - 1 and carry-in Cin E {0, 1} aS inputs, and produces as outputs the sum

0 < s < 2 n - 1 and carry-out Cout ~ {0, 1} such that

x + y + Cin m 2ncout + s 2.1

The solution to this equation is

s -- (x + y + Cin) mod 2 n

-- / 1 if(x + y + Cin) ~ 2 n
C out

I 0 otherwise

= [(x + y + Cin) / 2 n]

2.2

For n -- 1, the adder reduces to a primitive module called fu l l -adder (FA) with

three binary inputs xi , yi , and ci and two binary outputs si and Ci+ 1 indicated
in Figure 2.1(b), such that

Xi -~" Yi + Ci - - 2 c i + 1 + si 2.3

51

52 c ~ & PT E R 2 Two-Operand Addition

X Y xi Yi

Cou, I i. ci. %1 I I_ ci
~1 ADDER I - I FA I-

.t [
S si

(a) (b)

F I G U R E 2.1 (a) An n-bit adder. (b) 1-bit adder (full-adder module).

with solution

5i = (Xi + Yi -+-Ci) m o d 2

Ci+ 1 = L(xi -+-Yi +ci)/2]
2.4

Adder Schemes
In this chapter several addition schemes are presented which provide trade-offs

between delay and other characteristics, such as area and energy dissipation.
Because of this no scheme can be considered as superior, but they provide alter-
natives from which to choose in a specific context with specific requirements and

constraints.
The most common implementations are of the fixed-time type. That is, the

adder has no signal to indicate when the addition is completed, and therefore the
worst-case delay has to be considered. On the other hand, variable-time adders
have completion signals so that the result of the addition can be used as soon as

the completion signal is asserted.

We consider both carry-propagate adders (CPA), which produce the re-

sult in a conventional fixed-radix number system, and redundant adders, in

which the result is in a redundant number representation. As we discuss later,

these redundant adders have a lower delay that is independent of the number of

operand bits.

There are many schemes of carry-propagate adders, with the main objective

of reducing the delay in obtaining carries. Among them we study the following:

About Carries 53

�9 Switched carry-ripple adder

�9 Carry-skip adder

�9 Carry-lookahead adder

�9 Prefix adder

�9 Carry-select adder and conditional-sum adder

Redundant adders are characterized by limited carry propagation (indepen-

dent of the number of bits of the adder). The main types are:

�9 Carry-save adder

�9 Signed-digit adder

Different adder schemes are sometimes combined to achieve delay/area con-

straints, resulting in h y b r i d adders. These adders are not discussed in this book,

but references to them are included at the end of this chapter.

2~ About Carries

The production of the bit S i (0 < i < n -- 1) in the addition s = x + y can be

decomposed into the following two steps, as illustrated in Figure 2.2:

PI

I
I
|

Con t = c. :
!

!

C O = Cin

,' Step 1"
' Obtain carries !

i i

I C n - 1 e e e C i

Yn-'ll

0 0 0

X i

1

I
1

S n - 1 S i

eee ICl Co

Y'll Y~
.

e e e

_ _ _

s 1 s o

Step 2:
Compute sum bits

F I G U R E 2 .2 Steps in addition.

54 c ~,~ ~ P :~ ~i ~:~ 2 Two-Operand Addit ion

Obtaining the carry ci. This carry represents the influence of bits x j and yj

for j < i on s i. That is,

Ci = F (X i -1 , . . . , XO, Y i - 1 , . . . , Yo, Cin)

More specifically, calling

and

we have

(i)
i

- - ~ x j 2 j

j=O

(i)
i

- - ~ y j 2 j

j=0

2.5

~ x(i--1) _~_ y(i--1) + Ci n

C i ~ 2i 2.6

2. Computing the sum bit S i from the input bits X i and yi and the carry
obtained in Step 1. Specifically,

Si - - (X i "]-Yi + Ci) mod 2 2.7

Since the sum b i t s / a t posit ion/depends only o n x i , Y i , and ci; that is, it is a
local function, once the carries are known all sum bits can be computed in
parallel.

Consequently, the main objective of all methods for reducing the time of
addition for conventional representation is to speed up the process for obtaining
all carries. We now discuss several general observations that are commonly used
in various approaches for computing carries.

At position i of the addition, consider the relation between the carry-out
(Ci+1) and the carry-in (ci). From expression (2.6), we can see that there are three
mutually exclusive cases, as summarized in Table 2.1. The determination of the
particular case depends only on the local variables xi and yi and can be performed
in parallel (for all i) by the following switching expressions:

Case Kill:

ki t t I - x i y i - (x i + y i) 2.8

About Carries 55

Case xi Yi

Kill (ki = 1)

Propagate (Pi = 1)

Generate (g i - - 1)

0 0

0 1

1 0

1 1

T A B t E 2.1 Carry-out cases.

Xi + Y i

0

1

1

2

Ci+l

0

ci

ci

1

Comment

Kill (stop) carry-in

Propagate carry-in

Propagate carry-in

Generate carry-out

Case Propagate:

Pi - - x i (~ Yi 2.9

Case Generate:

gi - - x i Yi 2.10

Consequently, the carry-out of position i can be expressed in terms of the carry-in

to that position as

C i + I - - gi + Pici = x iYi + (x i (~ y i)c i 2.11

From the identi tygi + Pici = gi + (gi + p i) c i and naming Pi + gi - a i , we get
an alternative expression for the carry-out

C i + 1 ~ gi + a ic i 2.12

which is somewhat simpler to implement than (2.11). The variable a i corresponds
to the combined case when xi + yi is 1 or 2. Since ai -- k~, we call it "alive."

Similarly,

! !

C i + l = ki + p i c i 2.13

From expressions (2.11) and (2.13) we observe that carries propagate from least-

significant to most-significant bit (right to left), forming carry chains of two types:

1-carry chain consisting of carry - 1 and 0-carry chain consisting of carry = 0.

The following example illustrates these chains:

56 r • APT E ~ 2 Two-Operand Addition

xi

yi

Ci+l

9 8

1 0

0 0

e k
a

0 ~ - - 0

7 6 5 4 3 2 1 0 c i n = O

1 0 1 1 1 1 0 0

0 1 0 1 0 0 1 0

P P P g P P P k
a a a a a a a

1 + - - 1 + - - 1 +-- 1 0 +-- 0 +-- 0 +-- 0

Observe that a 1-carry chain begins always with a gi = 1 (or Cin = 1)

and propagates to the left over all consecutive positions j > i where p j = 1.

Similarly, a 0-carry chain begins with ki = 1 (or cin = 0) and propagates to the

left over all consecutive positions j > i where p j = 1. Moreover, the chains are

independent . 1

Expressions (2.11) and (2.12) can be general ized to consider a group of bits,

by replacing the bit-generate gi , the bit-propagate Pi, and the bit-alive ai by the

corresponding group variables. Tha t is,

Cj+I = g(j,i) + p(j,i)Ci --- g(j,i) +a(j,i)ci 2.14

This expression indicates that Cj+l -- 1 i fa carry is generated in the group of bits

f rom i to j or if a carry comes in to that group and is propagated (or kept alive)

by the group.

F r o m the definition of the carry,

1 if Y~=i(Xv + yv)2 v-i > 2 j+ l - i
- - - 2 .15

g(j,i) 0 otherwise

1 if Y~=i(Xv -t-yv)2 v-i = 2 j + l - i - 1 2.16

P(j,i) = 0 otherwise

Fora(j,i) we observe that p (j,i) = 1 i f fPk = 1 for all k in / < k < j . Tha t is,

J
P (j,i) = A N D (p v) 2.17

1. As discussed later, these carry chains have an effect on the delay of the adder. In some
circuit technologies, all carry signals are cleared before the operation. In such a case, 0-carry
chains need not be considered for the delay. A similar situation occurs with the 1-carry chains
if all carries are preset to 1.

About Carries 57

f e e-1 d

__L_ " " J L " ' " J .

g(f,e) a(f,e) g(e-l,d) a(e-l,d)

GA

gL aL gR aR

'= i
i i
i i
i i
i i
i i
i i

i I
i I
i i

I I

i i

' t '
! i
! i
!

, A :
i i
i !

gout aout

(a) (b)

F I G U R E 2.3 Computing (g(f ,a), a(f,a)).

Therefore, it is easy to verify that the last part of expression (2.14) is satisfied if
we define

J
a(j , i) = AND(av) 2.18

U " - I

By making i = 0 in expression 2.14, we obtain

Cj+l - - g(j,O) + p(j ,o)Co - - g(j,O) + a(j,O)CO 2.19

That is, to compute Cj+ 1 it is sufficient to compute the pair (g(j,0), P(j ,o)) or the
pair (g(j,0), a (j,0)).

Moreover, as shown in Figure 2.3, the computation of the variables for the
range of bits (f , d) can use the values of these variables for the subranges (f , e)
and (e - 1, d), with d < e < f . Specifically, from the definitions we obtain the
following switching expressions:

g (f , a) - - g (f , e) + P (f , e) g (e - l , d) "-- g (f , e) + a (f , e) g (e - l , d)

a (f ,d) - - a (f ,e)a (e-l,d) 2.20

P (f ,a) - - P (f,e) P (e-l,d)

58 C H A Pl" E R 2 Two-Operand Addition

EXAMPLE 2.1

These expressions 2 are the basis for linear and treelike structures to obtain all the

carries. These structures are the main topic of this chapter.

Once all the carries are obtained, the sum bits are computed in parallel as:

S i "~ Xi f~ Yi f~ c i - - P i ~ ci 2.21

We now illustrate the use of these expressions to obtain bit 13 of the sum 3 of

the following 16-bit operands (Cin -- 0):

x -- 01101001011100[0011

y - 1011ll l01[0001[l l l0
m

First we need to obtain the carry c13. To do this we divide the operands in

groups of four bits, and for each group we obtain (in parallel) the values of

the g and p variables (we use here the p variables, although in a practical case

the a variables might be preferable). F rom expressions (2.15) and (2.16)

P(12,12)- 1, P (l l , 8) - 1, k (7 ,4) - 1, g (3 , 0) - 1

Note that since k, P, and g correspond to mutually exclusive situations, the
other variables in the group have value 0.

Now we use expressions (2.20) to combine two adjacent groups. We obtain

P(12,8)- 1, k (7 ,0) - k(7,4)+ p(7,4)k(3,0)- 1

and finally

k(12,0) -- 1

resulting in

C l 3 m g(12,0) q- P(12,0)Cin ~ 0

2. The expressions can be generalized to the case in which the subranges overlap; that is,
subranges (f, e) and (h, d), with h > e.
3. Of course in the addition case all bits have to be obtained; alternative ways of doing this are
the topic of this chapter.

Basic Carry-Ripple Adder (CRA) and FA Implementation 59

2~

Now, the sum bit is

S13 =X13 ~)Y13 ~)'5'13 = 0

Basic Carry-Ripple Adder (CRA) and FA
Implementation
We review here the carry-ripple adder, which corresponds to the basic (carry-
propagate) addition algorithm. As shown in Figure 2.4, this adder consists of
an array of 1-bit adders (f u l l -adders or FAs) defined by expressions (2.4). The
correctness of this adder implementation can be shown by induction, using the
definition o f c i given by expression (2.6).

Consider now the delay of the addition. Since there is no completion signal,
it is necessary to consider the worst-case delay. As shown in Figure 2.4, this worst
case corresponds to the delay of the propagation of the carry through n - 1 bits
plus the largest delay between the propagation of the carry through the last bit
or the computation of the sum bit Sn_l. Consequently, calling tc the delay from
the inputs of the full adder to the carry output and ts the delay from the inputs
to the sum output, the (worst-case) delay of the adder is given by

TCRA = (n -- 1) tc + max(tc, ts) 2.22

The largest component of the delay is (n - 1)to. Since this is linearly dependent
on n, this adder is slow for large n. The actual value of the delay depends on the
technology and on the implementation. The main advantage of this adder is the
simplicity of its cells and of the connections among them.

F I G U R E 2 .4 Carry-ripple adder.

60 e N ApT E R ~ Two-Operand Addition

2 .2 .] Implementations of Full-Adder

Let us now consider implementations of the full-adder. From expression (2.4),
we get the following tabular description:

xi yi ci ci+1 $i

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0

0 1

0 1

1 0

0 1

1 0

1 0

1 1

Minimal sum of products expressions for these functions are

tCt t t t t
Si --- x i y i i + x i y i c i + x i y i c i + x i y i c i

Ci+l ~ x i Y i + XiCi + y i c i

2.23

These expressions are the basis for the two-level implementation shown in
Figure 2.5(a).

An alternative implementation is based on the use of expression (2.11),
namely,

Ci+I = g i + P iC i 2.24

Moreover, s/ - - (x i "~- Yi + Ci) mod 2 indicates that

$i = Xi ~]~ Yi ~ c i - - P i f~ ci 2.25

These expressions are the basis for the implementation shown in Figure 2.5(b).
The submodule producing Pi and gi (or g5 for the implementation with a NAND
gate shown in Figure 2.5c) is called a half-adder (HA) because it performs the
addition of two bits (instead of three for a full-adder); the sum bit is P i and the

Basic Carry-Ripple Adder (CRA) and FA Implementation 61

~ --f>o--* x;
yi -.---[2x>-~y~

p

Yi ,
ci

p

xi
Yi ,

ci

p

Yi
c i ~

q

~ S i

(a)

Xi

Yi
xi

Ci ~ 0 ~ ci+l
Yi
Ci C i+ 1

Half-adder (HA)

I

L Igi

I I

HA

I T i
I

I

I

(b)

=si

~ " ' ~ Ci+ 1

3~ =si

~ -~ Ci+ 1

(0

F I G U R E 2 , 5 Implementation of full-adder. (a) Two-level network. (b) Multilevel network

with XOR, AND, and OR gates. (c) Multilevel implementation with XOR and NAND gates.

carry bit is gi , as shown in the following table:

xi

0

0

1

1

Yi g i

0 0

1 0

0 0

1 1

Pi

0

1

1

0

The implementation of a full-adder using two half-adders and one NAND

gate requires fewer gates than the two-level network; moreover, although the

62 C8 gPTER 2 Two-Operand Addition

Input

ci

xi

Yi

(standard loads)

1.3

1.1

1.3

Size: 7 (equivalent gates)

F rom To

ci

xi

Yi
ci

xi

Yi

Si

Si

Si

Ci+I

Ci+I

Ci+I

L: load on the output

tpLH

(ns)

0.43 + 0.03L

0.68 + 0.04L

0.68 + 0.04L

0.36 + 0.04L

O.73 + 0.04L

0.37 + 0.04L

Propagation delays

tpHL

(ns)

0.49 + 0.02L

O.74 + 0.02L

O.74 + 0.02L

0.40 + 0.02L

0.71 + 0.02L

0.64 + 0.02L

tp (average)

(ns)

0.46 + 0.03L

0.71 + 0.03L

0.71 + 0.03L

0.38 + 0.03L

0.72 + 0.03L

0.52 + 0.03L

11' A B I. �9 2.2 Characteristics of the full-adder in a family of CMOS gates.

two-level implementation has fewer logic levels, the carry delay (from carry-in
to carry-out), which is critical for the delay of the carry-ripple adder, is smaller
in the two half-adders case than in the implementation of Figure 2.5(a) because

it corresponds to the delay of two two-input gates.

Using the implementation with two half-adders, the worst-case delay of the
carry-ripple adder is 4

T c m = txoR + 2(n - 1)tNAND + max(2tNAND, tXOR) 2.26

The first txoR corresponds to P0. Note that the delay of P i for i > 0 is not in the

critical path because all pi's are computed simultaneously.

Most families of standard cells include a full-adder module. For instance, in

the CMOS family we are using as an example in this book, the full-adder module

has the characteristics listed in Table 2.2.

4. This expression does not include the effect of the load on the gates output (see Exercise 2.1).

Switched Carry-Ripple (Manchester) Adder 63

2.3 Reducing the Adder Delay
The delay of the carry-ripple adder can be reduced by the following four ap-
proaches:

1. Reducing the carry delay t~. This is achieved in the switched carry-ripple
(Manchester) adder.

2. Changing the linear factor n to a "smaller" factor (such as n / k or log n).
This is achieved by the carry-skip adder, the carry-lookahead adder, the
prefix adder, the carry-select adder, and the conditional-sum adder.

3. Including a completion signal so that the addition time corresponds to the
actual addition and not to the worst case.

4. Changing the number representation system. We explore in this chapter
the use of redundant representations.

We now consider each of the adder schemes mentioned above.

2.4 Switched Carry-Ripple (Manchester) Adder
The main idea is to use a fast circuit for propagating carry chains. As discussed
in Section 2.1, a 1-carry chain starts in position with gi = 1 and propagates to
the left over consecutive positions with p j = 1. Similarly, a 0-carry chain begins

in position with ki = 1 and propagates to the left over consecutive positions with

p j = 1. Since propagate Pi, generate gi, and kill ki variables can be obtained
in parallel as functions of xi and yi only, all chains begin at the same time. By
providing a fast circuit path to perform propagation of chains, the total carry delay
is reduced. Such a circuit may consist of transmission gates or special transistors.

As discussed in Section 2.1, there are the following mutually exclusive cases:

Xi -~- Yi gi Pi ki tTi+l

0 0 1

0 1 0

1 0 0

0

ci

1

As a consequence of these disjoint situations, the carry-out can be produced by

a switch network as shown in Figure 2.6. Since the three situations are disjoint,

64 r ~.& PT E ~ 2 Two-Operand Addition

(a)

Ci+ 1

cc I (Chain control) GKP
.

- I

Yi xi
. . . .

I
Pi

~]-~Ci

Yn-1 Xn-1 Yn-2 Xn-2 Yi Xi

I I i I I I
I cc II cc I I Cc I

l<...c
Cou t Cn-1 Ci+l

Yl Xl

I I
cc II

C2

Yo Xo

I
cc]

(b)

F ! G U R B 2.S Switched carry-ripple network (Manchester circuit).

Cin

only one of the three switches per bit is closed. The switches for all bits are set
simultaneously and then the carry propagates through the closed switches in the
horizontal path.

2 . 4 . 1 Delay

The delay consists of three components: the setting of the switches (switches of all

bits are set simultaneously) with delay tsw, the propagation of the carry through

(n - 1) bits (the propagation delay of a switch is tp), and the production of the

sum bit. That is,

TSRA -- tsw + (n -- 1)tp + (n / m) t b u f + ts 2.27

where the term (n / m) t b u f corresponds to the buffers required each m bits to
restore the signal. The scheme is effective if tp is small.

Carry-Ski p Adder 65

2~ Carry-Skip Adder
The carry-skip adder is obtained by a modification of the carry-ripple adder.
The objective is to reduce the worst-case delay by reducing the number of FA

cells through which the carry has to propagate (see expression (2.21)). To achieve

this, the adder is divided into groups ofm bits and the carry into group j + 1 is
determined by one of the following two conditions:

1. The carry is propagated by group j . That is, the carry-out of group j is

equal to the carry-in of that group. This situation occurs only when the sum
of the inputs to that group is equal to 2 m - 1. Calling x (J) and y(J) the

integers corresponding to these inputs, the group propagate signal, defined

in Section 2.1, is

p(j) _ [1 ifx (j) + y(J) - - 2 m - 1

[0 otherwise
2.28

2. The carry is not propagated by the group (that is, it is generated or killed

inside the group).

Consequently, to reduce the length of the propagation of the carry, a skip
network is provided for each group ofm bits so that when a carry is propagated by
this group, the skip network makes the carry bypass the group. The rn-bit adder
is shown in Figure 2.7(a), and a network of these modules implementing an n-bit
adder is indicated in Figure 2.7(b). The carry into group j + 1 is described by the
following expression, 5

(j+l) "(J) (P(J)) ' (J) P(J) 2.29
C in - - ~ o u t + C in

At the bit level, the carry is propagated by the group when it is propagated by all
the bits in the group. That is,

m - 1
P (J) - - AND p; 2.30

i = 0

where the index 0 < i < m - 1 is for a generic group.

5. In many descriptions of the carry-skip scheme, an AND-OR network is used instead of the
multiplexer, resulting in Cln J+l) = c~J~+ CI j) P(J). However, to obtain the expected speedup
with this implementation, it is necessary that all transient c(J) be O, as discussed further in --out

Example 2.3.

66 c N A P T E R 2 Two-Operand Addition

CSK-m adder
! p(J)

(j+ 1),
Cin ! ; C(oJu~

' I 11~-
I

x (J) y(J)

t m t m
m-bit carry-ripple adder

(group j)

s(j) t m

(a)

r I
c (J) in

Module (n/m - 1) Module j Module 0

m t m t m ~A~CS~!
A *4

~ ~
(b)

F I G U R E 2.7 Carry-skip adder: (a) A group with carry bypass (CSK-m adder). (b) n-bit carry-

skip adder.

2 , 5 ~ 1 Delay
Since there is no completion signal, the worst-case delay has to be considered. To

identify this worst-case delay it is important to notice the following:

~ As indicated in Section 2.1, the addition process produces several carry-

propagation chains. Each of these chains is initiated in a bit with p = 0,

propagates through consecutive bits with p -- 1, and terminates in a bit

with p = 0. These chains can propagate a 0-carry or a 1-carry and therefore

can start with (x i , y i) - - (0, 0) or (1, 1). An example of these propagation

chains is shown in Figure 2.8. Note that the carry advances in all chains

simultaneously.
�9 In a carry-skip adder, a chain is initiated in a group and can either

terminate in the same group, or skip zero, one, or more groups, and then

terminate in another group. Tha t is, the carry in a chain can at most travel

inside two groups: the initiating group and the terminating group.

Carry-Ski p Adder 67

c16 6'7 C3 Cl

c8 c4 c22
C12 C 9 C 5
C13 C10 C6 4

C14 el 1
c15 6

I G r o u p 3 I I G r o u p 2 I [G r o u p l I I G r o u p 0 I
X 0 1 1 0 1 1 0 0 1 0 0 0 1 1 0 1
Y 0 0 0 1 0 0 1 1 0 0 1 1 0 1 1 1

15 12 8 4 0
, i I I I I i I I I t I I I ! I P o s i t i o n

~ Carry-ripple path

Group size m = 4

FIG U R E 2.8 Carry chains in carry-skip adder. (MUX delay not included.)

As a consequence of the property above, the worst-case delay is produced when a
carry is generated in the first bit of the adder (no propagate in the first group), and

propagated through all bits up to but not including the most significant bit. That

is, it skips all groups except the first and last and terminates in the last bit of the

last group (to produce the sum). This critical path is illustrated in Figure 2.9(a)
and (b).

The worst-case delay is then

TCSK - - m tc + t m . x + - - - - 2 t m . , + (m - - 1)tc + ts
m

E X A M P L E 2 , 2 Consider the case n - 32, rn - 4. To simplify, consider t~ - ts = tmux = 8.

From the expression we obtain

TCS K - - 1 5 8

In contrast, the delay of the corresponding carry-ripple adder (expression
(2.21)) is 328. �9

We now illustrate that the use of an AND-OR network, shown in Figure 2.10,

instead of a multiplexer can produce a delay as large as that of the carry-ripple

adder.

68 c H A P T E R 2 Tw o-O pe ra nd Addi t ion

Group 3 Group 2 Group 1 Group 0

I I I I I I I I
X 1 1 1 01 1 0 0 1 0 0 0 1 0 0 1
Y 0 0 0 10 0 1 10 1 1 10 1 1 1

15 12 8 4 0
! ~ ! ! I ! ! ! ! I ! ! ! ! I ! Posi t ion

c 1

C 2 2

c 3

c4 4

c 8 c 5

c12 c 9 c 6 6

c16 c13 c10 c7

c14 Cll 8

c15
Group size m = 4

(b)

F I G U R E 2 . 9 (a) Critical path in carry-skip adder. (b) Il lustration of the worst-case situation

for n = 16. (M U X delay not included.)

(j+l)] (j)

ci, m-bit c a r , - r i pp l e addor _. _ %,

(g r o u p j) I "

I

(J),

p(J)

G-
F ! G U R E 2.10 Carry-sk ip adder using AND-OR for bypass.

Carry-Sk i p Adder 69

E X A M P L E 2 . 3 Consider the case in which the carry-skip adder is implemented with an AND-
OR network instead of multiplexers and that the following two additions are
performed, one after the other without clearing the carries left at the end of
the first addition.

Operation 1

x 0000 1111 0000 1111

y 1111 0000 1111 0001

c 11111 1111 1111 111-

Cin ~ 0

Operation 2

x (change last bit) 0000 1111 0000 1110

y (change last bit) 1111 0000 1111 0000

c 00000 0000 0000 000-

t in --- 0

Now consider how this change of carries is produced. We consider the se-
quence of events, assuming that tp, g ~ tc - - tAND-OR --- 1.

�9 First (at t -- 0) the inputs are changed (all bits simultaneously, in the
example only bit 0 changes).

�9 At time t -- 1 the p and g s of all bits are produced (only bit 0 changes

f r o m g - l t o k = 1).
�9 At time t - 2, the carry C l - 0 is produced.
�9 This carry is propagated through the 4-bit carry-ripple adder, so that at

t -- 5 we obtain c4 - 0. Up to here it is as expected in the carry-skip
adder.

�9 Now, since for all bits in the second group p - 1, the carry skips the
second group and a 0 appears at the input of the OR gate. However, the
other input to the OR gate is still 1, since all the carries in the second
group are still 1 (the 0-carry has just entered that group). Consequently,
the skip network is not effective in this case. The carry-in to the third
group will become 0 only after this 0 has propagated through the second
group and appeared at the input of the OR gate.

�9 This same process will occur for all groups and the delay of the adder
will be the same as the worst-case delay of the carry-ripple adder, u

70 C N A P T E R 2 Two-Operand Addition

2~5 ,2

EXAMPLE 2 ,4

One way to use the AND-OR network and produce the desired speedup is to initialize

all carries to 0 and assure that no glitches occur at the carry-out of the groups.

This can be accomplished by having a precharge phase, used in dynamic logic.

G r o u p S ize

As shown in expression (2.30), the delay of the carry-skip adder depends on the

size of the group m. Differentiating this expression with respect to m, we obtain

mopt = x / (tm ,x /2 tc)n (minimum delay)
2.32

Topt ~ x/8tmuxtcn

which is proportional to x/~.

V a r i a b l e G r o u p S i z e

The previous analysis assumes that all groups are of the same size. However, this

does not produce the minimum delay. This is due to the fact that, for instance, car-

ries generated in the first group have to traverse more skip networks to get to the

last group than carries generated in some internal group. So we now consider the

case in which the groups can have different sizes. Because of this, to determine the

worst case we need to compare the delay of all carry propagation chains. A particu-

lar chain is initiated in group i and terminates in group j with j > i, being prop-

agated by the j - i - 1 groups in between. Consequently, if group i has size m i ,

TCSK = ma.x((mi + m j -- 1)re + (j -- i -- 1)tmux) + tmux + ts 2.33
t , . l

with Y~mi - - n. Because of the term j - i - 1, the worst-case delay can be

reduced by reducing the size of the groups close to the beginning and end, as

illustrated in Figure 2.11. 6

The effect of variable group size on the worst-case delay is illustrated for

n = 60 and tc = ts = tm,x - - ~.

m = 6

m i = 4 , 5 , 6 , 7 , 8 , 8 , 7 , 6 , 5 , 4

TcsK = 218

TcsK = 178

6. Further details in Guyot et al. (1987) and Chan et al. (1992).

Carry-Lookahead Adder (CLA) 71

2 , 6

2,6=1

F ! G U R S 2.11 Opt imal distribution of group sizes in carry-skip adder.

Further reduction of the worst-case delay can be obtained by putting several
groups into blocks and providing carry-skip around blocks. This process is gen-
eralized to multilevel carry-skip adders (see Exercise 2.9).

Carry-Lookahead Adder (CLA)
The basic idea of this adder is to compute several carries simultaneously. In the
extreme, all carries could be computed at the same time. As stated in expression
(2.6), if we call x (i) and y (i) the integers represented by the bit-vector from bit 0
to bit i; that is,

i

X (i) __ y ~ Xv2 v 2.34

v=0

and similarly for y (i), the carry is computed by the following expression:

C i - - 1 if(x(i-1) q_ y (i -1) + c 0) >_ 2 i 2.35

This results in a switching function of 2i + 1 variables. It is known that any
such function can be implemented by a two-level network (for example, NAND-
NAND). However, for large i this implementation is impractical because of the
large number of gates with large number of inputs. Because of this, in the carry-
lookahead adder the input vector is divided into groups and the carries inside a
group are computed simultaneously.

One-Level Carry-Lookahead Adder (1-CLA)

Let us consider first the one-level carry-lookahead adder. As shown in Figure
2.12, the input vector is divided into groups ofm bits and the groups are connected
as in a carry-ripple adder. However, in contrast to the carry-ripple adder, after

�9 72 c H A PT E R 2 Two-Operand Addition

_x(k-1) .~(k-1) _X (j) .~ (j)

fmfm fmfm
cn I CLA I_ . . . ~] CLA

~ [k - 1 ~-" I J

- fm f m k n /m

s(k-1) _s (j)

(o) y(o)

m

_X(1) .y(1) _X

fmf m fmf
I1 Czm] CLA 1_ cm] CLA I_ Co

" " ~ I 1 r I o v

i m f m
S(1) S (0)

F I G U R E 2.12 One-level carry-lookahead adder.

the input carry to the group is known, all carries inside a group as well as the

output carry of the group are computed simultaneously. Consequently, if we call

tgroup the delay of this calculation, we obtain the worst-case delay

n
T1_c~ = --tgroup + ts 2.36

m

Now let us consider the implementation of the group module. To simplify the

notation, we index the bits of a generic group from 0 to m - 1 and call the carry
into the group co. We could implement directly the switching function resulting
from the arithmetic expression (2.34) in a two-level network. However, it can
be shown that the number of gates required for m > 4 would be too large for
typical implementation. Because of this, it is more convenient to add another level
producing the variables Pi, g i , anda i, which we already introduced in Section 2.1.

That is,

Pi = x i (~ Yi

g i = x i Y i

a i ~ x i + Yi

2.37

Consequently, as shown in Figure 2.13, the module consists of three parts: the

computation ofpi , gi , ai , the computation of the carries in the carry-lookahead

generator (CLG), and the computation of the sum s i = Xi (~ Yi (~ Ci = Pi f~ Ci.

The outputs A and G are used for the carry-lookahead adder with more than

one level.

Carry-Lookahead Adder (CLA) 73

c4 ..------I~
!

G ~--I---
A ~--I---

Y3 x3

I t

I
g31 a31 P3

CARRY-LOOKAHEAD GENERATOR

P3 c3 P2 c2 Pl Cl PO

t

Y2 x2 Yl Xl YO Xo CLA-4

. t:iit --/,
g2] 2] P2 g l ~ P l g 0 - ~ 0

!

!

!

!

(CLG-4) -" ', co
!

!

!

!

!

!

s 3 s 2 s 1 s o

I~laUlll! 2.13 Carry-lookahead adder module CLA-4 (m = 4).

N o w we consider the computat ion of the carries. The switching expression

for the carry-out of a 1-bit adder is defined in (2.12) as

Ci+l = g i + a i c i 2.38

We determine expressions for all the carries in the group by substitution. For
example, for a group size of 4 (m = 4), we get

C1 - - go § aoco

c2 - - g l § = g l § § - - g l § §
2.39

We see that c2 -- 1 i fa carry is generated in bit 1, or i fa carry is generated in bi t0

and alive (not killed) in bit 1, or if c0 -- 1 and it is alive in bits 0 and 1. Similarly

then we can write

C3 - - g2 + a 2 g l § a 2 a lg0 § a 2 a la0c0

C4 m g3 + a3g2 § a 3 a 2 g l § a 3 a 2 a lg0 § a 3 a 2 a laoco

An implementat ion is shown in Figure 2.14.

2.40

74 c H A PT E R 2 Two-Operand Addition

C L G - 4

g3 a3 g2 2 tgl go t ao
. a ~

i _ A

c 1

c O

F I G U R E 2.14 4-bit carry-lookahead generator CLG-4.

This implementation is easily generalized to any number of inputs: ci+ 1 is 1
if a carry is generated in bit i, or if it is generated in bit i - 1 and alive in bit i,

and so on. The general expression is

Ci+I "~ g i + a i g i - 1 + a i a i - l g i - 2 + �9 �9 �9 + (a i a i - 1 �9 �9 �9 a o) c o 2.41
or equivalently

The implementation ofci+l requires

�9 One oR gate ofi + 2 inputs

�9 i + 1 AyD gates with 2, 3, . . . , i + 2 inputs

As can be seen, the number of gates and the number of inputs per gate increases

with the size of the group. This limits the maximum group size for a practical

implementation.

Carry-Lookahead Adder (CLA) 75

Delay

The delay of this implementation is given by the following expression (see Figures
2.12 and 2.13)"

TI-CLa -- (Computeai, gi) + (Ripple between groups) -I- (Computes/)

Consequently, calling tclg the delay of the carry-lookahead generator,

n
TI_CLA -- ta, g -~- mtclg q- ts 2.43

As in the carry-skip adder, the dependency on n is now divided by the group size
m. The delay of the one-level carry-lookahead adder is smaller than that of the
carry-ripple adder as long as tclg is smaller than mtc. Whether it is faster than the
carry-skip adder depends on the relative values Oftc, tmux, ta, g , and tctg and on
the corresponding group sizes. 7

2 . 6 . 2 Two-Level Carry-Lookahead Adder

For large n the number of groups in a one-level CLA is large, resulting in a
slow operation. To reduce the delay, apply the CLA principle among groups. As
defined in Section 2.1, for each group we have two signals: A = 1 if a carry is
alive in the group and G = 1 if a carry is generated by the group. Consequently,
the carry-out of the group is described by the following switching expression:

Cout = G + Ag'in 2.44

The switching expressions for A and G are

m--1
A = ANDai (group alive) 2.45

i=0

m - - l (m - 1)
G -- OR ANDai gj (group generate) 2.46

j = 0 i=j + l

The implementation for a group of 4 bits is shown in Figure 2.14.
A variation of the CLA adder, called the Ling adder, which reduces the

complexity of producing the group generate, is considered in Exercise 2.18.

7. The group for the carry-skip adder might be larger since the number of gates is smaller.

76 e ~ A pT E R 2 Two-Operand Addition

N o w we define a section o fp groups and determine with a C L G the carry-out

of each group in the section. Tha t is,

c ~1) = G o + Aoco

C (2) = G1 + A1Go + A1Aoco

, , .

c (t') -- GI,_I + A t , - 1 G p - z + " ' " + (A p - i A p - 2 " - " Ao)co

2.47

Once the carries out of the groups are produced, these carries are used by the

first-level C L A modules to produce the bit carries and the sums. Figure 2.15

shows a 32-bit adder with two-level lookahead (with p = m = 4).

Note that the C L A module is used twice: first to compute A and G (which are

independent of the carry-in to the group) and then, once the carry-in is known,

to compute the internal carries and the sum. Moreover, in this case, the carryout

of the C L A module is not used.

F I G U R E 2.15 Two-level carry-lookahead adder (n -- 32).

Carry-Lookahead Adder (CLA) 77

2 . 6 . 3

Delay
The delay is given by the following expression (see critical path in Figure 2.15):

n
T2_ci~ -- ta,g + tA,a + ~ t c l g + tclg + ts 2.48

p m

This delay is smaller than that of the one-level CLA because of the factor n ~pro

instead of n / m .

Three and More Levels

The scheme can be extended to three levels by having lookahead between sections.
In general, for L levels oflookahead, the critical path corresponds to the following:
(to simplify the notation we consider the case in which the groups at all levels
have the same size m)

�9 afirstlevel tocomputea i , p i , a n d g i (Pi not in the critical path)
�9 L - 1 levels ofcarry-lookahead generators to compute the As and Gs
�9 n / m L carry-lookahead generators connected in a ripple fashion to compute

carries of sections at level L
�9 L - 1 levels of carry-lookahead generators to compute the carries of bits

(the last of these included in the CLA module)
�9 one level of exclusive-oR gates to compute the sum

The corresponding delay is then
n

TL_c~ -- t~,g + (L - 1)tA, a + m----Etclg + (L -- 1)tdg + ts 2.49

Moreover, since the same module is used to compute the A, G signals and the
corresponding carries, the number of CLG modules is

/" (m ~) m/'-lz,(Nclg -- ~ -- n 2.50
m m - - l)

i 1 " ~

For L -- 2, m = 4, and n -- 32 this results in Nclg "- 10, as shown in Figure 2.15.
The maximum number of levels is obtained when there is only one section

at level L. That, is

L
m ~ g /

OF

L = log m n 2.51

78 c ~,~ & ~ E ~ ~ Two-Operand Addition

EXAMPLE 2 . 5

T h e resulting delay is

T m a x - C L A - - ta,g + (log m n -- 1)tA,G + (log m n)tctg + ts 2.52

T h a t is, the delay has a logari thmic dependence on n. Making tA,G - - tdg, we get

that Tmax-CLA is proport ional to 2 log mn.

Moreover, in this configurat ion with m a x i m u m n u m b e r of levels, the n u m b e r

of C L G modules is

n - 1
- - 2.53 Nmax-dg -- m -- 1

F i g u r e 2.16 i l lustrates a three- level c a r ry - l ookahead adde r for n - 8 and

m - 2. T h e delay is

TCLA8_2 - - ta,g 71- 2tA,G + 3tdg + ts 2.54

proportional to 2 log 2 8.

Carries from CLG-2 modules

C (3) _. C 6 C (2) = C 4 C (1) = C 2

x~ ~ 1 x ~ ~] xl ~11 ~_o ~0

/ s: I s : s, / so

c~"lA ~' G~I)~(I)~ C4 G(1 l) ~(11) c~l, lA~l,
I_ I II r

a~ 1) I A (1) ~ c(3)= c6 *

c8 I
-. [C L G - 2

0

I_
I-

~ C (1) = C 2

* Carry-out is not used

~ -~--c 0

F I G U R E 2 . 1 6 Three-level carry-lookahead adder (n = 8, m = 2).

P r e f i x A d d e r 7 9

2~6o4

2 . 7

Choice of Group Size and Number of Levels

As can be seen the group size and the number of levels affect both the delay and
the number of modules. A suitable choice depends on the technology and on

the adder requirements. With MSI technology, the size of the group was mainly

determined by the number of pins in a package. Moreover, the best size was the

maximum that could be included in a chip since this reduces the number of chips

as well as the number of signal hops between chips. On the other hand, with VLSI

technology, in which a whole adder fits in a chip, the constraints are different, and
simplicity of cells and regularity of connections become the most critical. Because
of this, groups of size two are quite popular.

Prefix Adder
The prefix adder is a structure that is based on considering the carry computation
as a prefix computation. In general, a prefix combinational network of n inputs

xo, x2, . . . , Xn-1 uses the associative (arbitrary) operator o to produce the vector

of outputs described by

Zi m X i 0 X i _ 1 0 . . . 0 X 1 0 X 0 2.55

As indicated in Section 2.1, for the carry computation we have

zi = (g{i,0), a(i,0)), xi = (g i , a i) 2.56

and the operator (implemented by a cell) has as input two pairs of bits (gL, g R)

and (a/., a R) and as output one pair (gout, aout). It is described by the switching
expressions

gout = g I. + a L g R 2.57
El out ~ a L a R

where as before, g anda -- k' correspond to generate and to alive signals, respec-
tively.

With this cell, a variety of networks are used to produce the carries. They are

all based on the fact that the carry c i corresponds to the generate signal spanning

the bit positions (-1) to i - 1. We call this generate signal g(i-1,-1) so that

Ci = g(i--1,-1) 2.58

where (g-I, a_l) "- (co, co).

80 C H APT E R 2 Two-Operand Addition

le~2 riiht2 (e~l iightl gL aL gg aR
. i

" ' " ' ' " "

I ,

a(leftvlefq) g (rig htvri ght l) i
a(right2,righq) ~ :

2 , ',

f '
g(left2,righq) 2
a(leftvrighq)

gout a out

(a) (b)

FIGURE 2.t7 Composition of spans in computing (g, a) signals.

A prefix adder is then an interconnection of the above-mentioned cells

to produce g(i-1,-1) for all i. These carries are then used to obtain the sum

bits as

S i = Pi ~]~ Ci 2.59

To obtain the carries the cells are connected in a recursive manner to produce
the g signals that span an increasing number of bits. That is, beginning with the
variables g and a of each bit, the first level of modules produces g and a for
groups of two bits, the second level for groups of four bits, and so on. In general,

if the right input spans the bits [right2, right1] and the left input spans the bits

[left2, left l] with right 2 + 1 >_ le./~ 1 then the output spans the bits [left 2, right 1]
as illustrated in Figure 2.17. For instance, for right = [5, 2] and left -- [8, 4], the
output spans the bits [8, 2].

An array of cells for an 8-bit adder is shown in Figure 2.18. The outputs of

the cells are labeled with a pair of integers corresponding to the initial and the

final bit that is spanned by the output. Because each level produces a doubling of

bits spanned, for n power-of-two, the number of levels is

L = log 2 (n) + 1 2.60

where the additional level is due to the carry-in co. In the figure for eight bits

there are four levels. Note that the additional level due toc0 does not increase the

Prefix Adder 81

(gL' aL) (gR' aR)

2 = gg + aL gR ut

(gout' aout) aout = aL aR

(gt,' at,) gR

2~g~t= gL + aLg R

(g7' a7) (g6' a6) (g5' as)

2
a(6'5

, g(6,3) ~g($,
a (6 ' 3~ a (5 ' 3 ~

g(6,-1) = C7 [C61

I.I

1 [l
c 8 s 7 s 6

(g4' a4) (g3' a3) (g2' a2)

a(4'3)1 g(4,3) a(2 1

;)

I~
c 5 c c

'6 5

[XOR]

l
s 5

(g3' a3) (g2' a2) (gl I' al) (go' %)1

_1]]" ~~.~,_lT(Pl~ iti~
g(2,1) _

,-1) c c 1 c 0

1)

[3 1"
[; F~ o

s 4 s 3 s 2 s 1 s 0
F I G U R E 2 .18 8-bit prefix adder. (Modules to obtain Pi,gi , a n d a i signals not shown.)

overall delay because the computation of c8 is in parallel to the calculation of the
sum bits. The expression for the delay is

Tp A = ta, g ~- log 2 (n) tcell + tXOR 2.61

Since each level (except the last) has n /2 cells, the number of cells is

N -- (n/2) log 2 n + 1 2.62

(not including the gates to produce gi and ai nor the XOR gates).

82 r N A ~T E R 2 Two-Operand Addition

Since the cells are simple, their delay and area are small, resulting in an effec-
tive implementation. The main disadvantage of this implementation is the large
fanout of some cells (as well as the long interconnection wires). For example, in
the 8-bit adder there is a cell with internal fanout of four, so that in general for
an adder of n bits the maximum fanout is n/2. The large fanout and long inter-

connections produce an increase in the delay, which can be reduced by including

buffers. However, the delay of these buffers might still be significant. In such a

case, the large fanout can be eliminated by two approaches, or a combination of

both:

1. Increasing the number of levels

2. Increasing the number of cells

We now illustrate an example of each of these approaches.

: 2 . 7 . 1 Increasing the Number of Levels

The fanout can be reduced by increasing the number of levels, as shown in

Figure 2.19. This is achieved by reducing the parallelism in the determination of

the carries. For instance, the calculation ofgl6,3) is obtained from g~5,3) instead of
g(4,3). The resulting number of levels in the limit (fanout = 2) is

L = 21og2(n - 1) + 1 2.63

where the last 1 corresponds again to the stage with one cell, due to co. The
number of cells is the same as for the basic scheme. Of course, the disadvantage
of the scheme is the added delay of the additional levels. To reduce the over-
all delay, a choice is made between the maximum fanout and the number of
levels.

2~7o2 Increasing the Number of Cells

The maximum fanout is reduced to two (without increasing the number of

levels) by the structure shown in Figure 2.20. This structure is constructed as
follows:

Level 1 is formed of cells having as inputs neighboring bits. So, groups are

formed with bits c0 and 0, with bits 0 and 1, with bits 1 and 2, and so on.
Consequently, for n bits there are n cells, instead of the n/2 cells required

Prefix Adder 83

(gL' aI) (glr aR)

t = gL + aL gR
(gout' au out aL aR

(gL'al) gR

2 gou = gL + at. gR

(g7' a7) (g6' a6) (gs'a5) (g4' a4) (g3'a3) (g2' a2) (gl 'al) (go'ao)

a(6,5) 1g(6,5) I a(4,3) Ig(4,3) I a(2,1) Ig(2,1) I I g(o,-1)

g(1,-]

~(3,-

g(6,-1) = C7 I I g(5,-1) Cl I c6 61 4 i l lCO
c 8 s 7 s 6 s 5 s4 s3 s2 sl so

F I G U R E 2 . 1 9 8-bit prefix adder with maximum fanout of three and five levels. (Modules to

obtain Pi,gi , andai signals not shown.)

in this level for the "basic" array. T h e ou tpu t s are labeled as indica ted

above.

Level 2 combines ou tpu t s of cells o f level 1 whose indexes differ by 2. T h a t

is, c0 and 1, 0 and 2, and so on. T h e r e are n - 1 cells at this level.

84 e x A p 1" E R 2 Two-Operand Addition

(gt., at.) (gR, aR)

g a 2 ut = gt. + at. glr
(out' out) aou t=a L a R

a(7,6)

(g7' a7) �9 �9 e

(gt-' ar) gR

2 gou = gr + at. gR

(g l ' a l) (go' a0)

- - - - ~ c 0

Buffer

g(7,0)

c 8 s 7 s 6 s 5 s 4 s 3 s 2 s 1

* a(j,k) not labeled

P0

F I G U R E 2 . 2 0 8-bit prefix adder with minimum number of levels and fanout of two.

(Modules to obtain Pi,gi, and ai signals not shown.)

�9 Level 3 combines outputs of cells of level 2 whose indexes differ by 4. That

is, co and 3, 0 and 4, and so on. There are n - 3 cells.

�9 In general, level/~ combines outputs of level (k - 1) whose indexes differ by

2 k-1. It has n - (2 k-1 - 1) cells.

As in the basic scheme there are logz(n) + 1 levels. Note again the single cell in

the last level, because of input co. As can be seen, the fanout of all cells is two and

Carry-Select and Conditional-Sum Adders 85

the connections are regular. 8 The number of cells is

N - - n + (n - 1) + (n - 3) + (n - 7) . . . + (n - (n /2 - 1)) + 1 og2nl (o 1)
= ~ (n - - (2 i - 1)) + 1 - - (n + 1)(log2n) -- 2 i + 1

i=0 i=0

= (n + 1)(log2n) - - (n -- 1) + 1

= (n) (log 2 n -- 1) + log 2 n + 2 2.64

As can be seen from the previous expression, the number of cells of this scheme is

about twice that of the basic scheme. If the number of cells is too high, it is possible

to use an intermediate scheme, which has an intermediate max imum fanout as

well as an intermediate number of cells (see Exercise 2.22).

Prefix Adder with m-Bit Group

The prefix adder can be generalized to use cells that produces the (g, p) pairs of a

group ofm inputs. This would reduce the (minimum) number of levels to log mn.

However, the cell complexity and delay increases with m. Details are given in the

references at the end of the chapter.

2~ Carry-Select and Conditional-Sum Adders
These two schemes have the same principle and are based on the fact that the

main component in the delay of the carry-ripple adders is the propagation of the

carry, so that to obtain the sum of bit / it is necessary to wait until the carry has

propagated from bit 0 to bit i. Because of this, the idea of these schemes is to

compute in parallel two conditional sums: one for a 0-carry and one for a 1-carry,

and then select among them when the carry is available. The two schemes differ

in the recursive structure; in that sense the carry-select adder is like the one-level

lookahead and the conditional-sum adder like the maximum-level case.

The basic principle is to divide the adder into groups ofm bits and to compute

for each group two conditional sums and carry-outs. If we consider a generic group

8. However, the connection span increases with the level, so that buffers might still be needed
because of the capacitance of these wires.

86 r }-..:~,~ p:~a~ ~: ~ ~? Two-Operand Addition

x y

m m CONDITIONAL ADDER

L I
ADDER ADDER

m+l I m+l I

(elm, S 1) (C O, S 0)

x y

mt mt
ADDER I

m+l~ m+l~

(c 1, sb (c ~ s ~

Two adders use shared circuits (b)
(a)

Fill u RE 2.21 (a) Obtaining conditional outputs. (b) Combined conditional adder.

in which we label the bits from 0 to m - 1, we get

(c ~ , S ~ - - A D D (X , Y, co -- 0) 2.65

(c 1, S 1) -- A D D (X , Y , co - - 1)

where X, Y, and S are m-bit vectors.

Then, when the carry-in of the group is known, select from these two forms

(c S O) if c 0 - - 0 2.66
(era, S) - - (c ~ , S 1) i f c 0 - - 1

The two m-bit adders for the same group (Figure 2.21 (a)) can share components.

Because of this, it is better to define a module (Figure 2.21 (b)) that has as input

the two m-bit operands and produces two (m + 1)-bit results. We call this mod-

ule an m-bit conditional adder (C O N D - A D D E R) and use it in the subsequent

structures.

Carry-Select Adder

In the carry-select adder the conditional principle is applied in a linear structure,

as shown in Figure 2.22. It consists of an m -bit conditional adder module for each

group ofm bits and (n / m) - 1 multiplexers.

The delay is

TcsEL - - tadd, m + - - -- 1 tmu, 2.67
m

where tadd, m is the delay of the m-bit conditional adder.

Carry-Select and Conditional-Sum Adders 87

x(k-1) y(k-1)
k = n/m g~ m 9~ m

I ~ o ~ o ~ l
I ADDER I

tm+l~ m+l

Cn < tm+l coo

u

s(k-1)

x(i) y(i)

+m tm
ADDER I

fm+l~m+l

MUX I +11 .'4-'o.~ I

S (i)

X(1) y(1) X(0) y(0)
t m ~ m ~ m t m

I ADDER I ADDER ~ CO
fm+l~m+l m

MUX I_
I-

t
m+l

S(1) S (0)

F I G U R S 2 . 2 2 Carry-select adder.

XL YL

~ n12 ~ n12

CONDITIONAL
ADDER

 c ,sO,

I MUX

n / + l + 1 1 ~ n / 2

(c1, S 1)

XR YR

CONDITIONAL
ADDER

n/2 n/2

I I 1 1 o so

I Mux I

n / + l + 1 1 ~ n / 2

(c ~ S ~)

F I G U R E 2.23 Doubling the number of bits of the conditional sum.

2 . 8 , 2 C o n d i t i o n a l - S u m A d d e r

In the conditional-sum adder, the conditional principle is applied recursively.
That is, two groups are combined to form a double-length conditional result as
follows (see Figure 2.23):

1. Decompose.

X = (XL, XR)

Y =(YL, YR)
2.68

88 C H APT E R 2 Two-Operand Addition

2. Compute concurrently.

(c O, S o) = ADD(XL, YL, O)

(c 1, S 1) -- ADD(XL, YL, 1)

(c ~ S ~ = ADD(XR, YR, O)

(c~, S 1) = ADD(XR, YR, 1)

3. Combine to obtain double-length conditional results.

2.69

(cO, SO) _ { (c~ (S~ S~) i fc~ = 0

(c[, (S1L, S ~) if c~ 1

, S O (
(C 1, S 1) -- (c1, (SIL, $1))

2.70

ifc~ = 0

ifc~ = 1

Note that the right portion of the output comes directly from the corre-
sponding right input, without going through the multiplexer, whereas the
left portion is selected by the corresponding carry-out of the right portion.
A numerical example is as follows:

2.71

X L = 0 0 1 1

YL - 1010

(c ~ S ~ - - (0 , 1101)

(cl, S~) = (0, 1110)

Combining we obtain

XR = 0111

YR = 1001

(c o, S~ = (1, 0000)

(c 1, S~) = (1, 0001)

(c 0, S 0) _ (0, 11100000)

(C 1, S 1) = (0, 11100001)

A 16-bit conditional-sum adder is shown in Figure 2.24.
We observe the following:

�9 The span of conditional bits doubles each selection level.
�9 The initial group size is ofm bits (limit is m = 1).
�9 For n bits there are lOgE(n/m) selection levels
�9 Ifcin is applied in the last selection stage, the number of 2-to-1 multiplexers

is roughly n at each level, ignoring multiplexing of the carry-outs. IfCin is

Carry-Select and Conditional-Sum Adders 89

Y15-12

X15-12

I
I COND-

ADDER I

I

[MUX I MUX r

Yll-8

Xll_8

COND-
ADDER]

q6 ~

MUX
C 8

I.
I-"

S15- 8

]/?-4
x7_4

"--tS--t 5
MUX [~

/

-' 4

Y3-0
X3_o

I ADDER]-- Co
5

m

$7_ 4 $3-0

FIGURS 2.24 16-bit conditional-sum adder (m = 4).

available in the beginning, each successive selection stage doubles the
number of correct least-significant bits of the sum, resulting in a decreased

number of MUXes.
�9 There is a large fanout for mux select signals. For instance, the select signal

in the last level goes to n /2 + 1 MUX inputs.

An example of the addition process with co available at the beginning is
shown in Figure 2.25. The bold carries control the multiplexers.

Delay
The delay is formed by the delay of the m-bit adder plus the multiplexers. That

is ,

Tcond-sum - - tadd-m JI- (log2(n/m))tmux 2.72

X

Y
SO

co

S'

c1

SO

co

S'

C1

Step 2

1 I
6 4 C ?

0

1 0

0

1 1

0

j
1 0

0

1 1

0

1 0

0

1 0

0

1 0

1 1

1 0 1 1

1 1

0

0 0

1

1 0 0 1

0 0

1

0 0

0 0 0 0

co = 0

Step 1

Step 2

Step 3

FIGURE 2.25 Conditional-sumaddition foreightbits withm = 1: (a)Template. (b)Example.

90

Variable-Time Adder 91

Y3 x3 Y2 x2

I
I FA

I Latch

FA

Yl Xl Yo Xo

FA --I-- FA

S 3 S 2 S 1 S O

F I G U R E 2 . 2 0 Pipelined carry-ripple adder (for group size of 1 and n - 4).

C O

2 = 9

l ~

Pipelined Adders
The throughput of the adder can be increased by pipelining. To do this, pipeline
registers are introduced to shorten the worst-case carry path. For example, a

C RA adder is divided into groups of bits and latches are introduced, as shown
in Figure 2.26. Most latches are used to synchronize inputs and outputs since
different parts (groups) are processed at different cycles. The throughput R is
determined by the delay of one group; that is,

1
R -- 2.73

tgroup

Adders such as conditional-sum and prefix adders are pipelined by introducing
registers between the stages. In this case, no latches are required for synchroniza-
tion of inputs and outputs.

Variable-Time Adder
Up to now we have considered fixed-time adders in which, although the actual
addition time might be variable, it is necessary to consider the worst-case delay
because there is no signal indicating that the operation has terminated. In contrast,

the variable-time adders have a completion signal.

In order to make use of the variation in delay, the adder has to be incorporated

in a system in which the initiation of the next operation can be triggered by the

adder completion signal. Such systems are called asynchronous (or self-timed).

92 C H A P T E R 2 Two-Operand Addit ion

The addition time is variable because of two factors:

1. Variation in the delay of the components. This can be due to the fabrication

process and to environmental factors, such as temperature.

The actual input values. As discussed before in the carry-skip adder, the
addition time depends on the longest propagation chain, and this length is

dependent on the values of the inputs.

Related to these two factors, we consider now two types of variable-time adders.
The first is only concerned with the first factor, whereas the second takes both

into account.

.

2 . 1 0 . 1 Type 1" With Self-Timed Carry Circuit

As shown in Figure 2.27, this is a modification of the carry-ripple adder in which

there are two carry signals:

The coding is as follows:

0 1
c i c i

0 0

0 1

1 0

1 1

c o 0-carry

c] 1-carry

6" i

not determined (yet)

1

0

* this case does not happen.

Such a coding, known as double-rail coding, is typical of asynchronous design.

Cn_ 1 n

STFA

en_l

F

c i c o

STFA " ' "

c ~ co ~

STFA = full-adder module
with self-timed carry circuit

STFA ~ STFA

F I G U R E 2.27 Variable-time adder: Type 1.

Variable-Time Adder 93

Before each addition, a clearing step is performed that makes

c o - c] = 0 (not determined yet) 2.74

Then, the operation is started by setting

!
C O ~ CO, C~ -- CO 2.75

The carry signals propagate through all n bits, and the addition finishes when

1 o _ 1 2.76 F = c n + C n

This signal indicates the completion of addition only if the delay of the sum of
the last 1-bit adder is smaller than the delay of the carry of that adder.

To assure that F = 1 is produced by the propagation of the carry signals
through the whole adder, the expressions for the carry signals have to be modified

t o

C0+l - - k i (c 0 +C]) + pi cO = kic] + (p i + ki)C 0

C~+ 1 - - gi (c o+ c]) + p ic] -- gicO + (p i + g i)c]
2.77

where as before,

!
ki - x~yi, gi - xi yi , pi - xi ~]~ yi 2 . 7 8

Note that both terms in the expressions depend on the carry-in so that the output
carry can only change when the input carry pair is different from (00). This
avoids initiating a carry chain at bit i > 0 and therefore that F could be 1 before
finishing the addition (which depends on the longest carry chain).

The sum is computed as

$i = Pi ~ C) 2 . 7 9

In this scheme, the carry propagates through all bits, independent of the value of
the operands. Consequently, the addition time is

n - 1

Tvar_l -- ~ tc,i
i=0

2.80

where tc,i is the actual delay of the carry network of bit i. This contrasts with the
carry-ripple adder, in which the delay corresponds to the worst case, which has

94 c ~ A P T ~ ~ :,~z Two-Operand Addition

2,10o2

to utilize the worst-case delay of the carry network,
n--1

T c ~ -- ~ max(tc) -- n • max(tc)
i=0

where max(tc) is the worst-case delay of the carry-out signal.

2.81

Type 2: With Parallel Carry Completion Sensing

In this case we want to make use of the fact that the time of addition corresponds

to the actual longest carry-propagation chain. The organization is as shown in
Figure 2.28.

Note that there are also two carries, but there are two differences with respect

to the Type 1 adder:

1. The carry-propagation chains should propagate simultaneously. This

requires that the carries be defined by the following expressions:

C0+l - - ki + pi cO 2.82

C)+ 1 - - gi +pic)
Note that while in the Type 1 adder the carry ci+l always waits for the

carry ci; in this case the carry s is defined right away when either ki orgi
is 1, initiating the carry-propagation chain.

4 1

CSFA .oo SF ~ 1 7 6 SF CSFA

CSFA = full-adder module with
carry completion sensing

F I G U R E 2 .28 Variable-time adder: Type 2.

Two's Complement and Ones' Complement Adders 95

2. The addition finishes when the carries in all bits are defined. That is, the
completion signal is

n--1

F = A NoD (c~ 2.83

The implementation of this signal requires an n-input AND gate. This
might be implemented as a tree of [log m n] levels of m-input gates.

As in the Type 1 adder, a reset step is required before each addition operation.
The addition time is determined by the longest propagation chain. Consequently,
the worst-case time is similar to that of the carry-ripple adder. However, the
average time depends on the distribution of the operand values. For uniformly
distributed operands, it has been shown that the average length of the longest
carry-propagation chain is approximately log2(5n/4). In a particular situation, it
is necessary to determine the average from the specific distribution.

E X A M P L E 2 . 6 Consider the following operands for an addition. The propagation chains are
indicated by the letters a, b, c, d, and e.

X 0 1 1 0 0 0 1 1 1 0 0 1 1 0 1 0

Y 1 0 1 0 1 1 0 0 1 1 1 0 0 1 1 0

+ a a a b c c c c c d d d d d d e Propagation chains

Here the longest propagation chain is d. This determines the addition
delay. �9

We have presented variable-time adders based on the carry-ripple adder structure.
However, it is possible to use as a basis any of the other adder structures studied
in this chapter (see references at the end).

Two's Complement and Ones'
Complement Adders
We have discussed several adder schemes for addition of positive integers (actually
unsigned fixed-point numbers) in a radix-2 representation. We now discuss how
these adders are used for addition of signed numbers in two's complement and
ones' complement representations.

96 r H ~ pT E R 2 Two-Operand Addition

As shown in Chapter 1, the use for two's complement representation is

straightforward: the n -bit sum output of the adder is the result, and the carry-out

is discarded. Moreover, the overflow is detected from the most-significant bits of

the operands and the result.
For ones' complement addition it is necessary to add the carry-out. We now

consider how this addition is done for a carry-ripple adder and for a prefix adder.

For a carry-ripple adder the carry-out is connected to the carry-in (end-

around carry) as shown in Figure 1.3. This produces a combinational network

with a loop, so that a sequential behavior or oscillations can occur. To study this

issue we consider two situations:

The operands have at least one position in which X i ~ Yi = 0. In such a

case, the carry loop is initiated and terminates in that position, effectively

breaking the loop. In the following example this occurs for position 3.

X

Y

7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 1

1 0 1 1 1 0 1 0

S 0 0 0 0 1 0 0 0

cout=cin= 1

2. All positions are such that X i ~ Y i --- 1. In this case, the result of the addition
corresponds to the value 0. The actual representation of the sum depends on
the value of the carry in the loop: if it is 0, then the output is 111 . . . 1, and if
it is 1, the output is 000 . . . 0, which both represent 0 in ones' complement.

However, in this case there might be an oscillation. This occurs if

initially (when the operation is initiated) some carries are 1 and others are 0.

This pattern of carries goes around the loop producing an oscillation in the

output. To avoid this oscillation it is necessary to set the initial carries to a

common value (either all 0 or all 1). This requires a "preset" phase in the

operation of the adder.
The fact that the carry chain is effectively broken by a pair for which

xi ~ yi = 0 indicates that the delay of this modified adder is the same as

the delay of the carry-ripple adder, since the worst-case delay is still

determined by a carry propagation through n - 1 full-adders.

For the prefix adder, the end-around carry approach could also be used. How-

ever, if the carry-in is included at the top of the array, as shown for instance in

Adders with Redundant Digit Set 97

(g7,a7) (g6,a6) (g5,a5) (g4a4) (g3 a3) (g2a2) (gl,al) (go, ao)

Prefix network

(Notes: no C in input;
last level consists

of "circle" modules)

1 - - - - - -

g(7,0) g(60) g(5,0) g(4,0) g(30) g(2,0) g(1,0)
a(6,0) a(50) a(40) a(30) a(20) a(10)

noaooo~ T X T T T T I Tl /
~ I ' [I ' l I '1] '1 I '1 I '1 :

c 7 c 6] J Co

P P5 P P 3 ~ P 2 ~ P l ~ P 0 ~

s 7 s 6 s 5 s 4 s 3 s 2 s 1 s 0

FIGURE 2.29 Implementing ones' complement adder with prefix network. (Modules to
obtain Pi, gi, and a i signals not shown.)

Figure 2.20, this end-around carry would significantly increase the delay (see
exercise 2.31). Consequently, a modification of the adder is more effective, in
which the carry-in is added in an additional level. Figure 2.29 shows the result-
ing adder. Note the high load on the end-around carry signal, which affects the
overall delay.

2,1:2 Adders with Redundant Digit Set
We now consider adders in which the result is represented using a redundant

digit set. The operands might be in conventional representation, or one or both
also use a redundant set. The objective of having the output in redundant repre-
sentation is to reduce the addition time by reducing the length of the maximum

98 c HAPTE~ 2 Two-Operand Addition

X[i] 1 S[i] 1

I I @ i+1]

u I

Cycle time Cycle time does not
depends on precision depend on precision

(a) (b)

F I G U RE 2 .30 Accumulation with (a) nonredundant and (b) redundant representation of

sum.

carry-propagation chain. We consider the two main redundant digit sets: carry-

save and signed-digit.

These adders are used whenever the output in redundant representation is
suitable. Typical cases of this are in accumulation (Figure 2.30), muhioperand
addition, multiplication, division and square root, and other recurrences. These

uses are described in the following chapters.
The redundant representation has some disadvantages. One disadvantage is

the increase in the number of bits required for the representation, which depends
on the degree of redundancy. Another disadvantage is that some operations, such
as magnitude comparison and sign detection, are difficult to perform in redundant
representation.

2 . 1 2 ~ I Carry-Save Adder (CSA)

The basic idea is to perform an addition of three binary vectors using an array of

1-bit adders (full-adders 9) but without propagating the carries. As shown in

Figure 2.31, the output is represented by two binary vectors called the carry

vector and the pseudo-sum vector (or just sum, for short). In terms of the numbers

9. In this application FA implementation with 2 HAs might not be effective because of a
longer delay for sum than for carry.

Adders with Redundant Digit Set 99

Xn-1 Yn-1 Zn-1 Xi+l Yi+l Zi+l xi 3~ Z i Xo Yo Zo

i l l l i i nil
FA �9 �9 �9 FA FA �9 �9 �9

il II FI
vci+2 vci+ 1 VCl VCo

vc n = Cou t

(a)

X Y Z

Co.,_- I csA L tin
I I-

v c v s

(VCo=Cin)

(b)

F I G U R E 2.31 Carry-save adder: (a) Bit level. (b) Bit-vector level.

Cin

I

represented by the binary vectors, we can write

x + y + z - - v c + v s - - v 2.84

Consequently, the sum v of the three numbers x, y, z is represented by the two
numbers v c and v s . This representation is redundant since several combinations
of the values of vc and vs represent the same number v. Another way of viewing
this representation is to consider the corresponding bits of the vectors representing
v c and vs as a digit in the radix-2 representation of v. Since these bits are added
to obtain the result, they have three possible values : 0, 1, 2. Tha t is, the carry-save
representation corresponds to a radix-2 representation with digit set {0, 1, 2}.

Since the carry output of the full adder of weight i has w e i g h t / + 1, the carry

of bit 0 is vco = 0. Consequently, it is possible to include a carry-in Cin such that

b'C 0 - - Cin 2.85

The carry-out Cou t corresponds to the carry output of the last full-adder. That is,

C out - - V C n 2.86

100 c H A P T E R 2 Two-Operand Addition

EXAMPLE 2 . 7 The following example shows the carry-save addition of three numbers.

X 0 1 1 1 0 1 0 0

Y 0 0 1 1 1 0 1 1

Z 1 0 1 0 1 0 1 0

VS 1 1 1 0 0 1 0 1

(Cou,, VC) 0 0 1 1 1 0 1 0 1

digit value 0 1 2 2 1 0 2 0 2

t /CO ~ Cin

The carry-save adder produces a reduction from three binary vectors to two
binary vectors. This is called a 3-to-2 reduction, and the adder a [3:2] adder.

Uses

The following two possibilities exist for the three input vectors:

�9 Three conventionaloperands
�9 One conventional operand and one carry-save operand (this is the case, for

example, for the computation of accumulation)

On the other hand, if two carry-save operands are to be added, producing a carry-

save result, a 4-to-2 reduction is needed. In this case the adder is called a [4:2]
adder. This reduction can be implemented by two CSAs, as shown in Figure 2.32.
To reduce the delay, a special network can be designed (see Exercise 2.33).

We discuss in subsequent chapters the cases in which these situations occur.

Xi Yi Wi Zi

II l l Ill

VSi + 1 VC i + 1 V~ VC i

F I G U R E 2.32 [4:2] adder.

Adders w i t h R e d u n d a n t D i g i t Set 101

E X A M P L E 2 . 8

Addition Time

The time of carry-save addition (3-to-2 reduction) corresponds to the delay of one
full-adder, independent of the number of bits. The 4-to-2 reduction implemented
as in Figure 2.32 has a delay of two full-adder delays. However, as shown in
Exercise 2.33, it can be implemented with a delay of only three XOR gates in the
critical path. These delays are significantly smaller than those of carry-propagate
adders.

Conversion to Conventional Representation

In some instances, it is necessary to convert a carry-save representation to con-
ventional. This conversion is performed by using a carry-propagate adder with
the two operands being the carry vector and the pseudo-sum vector. That is,

V -- ADD(VS, VC, O) 2.87

High Radix Carry-Save Representation

One of the disadvantages of the carry-save representation is that the number of
bits is doubled. This has an effect on the number of wires and on the number of
cells required to store the value. To reduce the number of bits, it is possible to use
a high-radix carry-save representation. Calling r the radix of the representation,
the (pseudo) sum vs is represented in radix r and the carry vc has one bit per
radix-r digit.

The following example illustrates the addition of one carry-save (radix-8)
operand and one conventional operand to produce a carry-save (radix-8) result.
Note that the addition is performed per radix-8 digit and the carry-out is
"saved" in the carry vector.

XS

XC

Y

V S

Coup, VC)

1 0 1

1

0 1 0

1 0 1

1

0 0 1

1 0 0

0

1 1 1

'~ VC 0 --- Ci n

102 e H A P T E R 2 Two-Operand Addition

F I G U R E 2 .33 Radix-8 carry-save adder.

The corresponding implementation is shown in Figure 2.33. Of course, this high-

radix implementation results in an increase in delay: from the delay of one full-

adder (for the radix-2 case) to the delay of a radix-r adder.

2 .12~2 Signed-Digit Adder
In this case the result of the addition uses signed digits, which is a fixed-radix

representation with digit values from a signed-integer set. Tha t is,

n--1

x "-- ~ Xi ri 2.88
0

with a digit set

D - - { - b , . . . , - 1 , O, 1 , . . . , a } 2.89

with the restriction a + b + 1 > r . Ifa + b + 1 - r , the representation is nonre-

dundant, whereas if a -+-b + 1 > r , it is redundant. In most cases, a symmetric

digit set is used, that is, a - b. For this case, a redundant representation has

a > (r - 1)/2. In the sequel, we restrict our discussion to symmetric digit sets.

Addition Algorithm

The objective of the signed-digit addition algorithm is to eliminate the carry

propagation. To achieve this the following two-step procedure is used:

Adders with Redundant Digit Set 103

�9 Step 1. Compute interim sum (w) and transfer (t) such that

x + y = w + t 2.90

At the digit level this corresponds to

Xi ~- Yi - - Wi -J -r t i+l 2.91

That is, the transfer digit acts like a carry to the next position.

�9 Step 2. Compute s = w + t, which is performed as

S i = W i Jr ti 2.92

This step should be performed without producing a carry. Consequently, as

illustrated in Figure 2.34, the transfer digit propagates just one position. As
shown, the result has n + 1 digits, the most-significant one corresponding to

X

nt
SDA

nt
.

S
(a)

Y

nt

Xn-1 Yn-1

I
I

tnl

I

xi Yi xi-1 Yi-1

I

o o o

ADD [

1
Sn-1

I
I

ti+l]

I

I I

iwiy
~~176

1
s n s i

TW

xo yo

I I
I

] Step 1 TW

Wo~._..-.--t o

I I ~oo I .
1
s o

wi-1 ti_ 1 tl]
~ ' ~ - ~ 1 7 6

ADD

1
si-1

(b)

F I G U R E 2 .34 Signed-digit addition.

104 c H A P T E R 2 Two-Operand Addition

a "transfer-out." Moreover, a "transfer-in" can be included as the transfer

digit to the adder of the first digit.

Since

- a ~ s i _~ a 2.93

to assure that no carry propagation is produced in the second step, it is necessary

that the decomposition in the first step be done so that

- a + t - ~ W i ~ a - t + 2.94

whcre

- t - ~ ti+l ~_ t + 2.95

The specific addition algorithm depends on the representation of the operands.

We now consider the following three cases: (A) both operands in signed-digit

representation, (B) one operand conventional and the other signed digit, and

(C) both operands in conventional representation.

Case A : T w o S i g n e d - D i g i t O p e r a n d s

This is the most general case and results in the most complex algorithm. We

consider the case in which the digit sets of both operands and of the result are the
same, namely, from - a to + a . In this case we have

--2a ~___ X i ~- Yi ~ 2a 2.96

Since X i -[- Yi -- r t i+l + Wi and wi ~_ a - t +, we obtain for the largest values

2a < r t + + a - t + 2.97

Therefore, a ~ (r - 1)t +, and becausea < r,

- 1 ~ ti+l ~ 1 2.98

and the algorithm becomes

(ti+l, wi) -- I

(0, xi + Yi)

(1, x i -[- Yi - - r)

(--1, xi + Yi + r)

i f - a + 1 ~ X i + Y i ~ a -- 1

if Xi -[- Yi ~ a

if X i -~- Yi ~ --a

2.99

Adders with Redundan t Digi t Set 105

We now determine a bound on a that has to be satisfied for the above

algorithm. Consider the case x i + y i - a . Since

W i - - (X i -~- Yi - - r t i + l) < a - - 1 2.100

for this case it is necessary to have t i + 1 E 1, resulting in

W i = a - r 2.101

This is negative, so it is necessary to verify that W i > --a + 1. Therefore,

a - - r _>- -a + 1 2.102

so that

2a _>r + 1 2.103

o r

a > (r + 1)/2 2.104

Note that this value is larger than the min imum value for redundant represen-
tation.

EXAMPLE 2 . 9 Consider an addit ion operation with operands and results in a signed-digit
radix r - 10 representat ion wi th a - 6.

This pair (r , a) satisfies-a the bound above. The first step requires - 5 _<
w i _< 5 a n d - 1 _< ti < 1.

m

X 2 1 6 3 4

Y 1 3 2 6 2
m m m

W 1 4 2 1 4
E

T 0 0 1 1 1
m m

S 1 3 3 0 4 �9

Note that (2.104) is not satisfied for radix-2 with digit set { -1 , 0, 1}. Since

this case is important, a modification is developed as follows.

106 r N APT E • ~ Two-Operand Addition

F I G U R E 2 .35 Double recoding method for signed-bit addition.

Modified Signed-Digit Addition for r=2. We consider two approaches: the
double-recoding approach and the approach that uses information from the pre-

vious digit position.

Method 1: Double recoding. The signed-digit addition can be viewed as a recod-
ing from the digit set ofxi + yi (which is {-2, . . . , 2}), into the digit set of the
result {-1 , 0, 1}. In this method, two recodings (or signed-digit additions) are

performed, as follows:

1. The first recoding is from the digit set ofxi + yi, namely, {-2, - 1 , 0, 1, 2}
to an intermediate set, for instance {-2, - 1 , 0, 1 }.10

2. The second recoding transforms this intermediate digit set into the radix-2

signed-bit set { - 1, 0, 1}.

Both recodings are accomplished by applying the signed-digit addition algorithm.
Figure 2.35 illustrates this method; as can be seen, the critical path is increased

with respect to single signed-digit addition.

10. The alternative intermediate digit set {-1, 0, 1, 2} is also possible.

Adders with Redundant Digi t Set 107

The two recodings are defined as follows:

Recoding 1

Xi -~- Yi = 2hi+l + Z i E {-2, - 1 , 0, 1, 2} 2.105

such that hi E {0, 1} and zi ~ {-2, - 1, 0}.

Consequently, the result of this recoding (addition) is

qi = 2;i -~- k i 2.106

with qi E {-2, - 1 , 0, 1}. Note that the computation ofqi does not have to be
done explicitly; that is, it can be kept as zi and hi .

Recoding 2

qi = 2ti+l -+-w i E { - 2 , - 1 , 0, 1} 2.107

such that ti ~ {-1, 0} and wi E {0, 1}.
Consequently,

Si - - Wi -+- ti E {-1, 0, 1} 2.108

Method 2: Using information from previous digit position. As before,

1. Xi + Yi = 2ti+l + W i

2. S i - - Wi -Jl- ti

The critical values in step 1 are]xi Jr- Yi[= 1 because in this case it is not possible

to satisfy the condition for ti+l and wi so as to produce a carry-free second step.

However, in each of these cases two combinations of (ti+l, wi) are possible, and
we use information from the previous digit position to choose between them, as
follows.

Consider first the case xi + yi -" 1. The two possible combinations are

(ti+l, w i) -- (0, 1) and (ti+i, w i) = (1, - 1) . If we know that the transfer digit
ti from the previous digit position will not be 1, then we can choose the first
combination. Similarly, if we know that it cannot be - 1 , then we can choose the
second combination. Consequently, we define the condition Pi, which gives us
the required information, as follows:

l
0 if(xi, yi) both nonnegative

Pi - (which implies ti+ 1 ~ 0) 2.109

1 otherwise (ti+ 1 ~ O)

108 e N A pT E R 2 Two-Operand Addit ion

Xi Yi P i_ l~Yi - l jp ~ I yi-2

, , I I
Y

F I G U R f 2.36 Signed-bit addition using the information from previous digit.

EXAMPLE 2 . 1 0

By symmetry, this information is also useful for the case X i -~- Yi = -- 1. Using Pi,

the first step results in the following table:

xi +Yi
2

1

1

0

- 1

- 1

- 2

Pi-1 ti+l wi
w

O(ti > O)
l(ti < O)

O(ti > O)
l(ti ~ O) - 1

1

- 1

1

0

1

The module-level implementation of this algorithm is shown in Figure 2.36.

m m

X 0 1 1 1 1 1 0 1 1

Y 0 1 1 0 1 0 1 0 1

P 0 0 0 0 1 0 0 1 0

n m

W 0 0 0 1 0 1 1 1 0

T 0 1 1 0 1 1 0 0 1 0

D

S 1 1 0 0 1 1 1 0 0 �9

Adders with Redundant Digit Set 109

E X A M P L E 2 . 1 1

C a s e B : B o t h O p e r a n d s C o n v e n t i o n a l

This is the other extreme case, resulting in the simplest a lgori thm. In this case the

d i g i t s e t o f t h e o p e r a n d s i s 0 < x i , yi ~ r - 1 .Consequent ly,0 < x i + Y i <_ 2r - -2 .

We now determine the bounds t i+l E [t - , t +] and w i E [w- , w+]. Since the

sum is always positive, we get t - -- 0. To de te rmine t + and w +, consider the

m a x i m u m value o f x i + yi m 2r - 2. Tha t is,

r t + + w + > 2 r - 2 2.110
m

To satisfy the condition (2.93), we make w + - a - t +, resulting in

t + > 2 a 2.111
- r - 1

Tha t is,

t+ - l 1 i fa - - r - 1
/ 2 otherwise

In summary, ti+l and W i are bounded as follows:

2.112

0 < ti+l < t + --a ~_~ W i ~ a - - t + 2.113

The a lgor i thm for a -- r - 1 is

if X i -~- Yi < r -- 2

if X i -~- Yi > r -- 1

(0, X i + Yi)

(ti+l, W i) - (1, X i + Y i - - r)

On the other hand the a lgor i thm for r + l , -T- < a < r - - l i s

if X i -~- Yi <- a -- 2

i f a - 1 ~___X i + Y i < r + a - - 2

if r + a -- 1 < X i Jr-Yi

(0, X i -~- Yi)

(ti+l, W i) = (1, X i + Y i - - r)

(2, X i -~ Yi -- 2r)

2 . 1 1 4

2.115

Operands" convent ional ; result: s igned-digi t ; r - 10, a -- 6.

X 2 1 9 0 4 1

Y 4 3 9 9 3 4

W 4 4 2 1 3 5

T 1 0 2 1 1 1

S 1 4 6 1 0 2 5

110 r ~-{ .~ ~::":{~ ~!il ~ ::a:, Two-Operand Addition

In this case, the algorithm is valid also for r -- 2. The algorithm is

-- I 0 if xi + y i ~ 1
w i

I - 1 ifxi + yi m 1
2.116

0 if X i -]- Yi -- 0
ti+l - 1 if xi + Yi >-- 1

2.117

Case C: One C o n v e n t i o n a l O p e r a n d a n d One S igned D i g i t

This is an important situation that appears in the implementation of, for example,

multiplication and division, discussed in Chapters 4 and 5, respectively. In this

case

--a < X i + Y i < a + r -- 1 2.118

Because of this range, the first step of the procedure can be performed with
0 < ti ~ 1, so that the procedure is a straightforward extension of Case B. That

is,

(0, X i _ql_ Y i)

(t i+ l , w i) - (1, X i + Y i - - r)

i f - a < (x i .qt_ Yi) < a -- 1

if (X i -~ Yi) > a
2.119

For radix-2 the algorithm reduces to

w i - - { 0
--1

if IX i + Yi l ~ 1

if]X i "]-Yi[-- 1
2.120

0
ti+l -- 1

if X i -~- Yi < 0

i f x i + Y i > 1

As usual, this is followed by the second step:

2.121

S i - - W i -~- ti 2.122

B i t - L e v e l I m p l e m e n t a t i o n o f the R a d i x - 2 A l g o r i t h m s

We now present bit-level implementations of the radix-2 cases. These implemen-

tations depend on the coding used for the signed digits. Since in many cases, the
result is used as the operand in the subsequent operation, the coding for both

Adders with Redundant Digi t Set 111

the operands and result should be the same. If we call d the signed digit and d +
and d - the two bits of the representation, a suitable coding is described by the
following arithmetic expression:

d = d + - d - 2.123

This corresponds to the following table (note the two representations of 0):

d + d - d

0 0

1 - 1

0 1

1 0

First consider the Case C algorithm (one conventional operand, one signed
digit). The conventional operand x has digit setxi E {0, 1 }, while the signed-digit
operand y has digit yi represented by y+ ~ {0, 1} and Y7 ~ {0, 1}.

The first step of the algorithm (expression (2.119)) maps onto the following
switching expressions 11 (W i corresponds to w T- and t i to ti+):

W i - - Xi f~ Y + @ Y]- 2.124

t i + l - - - x i Y i + + x i (y ~ -) ' + y + (y] -) '

m

Since w i - - w i < 0 and ti - - t + > O, the second step is trivial, so that

s i + = ti , s i - - W i 2.125

As shown in Figure 2.37, the implementation consists of a full adder with one of
the inputs and one of the outputs complemented.

Case B is a straightforward simplification of the implementation of Case C,
making y~ -- 0.

Now consider implementation of Case A (both operands signed digit). We
implement the double recoding approach. It consists of two levels of full adders
as shown in Figure 2.38. Note that the variable z i in the algorithm is mapped
into the two signals vi and y~ in the implementation. Note also that the value

Xi "~- Yi - - 0 is recoded to either (h i + l , Zi) - - (0 , 0) or (hi+i, Zi) - - (1 , -2) .

11. This can be determined from a table of the switching functions.

112 e N ~t~ p T E ~ 2 Two-Operand Addition

+ y~- xi Yi

l

s. + s7
l l

~-1 Yi+l YTt-1

l
FA I

til~ I ~i-1
S + - i-1 ~-1

t/_i

F I G U R E 2.37 Radix-2 signed-digit adder: one operand conventional, one operand redun-

dant, result redundant.

X + X:- Y+ Yf- X/+l X--1 Yi+l Yf--1 l l

hi+) I ~ J ~0,y jZi_lj ~i-1 {0,1}

�9

1 i_1 ti_l
{0,1}, ~ {-1,0}

s. + s_ S+_l s i_ 1
l l

F ! 6 U R [2.38 Radix-2 signed-digit adder: both operands and result redundant.

2o13 C o n c l u d i n g R e m a r k s

We have presented several adder schemes, which differ in characteristics such as

delay, area, and energy dissipation. Although the structures are different, these

adders are unified by the properties of the carries, as outlined in Section 2.1.

Concluding Remarks 113

Because of this, in many cases a structure can be converted into another by
manipulation of these carry properties, and other similar structures can easily
be developed. We have also illustrated the use of completion signals to have
variable-time adders; these take advantage of the fact that not all additions have
the same delay and their implementations correspond to typical asynchronous
combinational systems. Finally, we have considered redundant adders, which
have carry-propagation chains of very limited length (one or two digits), inde-
pendent of the adder width; these produce fast adders with low area and are used
in many algorithms that contain the very common addition operation and where
conversion to conventional representation does not eliminate the advantage of
using the redundant adder. Examples are multioperand addition, multiplication,
division, and square root, as discussed in the following chapters. These redundant
adders also point to the fact that the addition algorithm is strongly dependent on
the representation of operands and result.

As characterization measures we have used delay and number of modules.
For delay, we considered expressions in terms of delays of modules and, in some
cases, in terms of delays of primitive gates. These measures are rough first-order
estimates, which are somewhat independent of the specific implementation and
do not include important considerations, such as the effect of interconnection
wires and the load on the signals.

None of the adder structures is superior in all aspects since this is an example of
the usual trade-offbetween delay and area. Moreover, the specific characteristics
depend on many factors, such as the technology used, the primitive cells available,
and the design tools. As a consequence, for a particular application, it is necessary
to explore the design space to obtain a suitable implementation.

Although detailed analysis, depending on the physical implementation, is
required to compare the schemes accurately, it is informative to classify them
according to the complexity with respect to the number of bits. A summary of
this is given in Table 2.3. With respect to the delay, we can distinguish the usual
(iterative) linear structures, with delay proportional to n/m, and the treelike
structures, with delay proportional to log m n, where m is the number of bits
handled by each module. This is typical of switching functions of n variables.
The particular properties of the adder are used to share substructures to produce

the complete sum vector.
The basic linear structures are the carry-ripple (within -- 1) and the one-level

carry-lookahead, which corresponds to a carry-ripple with radix 2 m. A variation

114 c H A p T E • 2 Two-Operand Addition

Scheme

Delay

proportional to

Area

proportional to

Linear structures:

Carry ripple

Carry lookahead (one level)

Carry select (one level)

Carry skip (one level)

Logarithmic structures:

Carry lookahead (maximum levels)

Prefix

Conditional sum

Completion signal (average delay)

Redundant

n

n/m
n/m

2 log m n

log m n

log2(n/m)

(log2n)/m
constant

n

(kmm)(n/m) =kmn
(kmm)(n/m) =kmn
n

(kmm)(n/m) = kmn
((kmm) log m n)n
(kin + log2(n/m))n

kmm(n/m) = kmn
n

T A B L E 2.3 Summary of delay and area complexities for adder schemes.

of this radix-2 m case is the carry-select, in which the carry between digits is used

to select among two conditional sums. The carry-skip structure is an alternative

that makes use of the characteristics of the longest carry chain.

The carry-lookahead concept can be extended to produce multilevel looka-
head structures of varying depths, up to a tree-type structure of depth proportional

to log m (n). Actually, the number of levels is 2 log m (n), since a second pass is re-
quired to obtain the carries inside the modules. Various tree-type structures can
also be obtained by considering the carry computation as a prefix computation;

these structures are very regular, and it is easy to develop alternatives that trade

off the signal load, the number of levels, and the number of cells.
The carry-select concept can also be extended to a treelike structure. Note,

however, that in this case, the number of levels is proportional to log2(n/m) (not

log m n) since the selection is done by considering the two possible values of the

carry between consecutive blocks.

In the variable-time case, a suitable measure of delay is the average delay.

This delay depends on the distribution of input values. Usually the value is given

for a uniform distribution, although other distributions might better represent

some applications. In the text we have considered the case of a carry-ripple adder;

Exercises 115

in practice other adder structures can be used as the basis for the variable-time

case.
The redundant adders have a constant delay, independent of the adder width.

Since this constant is quite low (between one and two full-adders, for the radix-2

case), these adders are significantly faster than those for conventional represen-

tation.
With respect to the area, we use as measure the number of cells. To take into

account the effect of the added complexity introduced by using a fast radix-2 m

module, we consider that the area of an m-bit module has a complexity km m times

the complexity of the radix-2 module. For the case of the multiplexers used in the

carry-select and conditional-sum adders we use k m = 1. For the linear structures,

we see an increase in area as the group size increases. In the logarithmic structures

we observe that the lookahead adder has an area proportional to (kin m)r/ , whereas

for the prefix adder it is proportional to (km m)11 log m r/. The additional area of

the prefix case is due to a reduction of the delay by a factor of two; this is an

example of the trade-off between delay and area.

We do not discuss the complexity with respect to energy, since this is highly

dependent on circuit technology. Several studies on the energy of adders have

been reported in the literature, but at this time there is no general model that can

be used to compare adder schemes in a way that is relatively independent of the

technology.

2 . 1

2 . 2

Exercises
Carry-Ripple Adder

In the full-adder implementation with two half-adders, the load on the carry-in

is larger than the load on other signals. Since the delay of the carry-out signal is
affected by this load, it is convenient to reduce it. One possibility is to include an

inverter in the carry-in input to the xoR gate producing si and to change the xoR
to an XNOR. Determine the effect of this modification on the delay of the carry-out

signal, using the characteristics of Table 2.4 (average delay).

Determine the delay of a 32-bit adder using the full-adder characteristics of

Table 2.4 (average delays).

Gate

Type

AND

AND

AND

OR

OR

OR

NOT

NAND

NAND

NAND

NAND

NAND

NAND

NOR

NOR

NOR

NOR

NOR

NOR

XOR +

XOR +

2-OR/NAND 2

2-AND/NOR 2

2-MUX
. . . .

Fanin

2

3

4

2

3

4

1

2

3

4

5

6

8

2

3

4

5

6

8

2*

3*

L: load on the gate output

Propagation Delays

tp L H tp HL

(ns) (ns)
0.15 +0.037L 0.16+0.017L 0.16

0.20+0.038L 0.18+0.018L 0.19

0.28+0.039L 0.21+0.019L 0.25

0.12+0.037L 0.20+0.019L 0.16

0.12+0.038L 0.34+0.022L 0.23

0.13 +0.038L 0.45+0.025L 0.29

0.02+0.038L 0.05+0.017L 0.04

0.05+0.038L 0.08+0.027L 0.07

0.07 + 0.038L 0.09 + 0.039L 0.08

0.10 + 0.037L 0.12 + 0.051L 0.11

0.21 + 0.038L 0.34 + 0.019L 0.28

0.24+0.037L 0.36+0.019L 0.30

0.24+0.038L 0.42 +0.019L 0.33

0.06+0.075L 0.07+0.016L 0.07

0.16+0.111L 0.08+0.017L 0.12

0.23+0.149L 0.08+0.017L 0.16

0.38+0.038L 0.23 +0.018L 0.32

0.46+0.037L 0.24+0.018L 0.35

0.54 + 0.038L 0.23 + 0.018L 0.39

0.30+0.036L 0.30+0.021L 0.30

0.16 + 0.036L 0.15 + 0.020L 0.15

0.50 + 0.038L 0.49 + 0.027L 0.50

0.28 + 0.039L 0.27 + 0.027L 0.28

0.19 + 0.036L 0.17 + 0.025L 0.18

0.17+0.075L 0.10+0.028L 0.14

0.17+0.075L 0.10+0.028L 0.14

0.20+0.050L 0.22+0.050L 0.21

* different characteristics for each input

tp (average)

(ns)

+ 0.027L

+ 0.028L

+ 0.029L

+ 0.028L

+ 0.025L

+ 0.032L

+ 0.028L

+ 0.033L

+ 0.039L

+ 0.045L

+ 0.029L

+ 0.028L

+ 0.029L

+ 0.046L

+ 0.059L

+ 0.083L

+ 0.028L

+ 0.028L

+ 0.028L

+ 0.029L

+ 0.028L

+ 0.033L

+ 0.033L

+ 0.032L

+ 0.052L

+ 0.052L

+ 0.050L

+ XNOR same characteristics as XOR; for full-adder characteristics see Table 2.2

Load
Factor Size

(standard (equivalent

loads)

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.1

2.0

1.1

2.4

2.1

1.0

1.0

0.5

gates)

2

2

3

2

2

3

1

1

2

2

4

5

6

1

2

4

4

5

6

3

T A B L E 2 . 4 Characteristics of a family of CMOS gates.

116

Exercises 117

2 . 3 Design a radix-4 full adder using the CMOS family of gates shown in Table
2.4. Compare delay and size with a 2-bit carry-ripple adder implemented with
(radix-2) full-adders (use average delays).

2 , 4

Switched Carry-Ripple Adder

Compare the delay of a 32-bit switched carry-ripple adder with that of a 32-bit
standard carry-ripple adder (using the two-half-adders implementation and the
characteristics of gates shown in Table 2.4). To model the delay of the switched
carry-ripple case, assume that the delay of the switch (setting or propagation) is
equal to that of one 2-input NAND gate (with load of 2) and that to restore the
signal a buffer (of delay equal to 1.5 of the delay of a 2-input NAND gate) has to be
introduced at 4-bit intervals.

2 , 5

2 , 6

Carry-Skip Adders

Draw a diagram of carry chains similar to that of Figure 2.8 for the addition of
the following bit-vectors:

X 0100110001110110

Y 1011011010001100

As in Example 2.3, determine the delay of the second addition for the following

two consecutive additions:

Operation 1

x 0000 0111 0000 1111
y 1111 0000 1111 0001

Operation 2

x (same) 0000 0111 0000 1111
y (change last bit) 1111 0000 1111 0000

2 . 7 Derive the expressions for the optimal group size and optimal delay for a carry-

skip adder with fixed-size groups.

118 r H ,~ ~'{'r ~q: ::2 T w o - O p e r a n d A d d i t i o n

skip l c '

2 . 8

2 . 9

b8 b7 b6 t b5

lb

I
b411 b3t

k i p l a

b2 bll I
[I bO ~in

Delays:
all bi have the same carry delay
t_MUX = delay for propagating carry through MUXes
t_skipl = delay for generating skipla, skiplb, or skiplc signals
t_skip2 = delay for generating skip2 signal

F I G U R E 2 . 3 9 Two-level ca r ry-sk ip adder.

2 . 1 0

Determine the delay of a 64-bit carry-skip adder for the following cases:

(a) fixed-size groups of eight bits
(b) optimal fixed-size groups according to the characteristics of Tables 2.2 (for

the full-adder) and 2.4 (for the MUX)
(c) an implementation with variable-size groups that produces a smaller

worst-case delay than (b)

Consider the two-level carry-skip network shown in Figure 2.39 (Turrini 1989).

Determine the worst-case delay for an 9-bit adder and for a 36-bit adder (using

four of these modules) and assuming that & - tmux = (~.

(a) Determine the worst-case delay for an n-bit two-level carry-skip adder.
Assume fixed-size groups ofm bits/group and p fixed-size sections ofs m

bits/section; that is, n = p s m . Assume that tc - - t m u x .

(b) Using the expression obtained in (a) determine the optimal group size m
form = s .

2 .11

2 . 1 2

Carry-Lookahead Adder

Determine the number of equivalent gates, the maximum gate fanin and fanout,

and the critical delays of a carry-lookahead generator (CLG) for m - - 4 and
m - - 8. Use N A N D and NOR gates and the gate characteristics of the family in

Table 2.4.

A block carry-lookahead module BCLA generates only the MS carry bit in a group

as shown in Figure 2.40. Show a one-level structure (similar to a one-level CLA)

E x e r c i s e s 1 1 9

Bit-level generate and propagate signals

Ci+4 ~

gi+3 Pi+3 gi+2 Pi+2

L,_!
gi+l Pi+l

_I l l

gi Pi
I

II F -c~

F I G U R E 2.40 BCLA module.

2 . 1 3

2 . 1 4

2 . 1 5

2 . 1 6

2 . 1 7

2 . 1 8

for a 32-bit adder constructed only from these BCLA modules, half-adders, and
full-adders. Determine its worst-case carry delay using the characteristics of the
gates in Table 2.4. Compare with a carry-skip adder with group size of four.

Using expression (2.40), determine the four carries in a CLG-4 for the following

bit-vectors: X = 0101, Y = 1001,c0 - 1.

Using expressions in Section 2.7.2, determine the carries for a two-level lookahead
adder with 4-bit groups for the following input vectors:

X 0110111010111001

Y 1 O010000111 O0101

Draw a diagram similar to Figure 2.15 for a 64-bit three-level carry-lookahead
adder.

Derive the expression for the number of CLG modules for an n-bit CLA adder
with L levels and groups of size m.

For a 128-bit adder and using groups and sections of four bits, compare the delay

for one-level, two-level, three-level, and four-level carry-lookahead adders for

the case t d g - t A , G - - 6 ta ,g - - 3 t s .

Ling's adder (Doran 1988; Ling 1981) uses a more efficient recurrence for carries

compared with the recurrence used in the carry-lookahead adders discussed in

120 C H A P T E R 2 Two-Operand Addition

2 . 1 9

2 . 2 0

2 .21

2 . 2 2

2 . 2 3

2 . 2 4

Section 2.1. The expressions used there are

Pi - - x i (~ Yi, gi - - x iY i , C i + I - - - gi + p i c i , $ i - - C i (~ Pi

Ling defines a new "carry" function hi -- tTi+ 1 + tTi, resulting in the following

adder expressions:

ti = x i + Yi, gi = x iY i , hi -- gi + t i - l h i - 1 , $ i - - ti E]~ hi + g i t i - l h i - 1

(a)
(b)

Show that Ling's expressions produce the correct sum.

Consider the expressions for a group of four bits and show that Ling's
approach is more efficient than the conventional one with respect to the

number of gates and fanin.

Prefix Adder

The prefix adder shown in Figure 2.18 includes a carry-in. Draw the modified

structures for the case in which there is no carry-in.

Using the prefix adder of Figure 2.20, perform the addition of the bit-vectors

X - - 01010111, Y = lll00111, a n d c 0 - 1.

Using a prefix adder as a basis, design a network that produces simultaneously
s -- x + y andz - x + y + 1. This network is useful in rounding for floating-point
addition.

Give a diagram like Figure 2.20 for a 16-bit prefix adder with the minimum

number of levels and a maximum fanout of four. To do this, you might want to
begin with two schemes: one with a maximum fanout of eight and the other with
a maximum fanout of two, and then interpolate.

Carry-Select Adder

Design a conditional-adder module of four bits (see Figure 2.22) to be used in

the first stage of a carry-select adder. In your design, share the logic between the

adder with the carry-in 0 and the adder with the carry-in 1. Specifically, base your

design on the carry-ripple scheme.

Using a carry-select adder with 4-bit groups, perform the addition of the following

bit-vectors: X = 0111100010101010, Y -- 1010101110110010, and c0 = 0.

Exercises 121

2 . 2 5

2 . 2 6

2 . 2 7

2 . 2 8

2 . 2 9

A variation of the carry-select adder computes the carries into each group sepa-

rately from the sums, using a faster network, such as lookahead. This reduces the
the worst-case delay and also allows a more effective use of variable-size groups.

To evaluate this approach determine the optimal size of groups in a carry-select

adder and the corresponding worst-case delay for the following two cases:

(a) Carries between groups are generated by a linear (iterative) network.

(b) Carries between groups are obtained by a tree (lookahead) network.

Define first the relevant delays.

Conditional-Sum Adder

Using a conditional-sum adder with 2-bit groups, perform the addition for the

following bit-vectors: X = 01010111, Y = 10101111, c 0 = 0.

Consider the following two schemes for adding two binary operands of length
n = 2P bits. Scheme A forms conditional sums over groups of n /4 bits using

carry-ripple adders and then applies the conditional-sum method to obtain the

final sum. Scheme B forms n/4-bit sums using the conditional-sum method

within groups and ripples the carries between the groups. That is, the i th group

requires the carry from the group i - 1 in order to produce the correct sum and

carry-out. If the delay of a full-adder is 28 and that of a 2-to-1 multiplexer is 8,

determine the value of p for which scheme A is faster than scheme B.

Consider a variation of the conditional-sum adder, called the conditional-carry

adder. In this variant, only the carries are computed using the conditional ap-
proach. These carries are then used to compute the sums as S i = X i ED Yi G ci.

(a) Design a 16-bit conditional-carry adder, initial group size of 1, and the
incoming carry c0. Show the necessary logic details (which you can abstract
as modules). Label all signals. Indicate the critical path.

(b) Compare the design with a 16-bit conditional-sum adder with respect to
the cost (type and number of modules) and the delay in the critical path.

Variable-Time Adders

Using variable-time adders of both types discussed in this chapter, perform

the addition of the following bit-vectors: X - 1000100111, Y - 0111000110.

The adder cells have an actual delay 15% smaller than the worst-case delay, and

122 C~ApTE~ ~ Two-Operand Addition

the delay of the A N D gate to determine the completion signal (for an 8-bit adder)
is equal to the delay of one adder cell.

Determine the actual delay in both cases and compare with the delay of the

carry-ripple adder.

2 . 3 0 (a)

(b)

2.31

Consider a 32-bit carry-select adder consisting of four groups of size 8.
Suppose that each group is implemented as an 8-bit Type 1 variable-time
adder. Design the rest of the network so that the whole adder behaves as a

Type 1 adder.
Compare the design in (a) with a 32-bit Type 1 adder that is based on the
carry-ripple adder scheme.

Ones' Complement Adder

Determine the delay of an n-bit ones' complement adder implemented connecting
the carry-out with the carry-in in the scheme of Figure 2.20. Compare with the
adder that includes an additional stage to add the carry-out (Figure 2.29).

2 . 3 2

2 . 3 3

Redundant Adder

Perform the addition of the following 4-bit vectors using

(a) a [4:2] adder composed of two levels of [3:2] adders
(b) a [4:2] adder composed of the cells of Figure 2.41:

0111110000110011
1110001001101101
1010101010101010
1010111101110111

(a)

(b)

Consider implementing a cell for the [4:2] adder using full-adders.
Determine the connections between the full-adders and inputs so that the
delay in the critical path is the smallest. Use the average delays of a
full-adder given in Table 2.2 and assume the load of 1 for the outputs of

the [4:2] adder.
Show that the scheme of Figure 2.41 implements a cell for the [4:2] adder.
Determine the average propagation delays using Table 2.4 (average delay)
and compare with the results obtained in (a).

Exercises 123

2 . 3 4

2 . 3 5

2 . 3 6

2 . 3 7

2 . 3 8

2 . 3 9

xi Yi wi zi

I I ODD] I MAJORITY I PARITY I
ti+ 1 . I 0 1 I J t i

@UX I I

ci+ 1 si

F I G U R E 1.41 Alternative implementa t ion of a cell for the [4:2] adder.

Design a radix-8 carry-save adder using a radix-8 cell composed of three full-
adders.

Perform the radix-8 carry-save addition of the following two operands (one carry-
save and one conventional):

I01110110011
1 1 0 1

011100111011

Describe an algorithm and an implementation for the addition of two radix-8
carry-save operands.

Perform a radix-4 signed-digit addition for the following two operands: X =
02131011, Y -- 10131110.

Give arithmetic expressions for a radix-4 signed-digit adder with inputs ai, bi

{ - 2 , - 1 , 0, 1, 2} and output s i ~ { - 2 , - 1 , 0, 1, 2}uall minimally redundant
digit sets. Define all intermediate variables and their digit sets. Specify the corre-
sponding blocks without going into design details at the binary level. Compare
this adder with a radix-4 signed-digit adder with the maximally redundant digit
set {-3, -2 , -1 , 0, 1, 2, 3}.

Perform a radix-2 signed-digit addition for the following two operands: X -
01 i 1 T01 i, Y - 10101 i i 1. Use both approaches described in the chapter.

124 r 2 Two-Operand Addition

2 . 4 0

2 .41

2 . 4 2

2 . 4 3

2 . 4 4

2 . 4 5

2~

Derive high-level and binary-level expressions for the double recoding algorithm
resulting in the redundant adder implementation shown in Figure 2.38.

Design a three-operand adder with two operands x and y in the two's complement
form with the digit set {0, 1 } (MS bit is in the set {-1, 0}), and the third operand
z and the sum s in the signed-digit form with the digit set {-2, -1 , 0, 1, 2}.

Design the adder using the recoding approach. Show the recoding equations
and all intermediate digit sets. Show the block diagram of your design. Discuss
the critical path.

Develop an addition algorithm for conventional radix-4 operands with the digit
set {0, 1, 2, 3} and the sum with a - 2 using

(a) Method 1 (double recoding)
(b) Method 2 (recoding with information from the previous position)

For each design estimate the delay (logic levels) and compare with the addition
using a - 3 in the digit set for the sum.

Perform the radix-2 signed-digit addition of one signed-digit operand and one
conventional operand using the implementation of Figure 2.37 for the following
operands: X - 01110110, Y -- l l l00Tll .

Perform the radix-2 signed-digit addition of two signed-digit operands using
the implementation of Figure 2.38 for the following operands: X -- 01111100,
Y - - 11111111.

Complexity of Adders

Consider an implementation of an n-input adder using modules of no more than
m inputs. Show that the minimum number of levels of these modules is O (log m n).
Hint: Consider the implementation of a switching function of n variables.

Further Readings
As is apparent from the text of this chapter, there is a variety of adders that
have been developed in the last 50 years. The literature on these adders is very
extensive; we give here a list of some of the most relevant papers, because of their
historical significance and/or because they provide additional insight as well as
more detailed information on implementations.

Further Readings 125

Overviews and comparisons of different adder structures are given in
Sklansky (1960b), Lehman (1962), Gosling (1971), Nagendra et al. (1996) and
Zimmerman (1998).

Switched-Ripple Adder

The switched carry-ripple adder, also called the Manchester adder, was initially
described in Kilburn et al. (1959). In today's technology it relies on the efficient
implementation of transmission gates, as described in Fenwick (1987), Rabey
(1996), and Weste and Eshragian (1993).

Carry-Skip Adder

The concept of the carry-skip adder is presented in Morgan and Jarvis (1959)
and Lehman and Burla (1961) and was analyzed in Majerski (1967). It has been
extended in a variety of ways; the main aspects considered are the determination
of optimal group sizes for a variety of delay models and the extension to variable
group-size and multilevel schemes (Oklobdzija and Burnes 1985; Guyot et al.
1987; Turrini 1989; Kantabutra 1991; Chan et al. 1992; Kantabutra 1993a). The
concept of carry-skip has been applied to switched carry-ripple adders in Chan
and Schlag (1990).

Carry-Lookahead Adder

The carry-lookahead adder has been the most popular adder with logarithmic
delay. Introduced in Weinberger and Smith (1958), it has led to numerous varia-
tions (mainly in number of levels and group size) and implementations. A variant
that simplifies the implementation for some technologies, called the Ling adder,
was presented in Ling (1981). A general class, of which the Ling adder is a mem-
ber, is discussed in Doran (1988). A CMOS implementation of the Ling adders is
presented in Quach and Flynn (1992).

Carry-Select and Conditional-Sum Adders

The carry-select adder was introduced in Bedrij (1962) and its simplification in
VLSI implementation is shown in Tyagi (1993). The conditional-sum adder was
first presented in Sklansky (1960a).

126 r R A. pT ~ R ::2: Two-Operand Addition

Prefix Adder

Prefix adders have become very popular because of their regularity and suitability
for VLSI implementations. The initial paper describing addition as a prefix
computation is Kogge and Stone (1973). A variation with larger fanout but fewer
cells is presented in Ladner and Fisher (1980). In Brent and Kung (1982) a scheme
is proposed with the minimal fanout of one. In Han and Carlson (1987) a good
overview is given and higher radix prefix schemes are proposed. A design of area-
time optimal adder is discussed in Wei and Thompson (1990). An analysis of the
whole class of prefix adders and a comparison of different implementations is
given in Knowles (1999). In Lynch and Swartzlander (1992) a variation is proposed
for efficient adders with non-power-of-two width.

Reverse Carry Adder

An approach proposing reverse carries to overlap levels in a multilevel adder is
presented and evaluated in Bruguera and Lang (2000).

Variable-Time Adder

Variable-time adders are an example of asynchronous and self-timed combina-
tional networks, so the literature on these types of networks is relevant. Particular
to adders, the carry-completion adder was described in Gilchrist et al. (1955), with
recent VLSI realizations presented in Salomon (1987) and Ramachandran and
Lu (1996). A self-timed carry-lookahead adder is presented in Cheng et al. (2000).
A conditional-sum adder with completion detection is described in Martin and
Hufnagel (1980). Asynchronous adders are evaluated in Franklin and Pan (1994)
and Kinniment (1996). The sequential and indeterminate behavior of an adder
with end-around-carry is examined in Shedletsky (1977).

Redundant Adder

Redundant adders, because of the nonconventional representation of the output,
are used as building blocks for more complex operations, such as multioperand
addition, multiplication, and division. Consequently, most references are found in
the corresponding chapters. Carry-save addition was introduced in Estrin et al.
(1956) in the context of sequential multiplication, following an observation of
Burks, Goldstine, and Von Neumann. Apparently, Babbage articulated the idea

Further Readings 127

of "postponed" carries in the design of the calculating engine Randell (1975).
Signed-digit representation, addition, and other basic operations were investi-
gated in Avizienis (1960, 1961, 1962, 1964, 1966); the first extensive use of this
representation was in the Illiac III computer as described in Atkins (1970). The
relationship between radix-2 signed-digit adder and carry-save adder is discussed
in Duprat and Muller (1991), where the term borrow save is used for the signed-
digit case. The borrow-save coding was discussed as early as 1967 in Robertson
(1967), where a deterministic procedure for the design of carry-save adders and
borrow-save subtracters was proposed. Related work on the set transformations
and design of adders/subtracters appears in Rohatsch (1967), Borovec (1968), and
Chow and Robertson (1978). Later work on systematic procedures and operand
coding for the design of redundant adders is presented in Parhami (1988), Carter
and Robertson (1990), Bajard et al. (1994), Ercegovac and Lang (1997), and Phatak
et al. (2001). Zero, sign, and overflow detection in signed-digit addition are dis-
cussed in Parhami (1993). Issues of carry-save addition, such as overflow detec-
tion and correction and saturation control, are presented in Noll (1991). Recoding
(conversion) between digit sets provides another view in the design of redundant
adders. General aspects of recoding are discussed in Kornerup (1994), Ercegovac
and Lang (1996), and Kornerup (1999).

Implementation of Adders

The literature describing design and implementation of various types of adders is
very extensive (for example, MacSorley 1961; Anderson et al. 1967; Bayoumi et al.
1983; Ngai et al. 1986; Oklobdzija 1988; Naffziger 1996; Knowles 1999; Flynn and
Oberman 2001). Application of the logical effort model in the design of adders
is presented in Dao and Oklobdzija (2001). An energy-efficient adder design is
described in Parhi (1999). Oklobdzija (1999) presents an extensive collection of
papers on high-performance circuits, logic, and system design, many of them
related to implementation of digital arithmetic schemes.

Incrementer

Incrementers, a special case of adders, are typically used in implementing counters.
Schemes that achieve constant cycle time independent of the length are presented
in Ercegovac and Lang (1989), Vuillemin (1991), Lutz and Jayasimha (1996), and
Stan et al. (1998).

128 r ~ ~ p'r E ~ 2 Two-Operand Addition

Hybrid Adder

Hybrid adders combine several addition schemes to achieve implementation
delay/area constraints. Hybrid adders using a carry-lookahead and carry-select
schemes are described in Dobberpuhl et al. (1992), Lynch and Swartzlander
(1992), and Kantabutra (1993b). A hybrid adder using carry-skip and carry-
select schemes is discussed in Burgess (2001). Hybrid adders are also appropri-
ate when the operand bits to the final adder in tree multipliers (discussed in
Chapter 4) do not arrive simultaneously. In such a situation, a hybrid adder
provides an efficient implementation as presented in Oklobdzija and Villeger
(1995).

Pipelined Adder

A good discussion of general approaches to pipelined adders is presented in Dadda
and Piuri (1996). Pipelined designs of several adder schemes are described in
Unwala and Swartzlander (1993). Advanced design techniques using asynchron-
ous circuits and wave pipelining are described in Singh and Nowick (2000) and
Wong et al. (1993).

Condition Detection Using Adder

Adders are often used to detect conditions such as zero-sum. Such conditions are
trivially obtained when the result is computed by full-precision carry-propagate
addition. Schemes discussed in Weinberger (1978), Cortadella and Llaberia (1992),
Vassiliadis et al. (1993), and Lutz and Jayasimha (1997) present various solutions
to obtain conditions without using carry propagation.

Serial Adder

Digit-serial addition schemes and related literature are discussed in Chapter 9.

Bounds on Delay

Theoretical bounds on the delay of addition are presented in Winograd (1965),
Spira (1973), and Brent (1970).

Bibliography 129

2ot6 Bibliography
Anderson, S. F., J. G. Earle, R. E. Goldschmidt, and D. M. Powers (1967). The

IBM 360/3 70 model 91: floating-point execution unit. IBM Journal of Research
and Development, pages 34-53.

Atkins, D. E. (1970). Design of the arithmetic units of ILLIAC III: Use of
redundancy and higher radix methods. IEEE Transactions on Computers,
C- 19(8):720-33.

Avizienis, A. (1960). A Study of Redundant Number Representations for Parallel
Digital Computers. PhD thesis, University of Illinois, Urbana.

Avizienis, A. (1961). Signed digit number representations for fast parallel arith-
metic. IRE Transactions on Electronic Computers, EC-10(9):389-400.

Avizienis, A. (1962). On flexible implementation of digital computer arithmetic.
In Proc. IFIP Congress, pages 664-70.

Avizienis, A. (1964). Binary-compatible signed-digit arithmetic. In Proc. Fall Joint
Computer Conference, pages 663-72.

Avizienis, A. (1966). Arithmetic microsystems for the synthesis of function gen-
erators. Proceedings of the IEEE, 54(12): 1910-19.

Bajard, J. C., J. Duprat, S. Kla, and J.-M. Muller (1994). Some operators for
on-line radix 2 computations. Journal of Parallel and Distributed Computing,
22(2):336-45.

Bayoumi, M. A., G. A. Jullien, and W. C. Miller (1983). An area-time efficient
NMOS adder. Integration, 1:317-34.

Bedrij, O. J. (1962). Carry-select adder. IRE Transactions on Electronic Computers,
EC- 11 (6):340-46.

Borovec, R. T. (1968). The logical design of a class of limited carry-borrow prop-
agation adders. Technical report no. 275, Dept. of Computer Science, Uni-
versity of Illinois.

Brent, R. P. (1970). On the addition of binary numbers. IEEE Transactions on
Computers, C-19(8):758-59.

Brent, R. P., and H. T. Kung (1982). A regular layout for parallel adders. IEEE
Transactions on Computers, C-31 (3):260-64.

Bruguera, J. D., and T. Lang (2000). Multilevel reverse-carry adder. In Proceedings
of the IEEE International Conference on Computer Design: VLSI in Computers
and Processors (ICCD'00), pages 155-62.

130 c::H.~'~:}::~ ~;~ Two-Operand Addition

Burgess, N. (2001). Accelerated carry-skip adders with low hardware cost. In
Proceedings of the 35th Asilomar Conference on Signals, Systems and Computers,
pages 852-56.

Carter, T. M., and]. E. Robertson (1990). The set theory of arithmetic decompo-
sition. IEEE Transactions on Computers, C-39(8):993-1005.

Chan, E K., M. D. Schlag, C. D. Thomborson, and V. G. Oklobdzija (1992). Delay
optimization of carry-skip adders and block carry-lookahead adders using
multidimensional dynamic programming. IEEE Transactions on Computers,
41(8):920-30.

Chan, R K., and M. D. E Schlag (1990). Analysis and design of CMOS Manchester
adder with variable carry-skip. IEEE Transactions on Computers, C-39(8):
983-92.

Cheng, E-C., S. H. Unger, and M. Theobald (2000). Self-timed carry-lookahead
adders. IEEE Transactions on Computers, 49(7):659-72.

Chow, C. Y., and]. E. Robertson (1978). Logical design of a redundant binary
adder. In Proceedings of the 4th IEEE Symposium on Computer Arithmetic,
pages 109-15.

Cortadella,]., and]. M. Llaberia (1992). Evaluation of A + B - - K conditions
without carry propagation. IEEE Transactions on Computers, 41 (11): 1484-88.

Dadda, L., and V. Piuri (1996). Pipelined adders. IEEE Transactions on Computers,
45(3):348-56.

Dao, H., and V. G. Oklobdzija (2001). Application of logical effort for speed
optimization and analysis of representative adders. In Proceedings of the 35th
Asilomar Conference on Signals, Systems and Computers, pages 1666-69.

Dobberpuhl, D. W., et al. (1992). A 200-MHz 64-b dual-issue CMOS micropro-
cessor. IEEE Journal of Solid-State Circuits, 27(11):1555-64.

Doran, R. W. (1988). Variants of an improved carry-lookahead adder. IEEE
Transactions on Computers, C-37(9): 1110-13.

Duprat, J., and].-M. Muller (1991). Writing numbers differently for faster cal-
culation. Technique et Science Informatiques, 10(3):211-24.

Ercegovac, M. D., and T. Lang (1989). Binary counter with counting period of
one half adder independent of counter size. IEEE Transactions on Circuits and
Systems, 36(6):924-26.

Ercegovac, M. D., and T. Lang (1996). On recoding in arithmetic algorithms.
Journal of VLSI Signal Processing, 14:283-94.

Bibliography 131

Ercegovac, M. D., and T. Lang (1997). Effective coding for fast redundant adders
using radix-2 digit set {0, 1,2, 3 }. In Proceedings ofthe 31st Asilomar Conference
on Signals, Systems and Computers, pages 1163-67.

Estrin, G., B. Gilchrist, and J. H. Pomerane (1956). A note on high-speed digital
multiplication. IRE Transactions on Electronic Computers, page 140.

Fenwick, R M. (1987). A fast-carry adder with CMOS transmission gates.
Computer Journal, 30(1):77-79.

Flynn, M. J., and S. E Oberman (2001). Advanced Computer Arithmetic Design.
John Wiley & Sons, Inc., New York.

Franklin, M. A., and T. Pan (1994). Performance comparison of asynchronous
adders. In Proceedings of the International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pages 117-25.

Gilchrist, B., J. H. Pomerene, and S. Y. Wong (1955). Fast carry logic for digital
computers. IRE Transactions on Electronic Computers, EC-4:133-36.

Gosling, J. B. (1971). Review of high-speed addition techniques. Proceedings of
IEE, 118(1):29-35.

Guyot, A., B. Hochet, and J.-M. Muller (1987). A way to build efficient carry-skip
adders. IEEE Transactions on Computers, C-36(10).

Han, T., and D. A. Carlson (1987). Fast area-efficient VLSI adders. In Proceedings
of the 8th IEEE Symposium on Computer Arithmetic, pages 49-56.

Kantabutra, V. (1991). Designing optimum carry-skip adders. In Proceedings of
the 10th IEEE Symposium on Computer Arithmetic, pages 146-55.

Kantabutra, V. (1993a). Accelerated two-level carry-skip addersma type of very
fast adder. IEEE Transactions on Computers, C-42(11):1389-93.

Kantabutra, V. (1993b). A recursive carry-look-ahead/carry-select hybrid adder.
IEEE Transactions on Computers, C-42(12): 1495-99.

Kilburn, T., D. B. G. Edwards, and D. Aspinall (1959). Parallel addition in a
digital computerma new fast carry. Proceedings of the IEE, 106B:460-64.

Kinniment, D. J. (1996). An evaluation of asynchronous addition. IEEE Transac-
tions on VLSI Systems, 4(1):137-40.

Knowles, S. (1999). A family of adders. In Proceedings of the 14th IEEE Symposium
on Computer Arithmetic, pages 30-34.

Kogge, P. M., and H. S. Stone (1973). A parallel algorithm for the efficient solution
of a general class of recurrence equations. IEEE Transactions on Computers,
C-22(8):783-91.

132 C H A P T E R 2 Two-Operand Addition

Kornerup, P. (1994). Digit-set conversions: Generalizations and applications.
IEEE Transactions on Computers, 43(5):622--29.

Kornerup, E (1999). Necessary and sufficient conditions for parallel, constant
time conversion and addition. In Proceedings of the 14th IEEE Symposium on
Computer Arithmetic, pages 152-56.

Ladner, R., and M. Fisher (1980). Parallel prefix computation.Journal ofthe ACM,
27(4):831--38.

Lehman, M. (1962). A comparative study of propagation speed-up circuits in
binary arithmetic units. Information Processing, pages 671-77.

Lehman, M., and N. Burla (1961). Skip techniques for high-speed carry propa-
gation in binary arithmetic units. IRE Transactions on Electronic Computers,
EC-10:691-98.

Ling, H. (1981). High-speed binary adder.IBM Journal Research and Development,
25(3):156-66.

Lutz, D. R., and D. N. Jayasimha (1996). Programmable modulo-k counters.
IEEE Transactions on Circuits and Systems I: Fundamental Theory and Appli-
cations, 43(11):939-41.

Lutz, D. R., and D. N. Jayasimha (1997). The half-adder form and early branch
condition resolution. In Proceedings of the 13th Symposium on Computer Arith-
metic, pages 266-73.

Lynch, T., and E. E. Swartzlander (1992). A spanning tree carry lookahead adder.
IEEE Transactions on Computers, C-41 (8):931-39.

MacSorley, O. L. (1961). High-speed arithmetic in binary computers. IRE Pro-
ceedings, 49:67-91.

Majerski, S. (1967). On determination of optimal distributions of carry skips in
adders. IEEE Transactions on Electronic Computers, EC-16(1):45-58.

Martin, N. M., and S. R Hufnagel (1980). Conditional-sum early completion
adder logic. IEEE Transactions on Computers, C-29:753-56.

Morgan, C. R, and D. B. Jarvis (1959). Transistor logic using current switching
routing techniques and its application to a fast carry-propagation adder.
Proceedings of the IEE, 106B:467-68.

Naffziger, S. (1996). A sub-nanosecond 0.5 micron 64b adder design. Digest of
IEEE International Solid-State Circuits Conference, pages 362-63.

Nagendra, C., M. J. Irwin, and R. M. Owens (1996). Area-time-power tradeoffs in
parallel adders. IEEE Transactions Circuits and Systems II: Analog and Digital
Signal Processing, 43(10):689-702.

Bibliography 133

Ngai, T. F., M. J. Irwin, and S. Rawat (1986). Regular, area-time efficient carry-
lookahead adders. Journal of Parallel and Distributed Computing, 3(1):92-105.

Noll, T. (1991). Carry-save architectures for high-speed digital signal processing.
Journal of VLSI Signal Processing, 3(1-2): 121-40.

Oklobdzija, V. G. (1988). Simple and efficient CMOS circuit for fast VLSI adder
realization. In Proceedings of the IEEE Symposium on Circuits and Systems,
pages 235-38.

Oklobdzija, V. G., editor (1999). High-Performance System Design: Circuits and
Logic. IEEE Press, Piscataway, New Jersey.

Oklobdzija, V. G., and E. R. Burnes (1985). Some optimal shemes for ALU im-
plementation in VLSI technology. In Proceedings of the 7th IEEE Symposium
on Computer Arithmetic, pages 2-8.

Oklobdzija, V. G., and D. Villeger (1995). Improving multiplier design by using
improved column compression tree and optimized final adder in CMOS
technology. IEEE Transactions on VLSI, 3(2):292-301.

Parhami, B. (1988). Carry-free addition of recoded binary signed-digit numbers.
IEEE Transactions on Computers, C-37(11):1470-76.

Parhami, B. (1993). On the implementation of arithmetic support functions for
generalized signed-digit number systems. IEEE Transactions on Computers,
42(3):379-84.

Parhi, K. K. (1999). Low-energy CSMT carry generators and binary adders. IEEE
Transactions on VLSI Systems, 7(12):450-62.

Phatak, D. S., T. Geoff, and I. Koren (2001). Constant-time addition and simul-
taneous format conversion based on redundant binary representation. IEEE
Transactions on Computers, 50(11):1267-87.

Quach, N. T., and M. J. Flynn (1992). High-speed addition in CMOS. IEEE
Transactions on Computers, 41 (12): 1612-15.

Rabaey, J.-M., A. Chandrakasan, and B. Nikoli~ (2003).Digital Integrated Circuits:
A Design Perspective. Prentice Hall, Englewood Cliffs, New Jersey, 2 edition.

Ramachandran, R., and S.-L. Lu (1996). Efficient arithmetic using self-timing.
IEEE Transactions on VLSI, 4(4):445-54.

Randell, B., editor (1975). On the Mathematical Powers of the Calculating Engine
(C. Babbage). Springer-Verlag, New York, 2nd edition.

Robertson, J. E. (1967). A deterministic procedure for the design of carry-save
adders and borrow-save subtracters. Technical report No. 235, Dept. of
Computer Science, University of Illinois, UrbanaoChampaign.

134 c H A P T E R 2 Two-Operand Addition

Rohatsch, F. A. (1967). A Study of Transformations Applicable to the Development of
Limited Carry-Borrow Propagation Adders. PhD thesis, Department of Com-
puter Science, University of Illinois, Urbana-Champaign.

Salomon, D. (1987). A design for an efficient NOR-gate only, binary ripple
adder with carry-completion detection logic. Computer Journal, 30(3):283-
85.

Shedletsky, J. J. (1977). Comment on the sequential and indeterminate behaviour
of an end-around-carry adder. IEEE Transactions on Computers, C-26(3):271-
72.

Singh, M., and S. M. Nowick (2000). Fine-grain pipelined asynchronous adders
for high-speed DSP applications. In Proceedings of the IEEE Computer Society
Worksho p on VLS12000, System Design for a System-on-Chip Era, pages 111-18.

Sklansky, J. (1960a). Conditional-sum addition logic. IRE Transactions on Elec-
tronic Computers, EC-9:226-31.

Sklansky, J. (1960b). An evaluation of several two-summand binary adders. IRE
Transactions on Electronic Computers, EC-9:213-26.

Spira, P. M. (1973). Computation times of arithmetic and Boolean functions in
(d,r) circuits. IEEE Transactions on Computers, C-22(6):552-55.

Stan, M. R., A. F. Tenca, and M. D. Ercegovac (1998). Long and fast up/down
counters. IEEE Transactions on Computers, 47(7):722-35.

Turrini, S. (1989). Optimal group distribution in carry-skip adders. In Proceedings
of the 9th IEEE Symposium on Computer Arithmetic, pages 96-103.

Tyagi, A. (1993). A reduced area scheme for carry-select adders. IEEE Transactions
on Computers, C-42(10): 1163-70.

Unwala, I. H., and E. E. Swartzlander (1993). Superpipelined adder designs. In
Proceedings of the International Symposium on Circuits and Systems (ISCAS),
volume 3, pages 1841-44.

Vassiliadis, S., J. Philips, and B. Blaner (1993). Condition code predictor for fixed-
point arithemtic units. IEEE Transactions on Computers, 42(7):825-39.

Vuillemin, J. E. (1991). Constant time arbitrary length synchronous binary coun-
ters. In Proceedings of the 10th IEEE Symposium on Computer Arithmetic, pages
180-83.

Wei, B. W. Y., and C. D. Thompson (1990). Area-time optimal adder design.
IEEE Transactions on Computers, 39(5):666-75.

Weinberger, A. (1978). High-speed zero-sum detection. In Proceedings of the 4th
IEEE Symposium on Computer Arithmetic, pages 200-207.

Bibliography 135

Weinberger, A., and J. L. Smith (1958). A logic for high-speed addition. Nat. Bur.
Stand. Circ., 591:3-12.

Weste, N. H. E., and K. Eshragian (1993). Principles of CMOS VLSI Design: A
System Perspective. Addison-Wesley Publishing Co., Reading, Massachusetts,
2nd edition.

Winograd, S. (1965). On the time required to perform addition. Journal of the
ACM, 12(2):277-85.

Wong, D. C., G. De Micheli, and M. J. Flynn (1993). Designing high-performance
digital circuits using wave pipelining: Algorithms and practical experiences.
IEEE Transactions Computer-Aided Design of Integrated Circuits and Systems,
12(1):25-46.

Zimmerman, R. (1998). Binary Adder Architectures for Cell-Based VLSI and Their
Synthesis (Ph.D. dissertation). Series in Microelectronics, Vol. 37. Hartung-
Gore, Konstanz, Switzerland.

CHAPTER 3 Multioperand Addition

In this chapter we consider algorithms and implementations for addition of
more than two operands. That is, for m operands we want to obtain s such
that

m

s - - y ~ x (i)
i=1

3.1

This operation is used in several algorithms. Examples are multiplication, re-
currences, transforms, and filters. The implementations can be classified into
sequential and combinational and, in the latter, into adder arrays and column
reduction schemes. It is also possible to perform the operation partly combina-
tional and partly sequential. Moreover, the combinational part can be pipelined
for higher throughput.

We consider here both the case in which the operands are magnitudes (pos-
itive values) and signed values. For the latter, we consider two's complement
representation, since this is the simplest and most frequently used. Moreover, the
range of the result can be such that no overflow is possible, or this range might
be restricted, in which case an overflow detection should be included. We discuss
only the first case.

The input operands are represented using bit-vectors, and the set of input bit-
vectors forms a bit-array. We now discuss the bit-arrays for unsigned (magnitudes
only) and signed (two's complement) operands.

3.1 Bit-Arrays for Unsigned and Signed Operands
Before considering the addition, we determine the bit-array to be added. In
general, the range of values of each operand can be different, resulting in a
nonrectangular bit-array. To simplify the notation, in this chapter we consider
the case in which all operands have the same range of values and illustrate the

137

138 C N A P T E ~ 3 Multioperand Addition

ao ao ao a o . a 1 a 2 . . . a n
b 0 b 0 b 0 bo.b 1 b 2 . . . b n

c O c O c O Co.C 1 c 2 . . . c n

do do do do.d1 d2...dn
e 0 e 0 e 0 e O.e 1 e 2 . . . e n
i ~ 1

Sign extension

r I G u R f 3 . l Sign-extended array for m = 5.

more general case only later in Example 3.2. However, the methods and techniques

discussed are applicable to nonrectangular arrays, as presented in Chapter 4 for
the important application of multiplication.

Consider the case in which each of the m operands is represented by an n-bit

vector. The bit-array to be added is then an n by m rectangular array, and the

sum bit-vector has n + p bits with p - [log 2 m]. To perform the addition it is

necessary to extend the range of the operands to n + p bits. For magnitudes this

is trivial since the extension is done by adding most significant 0s.

For two's complement representation, the extension consists of replicating the

sign, as shown for m - 5 in Figure 3.1. To simplify the description that follows,

we place the binary point after the "sign" bit and index as for fractions. That is,
the operands are in the range - 1 < x < 1 - 2 -n, and the two's complement
representation is

X 0 . x l x 2 �9 �9 �9 X n

with value

n

x = - - x o + ~ x i 2 -i
i = 1

The sign-extended operands are then

3.2

X - p X - (p - 1) �9 �9 �9 X - l X 0 . X l X 2 �9 �9 �9 X n 3.3

with X ' _ i - - X 0 for 1 < i < p.
To avoid the additional adder bits required by these sign extensions, we

now present a way of reducing these extended bits. Since the sign position has a

Reduction 139

negative weight, apply the following identity: 2

(-x0) + 1 - 1 - (1 - x 0) - 1 - x 0 - 1

which transforms a signed operand as follows:

X 0 . X1 -1'2 X 3 " �9 " X n

is replaced by

!
X 0 . X l X 2 X 3 . . . X n

- 1

3.4

The resulting bit-array is shown in Figure 3.2(a). Now we can add the array

o f - l s . Since we placed the integer point after the sign bits, the value of this

array o f - l s i s - m , which is represented by y y y . . , y in Figure 3.2(a). This

bit-vector can be combined with the last row so that the total number of rows in

the array remains m. An example is shown for m = 5 in Figure 3.2(b). In this

case, y yyy -- 1011. Calling e 0 the sign bit of the fifth operand, we get

e0 = 0 e0 = 1
l 1011 + e 0 1100 1011

t and both cases are included in the bit-vector le0 e0e0.

3 ~ Reduction
The inputs in mult ioperand addition are bit-vectors forming a bit-array. The

primitive operation performed on the input bit-array is a reduction, which pro-

duces an output bit-array with a smaller number of bits, by adding the input bits.

Two main reduction approaches are used: reduction by rows and reduction by

columns. The modules used for reduction by rows are called adders, and those

used for reduction by columns are called counters. We now discuss these modules

and then use them for mult ioperand addition.

2. Note the use of the bit inversion operation (denoted by x~) in an arithmetic expression.
This should be interpreted in the intuitive way as converting a value 1 to 0 and vice versa.

140 e H A P T E R 3 Muhioperand Addition

S'. XXXX . . . X

-i

S'. XXXX . . . X

-I

eee

S'i XXXX . . . X

I S i. XXXX . X

~ Reducedto

S'. XXXX . . . X

X xxxx x

S'. XXXX ...X

: ,2
: 8 :. XXXX �9 . . X
: I
iY...Y...Y...Y...- : :..Y..::

(a)

a ' 0 . a l a 2 ... a n
-1

b" 0 . b l b 2 ... b n

-1
C' 0 . ClC2 ... Cn

-1

d" 0 . d l d 2 ... d n
-1
e ' 0 . e l e 2 ... e n

-1

Reduced to

a 'o . a l a 2 ... an

b 'o . b i b 2 ... bn

c" O . c l c 2 . . . c n

d 'o . d l d 2 ... dn

. ,

e'0::, e l e 2 ... en

................... Transformed to

a ' 0 . a l a 2 ... a n

b ' o . b i b 2 ... b .

c" 0 . ClC2 ... Cn

d ' o . a i d 2 ... dn

.!e.'o_f.o.e.o..i �9 e l e 2 ... e n

(b)

FIG U RE 3.2 Simplifying sign extension: (a) General case. (b) Example of simplifying array

form = 5.

3,2, '1 [p'2] Adders for Reduction by Rows

The adders in the reduction by rows can be either carry-propagate adders, which

produce the output in conventional representation, or redundant adders, with

redundant output either in carry-save or signed-digit form. Since the redundant

adders have a smaller delay because of the limited carry propagation, we con-

sider only the latter. In Chapter 2 we considered two-operand redundant adders.

Reduction 141

In fact, the adder with one operand in carry-save and one operand in conventional

representation can be used to add three operands in conventional representation

and produces a result as the sum of two vectors. Therefore, it performs a 3-to-2

reduction and is called a [3:2] adder. Similarly, the carry-save adder for two

carry-save operands is a [4:2] adder. We now generalize this to a [p :2] adder.

A [p :2] adder reduces p bit-vectors to 2 bit-vectors, as shown in Figure 3.3(a).

The implementation consists of modules that have p rows ofk bits as input and

produce two rows of k bits as output. To achieve this the module also produces

2

[p:2]adder _ _ , k _ _ i / , . [p : 2] module

: �9 . , . : . . . :
�9 . . . �9 1 0

... : ~ . . ; ... ~ - ; ... ~
�9 " ' " �9 " " " i �9 �9 10 01 �9 e l �9 , , , , t : , ." ""... "
�9 �9 ,e_ _ _ _o_, ,o_ _ _ _e_, / ,o_ _ _ _ o , �9 :

�9 �9 �9 �9 �9 �9 �9 �9 �9 �9
�9 " ' " �9 �9 " ' " �9 �9 " ' " �9 �9 " ' " �9 �9 " ' " �9

Input carries
Output carries

(a)

hout

t --" ' -- t [p

H
L hi n

I-

z
(b)

F I G U R E 3.3 A [p:2] adder: (a) Input-output bit-matrix. (b) k-column [p:2] module decom-
position.

142 ~;~.~PTE~ ~:~ Multioperand Addition

k p ~ Max value p(2 I ' - 1)

HW

/ J w Max value W

J hin
hou t / [' / Max value H

Max value 2kH [l~

z

Max value 2(2 k - 1)

F ! II U Ii E a.4 A model of a [p :2] module.

carries, which are added in the next module. Consequently, a module also has
carries as input. In order to have a limited carry propagation, the output carries of
a module should not depend on the input carries of that module (Figure 3.3(b)).

The complexity and delay of the module is determined by the number of
columns k. Consequently, the number of columns of a group should be mini-
mized. To determine the minimum number of columns k we consider the model

of Figure 3.4, consisting of the following two modules:

�9 Module HW, which computes the output carries h out and an intermediate

sum w only in terms of the inputs

�9 Module Z, which adds w and the incoming carries h in tO produce the

output z

Since the output signals (including the output carry) have to be able to represent

at least the maximum input (including the carry), if we call H the maximum

value of the carry (both in and out), we get

p(2 k - 1) + H < 2kH + 2(2 k - 1) 3.5

Reduction 143

so that

H > p - 2 3.6

Moreover, calling W the maximum value of w, the following three conditions
have to be satisfied:

1. Considering module HW, the outputs have to be able to represent the input

p(2 k - 1) < W + 2kH 3.7

which results in

W > 2k(p - H) - p 3.8

2. In the same module, since w is the residual after subtracting the carry-out
(which has weight 2k),

W > 2 k -- 1 3.9

3. For module Z,

W + H < 2(2 k - 1) 3.10

which results in

W < 2(2 k) - (H + 2)

These three conditions are summarized in

max(2 k -- 1, 2k(p -- H) - p) < W < 2(2 k) - (H + 2)

3.11

3.12

If we now use the minimum value of H (to minimize the number of carries), that
is, H -- p - 2, this is reduced to

max(2 k - 1 , 2 (2 k) - p) < W < 2 (2 k) - p 3.13

Consequently,

resulting in

2(2 k) - p > 2 k - 1 3.14

2 k > p - 1 3.15

So, for example, p = 4 results in H -- 2, k - 2, and W - 4 (from (3.13)).

Table 3.1 gives the values of H, k, and W for typical modules. Notice that

as the number of bits p increases, so do also H, k, and W, resulting in a more
complex module with a larger delay.

144 e H • pT E N 3 Multioperand Addition

P

3

4

5

6

7

9

11

H k W

1

4

3

10

9

7

21

T A B t t 3.1 Values of H, k, and W for typical modules.

An implementation requires the coding of the variables h and w. Then the

modules can be implemented using gate networks. Figure 3.5 shows the im-

plementation of a [4:2] module. In this case, h = h i, i -Jr hi,2 (unary code) and

w - 2c + 2b + a, as shown in the figure.

Another possible implementation uses a network of full-adders. Such an

implementation for a [4:2] module is given in Chapter 2; Figure 3.6 illustrates

this implementation for [5:2] and [7:2] modules. The internal carries are coded in

a unary code, and w is represented by the signals with a dot.

3 ~ 2 , 2 (p'q] Counters for Reduction by Columns

The reduction by columns is done by modules that add a column of p bits of the
same weight and produce q bits of adjacent weights. That is,

p--1 q --1

i =0 j =0

3.16

Consequently, the relation between p and q is

2 q - l > p 3.17

that is,

q -- [log2(p + 1)]

Reduction 145

hi+l,1

r-
E

~_~
�9 -~ 8
0 E

o

hi+],2

inputs of weight 2 i inputs of weight 2 i-1 X,, X ',0' i,2 Xi-l,3 I I i_IX, i21,1I I Xi-l,O

iOux' iod
| Xi-1, 0 a l l ,x,,o,, T

o 11
MUXl ..

z

-r
Xi-l,O i

hi]
I ~. ~._ _ _ , - ,1

', ,,
! _

, ,,a
!

i
i
i

' . h i � 9 | ,
i
i
i
!

', MUX y ,"

�9 denotes the bits representing w
such that

w = 2c + 2b + a

No te that w < 4 s ince ab = 0

F I G U R E 3 . 5 Gate network implementation of[4:2] module.

hi-l,1

t -

E E =

"E o

hi-l,2

The module to perform this reduction is called a (p :q] counter. Typical examples
of these counters are (3:2], (7:3], and (15:4]. A representation ofa (p:q] counter is
given in Figure 3.7.

Implementat ion o f (p :q] Counters

A (p'q] counter is a module with p inputs andq outputs. It can be implemented by

a 2P x q ROM, a network of full-adders, or a specialized gate network. While flexi-

ble, ROMs are relatively slow; thus the other two approaches are usually preferred.

'1
1

l=
 c s m

b
~

0 0

{:)
.

(I
) 0 (!)

(/
) ,..
i.

:3
"

(1
)

O
"

,..
4.

f.n

"1
0 (1
)

(/)

(!)

E:
} A O

"

,'-t

Ca
rr

ie
s

to
 n

ex
t c

ol
um

n

Ca
rr

ie
s

fro
m

pr

ev
io

us
 c

ol
um

n

l
t-

0 e-

0

"0

t-
-

0 r

Q
.

0
Ca

rr
ie

s
to

 n
ex

t c
ol

um
n

E ,.-
i.

(/
)

\
o _~

.
Ig

l r,~
.

"1
0 t-

(/
) 0 (E
} :3
" T"

...1

.

Ca
rr

ie
s

fro
m

pr

ev
io

us
 c

ol
um

n

Reduction 147

Xo

Xl

+ Xp_ 1

Yq-l... Yo

p inputs (same weight)

q outputs
(a) (b)

F I G U R E 3.7 (a) (p:q] reduction. (b) Counter representation.

All inputs of weight (1)

I I I I I

~ (2 (2)(2)

F I G U R E 3.8 Implementat ion of (7:3] counter by an array of full-adders.

The network of full-adders systematically uses the 3-to-2 reduction property
of the full-adder. Consequently, a (3:2] counter is implemented by one full-adder
and a (7:3] counter by a network of four full-adders, as shown in Figure 3.8.

The delay of the implementation of a (p :q] counter with full-adders can be
reduced by making use of the different delays for different input-output pairs.
A systematic approach to do this might be to use half-adders as basic building
blocks.

148 c N A p T E R 3 Multioperand Addition

Specialized gate networks are suitable for intermediate values of p, such as 7

or 15, but become too complicated for larger p. A gate network implementation

of a (7:3] counter is described in the following example.

EXAMPLE 3.1 We derive expressions and show a gate ne twork for a (7:3] counter. T h e inputs

are the seven binary variables X - (x6, x5, x4, x3, x2, x 1, xo), and the output

is

6

q - - E x i - - 4q2 + 2ql + qo
i=o

3.18

We part i t ion the input vector X into two subvectors X13 - - (,t'6, x5, x4, x3)

and XA - (x2, x 1, x0). T h e partial sums corresponding to the subvectors are

2

qA - - ~_~ x i - - 2q/i 1 '~ qAO

i=0

6

q13 - - ~ X i - - 4q132 + 2q131 + q13o
i=3

3.19

For the sum qA the switching expressions, corresponding to the sum and the

carry outputs of a full-adder, are

qAO - - X2 ~]~ X l @ Xo

qA 1 ~ X2X 1 + x 2 x 0 + x lXO
3.20

For the sum q13 we have

q/30 -- x6 @ x5 @ x4 @ x3

qB1 - - [x6x5 + x6x4 + x6x3 + x5x4 + x5x3 + XaX3]" (x6x5xax3)'

= [x6x5 + x4x3 + (x6 + x5)(x4 + x3)]" (x6x5xax3)'

!

= a �9 (x 6 x 5 x a x 3) ' - - aq132

3.21

qB2 - - X6X5X4X3

Reduction 149

Finally, q -- qA + q~ so that

q o -- qBo �9 qAO

ql - - (qB1 O qA1) ~ (qsoqAo)

q2 -- qB2 + q81qA1 + (q~l @ qA1)(q~oqAo)

= qB2 + aqA1 + (qB1 @ qA1)(qBOqAO)

3.22

An implementation after transforming the expressions to allow use of faster
gates such as NANDs, NO Rs, AND-O R-INVERT, and o R-AND-INVERT is shown

in Figure 3.9.
Comparison of the delay of the critical path and the cost of the network

shown in Figure 3.9 with that of the network of full-adders shown in Figure 3.8
is left as Exercise 3.7. �9

M u l t i c o l u m n Coun te r

It is possible to generalize the counter concept to the reduction of several columns.
That is, counter

(Pk-1, Pk-2, " ' , P0:q] 3.23

reduces k columns with Pi bits in column of weight 2 i into q output bits. If we
call aij the bit of column i and row j and v the value represented by the q-bit
output, we get

k-1 pi
v -- ~ ~ a i j 2 i < 2 q - - 1

i=0 j--1

3.24

An example is the (5, 5:4] counter shown in Figure 3.10(a). For this case,

v < 5 • 2 + 5 • 1 - 15 - 24 - 1 3 . 2 5
m

A second example is the (1, 2, 3:4] counter shown in Figure 3.10(b). In this case,

v < l x 4 + 2 x 2 + 3 x l - - l l < 2 4 - - 1 3.26

n c m

o o �9

m
 c ;o

m

�9

oo

�9

o

m

o

0 >

0

Combinational Implementation 151

3 . 3

3 , 3 , 1

3~

3o4ol

Sequential Implementation
This implementation consists of one adder and a register. To have the cycle time

independent of precision and usually equal to the delay of a few full-adders,

redundant adders are preferred. Using a [p:2] adder each iteration adds p - 2

operands for a total of [m/(p - 2)] iterations. The algorithm is

s[0] = 0
for/ = 1 to [m / (p - -2)] do:
S[i] = S[i - 1] + ~-~i(p-2) l..~j=(i-1)(p-2)+l x(j);

and the result is S [[m / (p - 2)]]. This result is in carry-save representation. If

the result is required in conventional representation, it is converted at the end

using a CPA. Figure 3.1 l(b) shows an example using a [p:2] adder. The case with

p = 3 (carry-save adder) is shown in Figure 3.11(c).

Unsigned and Signed Operands
Depending on the type of operands (unsigned or signed in two's complement),

the corresponding addition algorithm has to be used. In both cases, the range has
to be extended by [log 2 m] bits to accommodate the range of the result. For two's

complement, the extension is done as discussed in Section 3.1.

Combinational Implementation
The whole multioperand addition can be performed by a combinational network.
Two alternatives exist: reduction by rows, performed by an array of adders, and

reduction by columns, performed by an array of counters.

Reduction by Rows" Array of Adders

The organization of the array of adders can be classified into two extreme classes:

linear array and tree array.

L i n e a r A r r a y

This corresponds to an unfolding of the sequential algorithm. If[p:2] adders are

used, for an addition of m operands the array consists of [(m - 2) / (p - 2)]

adders, since the first adder now receives p operands and the rest receive p - 2.

152 CHAPTER 3 Multioperand Addition

Cycle time dependent on precision

clk

X[i] 1

I Carry-propagate adder I
$ S[i]

._1 Register S I -I I

I S[i-l]

(a)

Cycle time not dependent on precision

I c II

X[(i-1)(p-2)+l]

X[i i -2)1
e e e

_,l
[p:2] adder ~11

J

I
To CPA to get S

X[i]

[3:21 adder
C[i] ~ PS[i] !

To CPA to get S
(b) (c)

FIGURE 3.11 Sequential multioperand addition: (a) With conventional adder. (b) With [p:2]

adder. (c) With [3:2] adder.

This scheme is shown in Figure 3.12. The width of the adders increases to adapt
to the width of the partial sum. As indicated before, the number of bits of the

final sum is n + p, where p = [log 2 ml. Moreover, for the two's complement
case, the last adder has to include the additional extension, as explained in the
previous section. The delay is equal to F(m - 2)/(p - 2)-]tfe:2l.

A comparison of linear arrays using carry-ripple adders and [3:2] adders is
left as Exercise 3.19.

Combinational Implementation 153

p operands

I 000

p - 2 operands

I"'1
p - 2 operands

I"-I
I I
�9 , , p - 2 operands

I I I"'1

TO CPA

F I G U R E 3 .12 L inea r ar ray o f [p : 2] adders for m u l t i o p e r a n d addi t ion .

Adder Tree

Since addition is associative, it is possible to organize the array of adders as a tree
which has fewer levels than the linear array. Again, the use of redundant adders

is preferable for lower delay.
The number of adders required for the tree is the same as that for the linear

array. This is shown by an argument on the total number of inputs to the adders

and the use of these inputs to accept the operands and connect to the outputs of

other adders. We now show this for the case of using [p :2] adders.
Calling k the number of adders, the total number of adder inputs is kp .

These inputs are used for the m operands and for the 2(k - 1) adder outputs,

since each adder has two outputs (and the outputs of one adder are used as the

array output or the input to the conversion adder). That is,

pk = m + 2(k -- 1) 3.27

154 c H A p T • R 3 Mult ioperand Addi t ion

l 1 2 3 4 5 6 7 8 9

ml 3 4 6 9 13 19 28 42 63

T A B L E 3.2 [3:2] reduction sequence.

[p:2] tree of c
I levels ii2

~r i -- / /

F I G U R E 3.13 Construct ion o f a [p:2] carry-save adder tree.

and

k - p 2 [p:2] carry-save adders 3.28

Now we consider the number of adder levels. For this, we develop a recurrence

for m l, the number of adder operands that can be added with a tree o f l levels.

As shown in Figure 3.13, the ml-1 operands are divided in groups of two, so that

each group corresponds to the outputs of one adder at level l. Since each adder

has p inputs, we get

L m l - l ~ + m l _ l m o d 2 3.29 ml = p 2

where m l = p. For instance, for p = 3 the resulting sequence is shown in

Table 3.2 and for p = 4 we get m l = 2 l+1.

In particular, calling L the total number of levels to add m operands, this

number of levels is obtained from the recurrence (3.29) by making m L = m. For

example, Figure 3.14 shows a [3:2] adder tree for m = 9, and Figure 3.15 a [4:2]

adder tree for m = 16.

An approximation of the number of levels, which is good for large m l,
is obtained by considering that for all levels the number of operands is even.

C o m b i n a t i o n a l I m p l e m e n t a t i o n 1 5 5

m=9

L=4

al al al aa_~L
b

.�84 ~1 c
\ \ "1 Bit-vectortypes

I I I a: (n-1 0)
b: (n 1)

~ I I a : (n + l :2)
I I J e : (n + l 0)
I l l 3~ (n+2 1)

I t3~a I I~ ~e

a x x x x x x

a x x x x x x

a x x x x x x x x x

a x x x x x x x x x

b x x x x x x x x x

b x x x a x x x

a x x x b x x x

b x x x a x x x

C X X X X c X X X X

d x x x b x x x

b x x x

C X X X X

d x x x x

e x x x x x c x x x x

d x x x e x x x x x

d x x x

e x x x x x

f x x x x x

FIGURE 3.14 [3:2] adder tree for 9 operands (magni tudes w i t h n = 3).

X X X

x x x Level 4 CSAs

Level 3 CSAs

Level 2 CSA

Level 1 CSA

II II
[4:2] ADDER

I

II II
i i E4:21AooER

[4:2] ADDER I

I [4:,"

II II
I [4:2] ADDER I I [4:21 ADDER

1

[4:21 ADD

FIGURE 3.15 Tree of[4:2] adders for m = 16.

156 c H A P T E R 3 Multioperand Addition

Since the best-case reduction per level is p /2 , for l levels we get

pl

ml ~ 2t_1

and

3.30

l ,~ logp/2(ml/2) 3.31

Selecting the Value p

A larger p results in a smaller number of adder levels, in both the linear array and
in the tree. However, the delay and complexity of the adder increase. Moreover,

the connections between levels are more regular for values of p that are powers

of two, as illustrated in Figure 3.15. Consequently, the best value of p depends

on the requirements for the multioperand adder.
As an example, we compare the use of trees of [3:2] and [4:2] adders for

a multioperand addition for m = 16, with the reduction of delay as the main

requirement. In general, calling T[4:21 and T[3:21 the delays using [4:2] and [3:2]
adders, respectively, we get

T[4:2] < T[3:21 if L[4:2] t[4:2] < L[3:2] t[3:21 3.32

where t[4:2] and t[3:2] are the delays of the corresponding adders.
For m = 16 the number of levels of [4:2] adders is three, whereas for [3:2]

adders it is six. Consequently, the [4:2] case has a smaller delay if T[4:2] < 2T[3:2].

3 . 4 , 2 R e d u c t i o n by C o l u m n s w i t h (p'q] C o u n t e r s

In this method the bit array is reduced by using several levels of (p :q] counters.
As discussed before, a (p :q] counter reduces a column ofp bits to a bit-vector ofq
bits. Since this is done to every column of the bit matrix, the result is the reduction
of a matrix of p rows into a matrix ofq rows. This is illustrated in Figure 3.16

for a (7:3] counter.

Number of Counter Levels

To reduce the whole bit-array to two rows, it might be necessary to use several

levels of counters. If only (p:q] counters are used, then the whole array of m

rows can be reduced to q rows by L levels of counters. The number of levels

Combinational Implementation 157

0

1 0

0 1

1 1

1 0

F I G U R E 3.16 Example of reduction using (7:3] counters.

I
(p:q] tree of ~_A

I levels f p ml

1,, Ip:ql I . . . I Ip:ql I I
~=~~q ~q~ ml-lm~

~ ~ ml-1
(p:q] tree of 1-1 levels

. iV
F I G U R E 3.17 Const ruct ion o f (p : q] reduct ion tree.

required is determined in a similar way as discussed before for the [p:2] adder.
As before, calling m l the number of bits in a column that can be reduced using l
levels, we obtain

ml - - p

[m / - 1] 3.33
ml -- p + ml -1 mod q

q

As shown in Figure 3.17, this is obtained by grouping the ml-1 operands into
groups ofq operands and then using a (p:q] counter for each group. For large
m l this results in

l ~ logp/a (m l / q) 3.34

158 cH~:~'~7:~:~ 3 Multioperand Addition

Number of Levels 1 2 3 4

Maximum number of rows 7 15 35 79

T A B L E 3 . 3 Sequence for (7:3] counters.

ooo / ooo 15

ooo ~ ooo 7

Q

g i g ~ O O O 3
�9 �9 �9 ~ ~ ~ �9 �9

FIGURE S.18 Multilevel reduction with (7:3] counters.

For instance, the sequence for (3:2] counters is the same as for [3:2] adders, given

in Table 3.2, and for (7:3] counters the sequence is shown in Table 3.3.

Figure 3.18 shows a multilevel reduction using (7:3] counters.

Systematic Design Method

If the number of bits in each column of the array is the same, the method of

reduction by columns is similar to the reduction by rows. However, this is not

always the case; in particular it is not the case in multiplication (discussed in

Combinational Implementation 159

Full-adder
(3:2]

Half-adder
(2:2]

2 TM 2 i

.11"
o r

2 TM 2 i

. /"
o r

�9 denotes 0 or 1

Diagonal outputs when
representing separately
sum and carry bit-vectors
is preferable.

Horizontal outputs when
interleaving sum and carry bits
is acceptable.

F I G U R E 3 . 1 9 Full-adder and half-adder as (3:2] and (2:2] counters.

the next chapter) and for the lower levels in a multilevel reduction. In the latter

case, this is because the least-significant columns do not receive bits from the

reduction of other columns of lower weight. As a consequence of this, the number

of counters required for those columns is smaller. We now discuss a systematic

design approach that uses the minimum number of counters. The basic idea is

to place the counters in such a way that the reduction at level l of the reduction

produces columns ofml-1 bits.

Although the method can be used for any counter, we present it for (3:2]

counters (full-adders). Moreover, we show that in some places it is advantageous

to use also (2:2] counters (half-adders), instead of the more complex full-adders.

The notation for using these counters is described in Figure 3.19. For this case
the reduction sequence is as shown in Table 3.2. Therefore, the optimal reduction
sequence is (3, 4, 6, 9, 13, 19, 28, 42, . . .) .

The first step in the process is to determine the number of levels and
the corresponding reduction sequence. For instance, for m = 35 operands the
number of levels is L = 8 and the sequence is 35, 28, 19, 13, 9, 6, 4, 3.

Since, because of the carries, there might be a different number of bits in
each column, the reduction is performed separately for each column. Consider

that at a level l in the reduction process column i has e i bits, and in the reduction

sequence the next reduction corresponds to m/_l bits. These m/_l bits are formed

by the sum outputs of the full-adders and half-adders of column i plus the carries

produced by the adders of column i - 1, plus the bits of column i that are not

reduced but transferred to the next level. This is illustrated in Figure 3.20.

160 c H A P T ~ R 3 Mult ioperand Addi t ion

Column: 1 0

Number of rows

�9 "" 6
Reduce

Transfer

�9 . . 4

F ! G U R E 3.2O Reduction process.

Since a full-adder uses as inputs three bits in column i and produces one bit in

that column, the reduction per full-adder is two bits. Similarly, the reduction per

half-adder is one bit. Consequently, calling f and hi the number of full-adders

and half-adders of column i, respectively, we have the following relation at level l:

ei -- 2 fi - h i -+- f i - 1 7 I- h i - 1 = m l - 1 3.35

resulting in

2 fi + hi = ei - - m l - 1 -+- f - i -+- h i - 1 = Pi 3.36

As can be seen from this expression, the determination o f f . and hi is a sequential

process, with the initial conditions f -1 -- h-1 = 0. For instance if e0 = 19, then

m l - 1 = 13 (next level in the reduction sequence) and 2f0 + h0 = P0 = 6.
Expression (3.36) is used to determine the number of full-adders and half-

adders. Clearly, the solution that produces the min imum number of carries to the

next column is

f " = [p i /21 h i = Pi m o d 2 3 .37

In the example above f0 = 3, h 0 = 0.

This reduction process is described by a table, as illustrated in the following

example.

E X A M P L E 3.2 T h e reduction by columns for m = 8 magni tudes of n = 5 bits is shown in

Table 3.4.

Combinational Implementation 161

l - - 4

ei

m3

hi

fi

/ = 3

ei

m2

hi

fi

/ = 2

ei

m l

hi

fi

/ = 1

ei

mo

hi
A.

6 5 4 3 2 1 0

8 8 8 8 8

6 6 6 6 6

0 0 0 1 0

2 2 2 1 1

2 6 6 6 6 6

4 4 4 4 4 4

0 0 0 0 1 0

0 2 2 2 1 1

4 4 4 4 4 4

3 3 3 3 3 3

0 0 0 0 0 1

1 1 1 1 1 0

1 3 3 3 3 3 3

2 2 2 2 2 2 2

0 0 0 0 0 0 1

0 1 1 1 1 1 0

T A 8 L E S.4 Example of reduction process.

T h e resul t ing array of ful l -adders and hal f -adders is shown in F igure

3.21. It has 26 ful l -adders and 4 half-adders . For the final 2-to-1 reduct ion, a

7-bit C P A is needed.

T h e delay in the critical path is roughly

T -- tcsa.tree "~- tcp A

= 4tfa + tCPA(7) 3.38

162 ~.:. N.& ~ T E R. a Multioperand Addition

EXAMPLE 3 .3

F I G U RE 3 . 2 1 Reduction by columns of eight 5-bit magnitudes. Cost of reduction: 26 FAs

and 4 HAs.

The total delay of the scheme consists of the delay of the reduction array and

the delay of the final CPA. Since the delay of the CPA depends on the number of
bits, a more aggressive reduction might be applied to reduce the precision of the
final adder at the expense of additional counters (Exercise 3.22).

Example with Nonrectangular Array and Operands
with Specific Relations

The discussion up to now only considers rectangular bit-arrays and does not

take into account special relations among the operands. We here present a first

example in which the operands are related, resulting in a nonrectangular array;

in the next chapter we discuss the important case of multiplication.

Design an array of full-adders and half-adders to compute

f = a + 3 b + 3 c + d

Combinational Implementation 163

where the operands a, b, c, d are integers in the range - 4 to 3, in two's
complement representation.

We first determine the range of f . Since each operand is in the range - 4
to +3, we obtain

- 4 + (- 1 2) + (- 1 2) - 4 - - - 3 2 < f < 3 + 9 + 9 + 3 - - 2 4

Consequently f requires 6 bits. To perform the operation as an array of adders,
we decompose 3b and 3c into 2b + b and 2c + c, respectively.

We construct the bit-matrix, extended to the left to preserve the sign:

a

b

2b

6"

2c

d

a2 a2 a2 a2 al ao

b2 b2 b2 b2 bl b0

b2 b2 b2 bl bo 0

6"2 C2 6"2 6"2 6"I 6"0

C2 C2 C2 Cl CO 0

d2 dE dE dE dl do

which can be transformed into

2b

2c

!
b2

-1

!

6"2

- 1

!
a 2

- 1

- 1

bl

!

6"2

- 1

C1

- 1

a l

b l

bo

6"1

6" 0

dl

a 0

b0

C0

do

164 C H A P T E R a Multioperand Addition

and, finally, reduced to the following bit-matrix by noting that the sum of
(-1) entries is - 8 • 22, represented in two's complement by 100000.

1 0
!

c 2

!

a 2 a l a0

b~ bl b0

b l b0
!

c 2 Cl co

Cl c0

d~ dl do

The resulting bit-matrix is reduced to two rows by an array of full- and
half-adders. The method described before produces Table 3.5.

5 4 3 2 1 0

/ - - 3

ei 1 0 2 6 6 4

m2 4 4 4 4 4 4

hi 0 0 0 1 0 0

f i 0 0 0 1 1 0

l = 2

ei 1 0 4 4 4 4

ml 3 3 3 3 3 3

hi 0 0 0 0 0 1

f i 0 0 1 1 1 0

/ = 1

ei 1 1 3 3 3 3

m0 2 2 2 2 2 1"

hi 0 0 0 0 0 0

f . 0 0 1 1 1 1

* To reduce by one bit the width of the CPA.

T A B L E S.5 Reduction for Example 3.3.

Combinational Implementation 165

The corresponding network of adders is shown in Figure 3.22. The
final stage consists of a carry-propagate adder of only four bits because
the last output bit is produced in the previous level (in the figure a carry-
ripple adder is used). The most significant bit of the result is f5 =
1 @ c F 1 2 = (cF12) ' so that an inverter can be used instead of a
half-adder.

166 c N • P T E ~ :~ Multioperand Addition

The delay of the array is roughly

T - - 3tfa + tceA(3)

and the number of modules is

N - 12FA + 3HA + I l N V

3 , 4 , 3 Pipelined Adder Arrays

The adder arrays can be pipelined to increase the throughput for the case of
many (independent) multioperand additions. This is done by defining stages and
separating them by latches as illustrated in Figure 3.23. The stage delay determines

X[8,j] "'*

Stage l I [4:2lADDER I

Staee2 I t4:21AOOER I

Stage 3 I t4:21ADDmR I

Sta e4 I I
s[j- 3]

X[1,j]

X[1,j- 1]

X[1,j- 2] Stage 2

1 Latches

X[8,j] �9 �9 �9 X[1,j]

I t4:z1AD~ I I [4:2]ADDER

Stage 1 ~ + I I t

I I
s[j- 21

Stage 3

s[j - 3]

SU-4] (a) (b)

FIIIURt 3.iS Pipelined arrays with [4:21 adders for computing S[j] = ~[22=1X[i, j],
j = 1 N: (a) Linear array. (b) Tree array.

Partially Combinational Implementation 167

the throughput R. That is,

1
R = 3.39

tstage

The delay of the operation (also called the latency) corresponds to the sum of the

delays of the stages. Consequently, the organization of the adders as a tree reduces
the latency.

If a conventional output is required, a conversion is needed. The conversion

should be pipelined into stages of the same delay as the addition stages.

3 ,5 Partially Combinational Implementation
The combinational implementation is faster than the sequential because of the
following two reasons:

�9 In the combinational case it is possible to organize the adders in a tree

structure and to organize this structure so as to reduce the critical path.

�9 In the sequential case, the delay of each cycle has to include the delay of
loading the partial result in registers.

On the other hand, the combinational implementation requires a larger area.

As a compromise, a mixed implementation can be used in which a set of k operands

are added per iteration, so that m / k iterations are required. Figure 3.24(a) shows

the case in which an adder tree is used to add four operands per iteration. This

a b c d

I I I 113121

+t
I ~P~l - - Latches

s

a b c d

I Stage 1

I Stage 2

(a) (b)

FIG U R E 3.24 Partially combinational scheme for summation of four operands per iteration:
(a) Nonpipelined. (b) Pipelined.

168 c N APT E R a Multioperand Addition

requires a tree that adds six operands; we show the case in which the first level
uses [3:2] adders and the second a [4:2] adder.

The implementation can be pipelined for faster addition of m operands. A

problem exists with the accumulation of the partial sum. If it is added at the top

of the tree as indicated in Figure 3.24(a), pipelining is not possible. However, the

partial sum can be added after the tree, as shown in Figure 3.24(b), resulting in

an implementation with two levels of [4:2] adders. Although the nonpipelined

implementation could also be done with two levels of [4:2] adders, this would

increase the delay.

A generalized network of [3:2] adders for reduction of q inputs at a time

followed by accumulation is illustrated in Figure 3.25. Of course, adders with a
higher reduction ratio, such as [4:2] adders, can also be used.

q operands
I I I

�9 . . I [a:2]
,//

I [3:2] I

�9 ,m Latches

Reduction q-to-2

Accumulation

F I G U R E 3.25 Scheme for summation ofq operands per iteration.

Exercises 169

:3.6

3 , 1

Exercises
B i t - A r r a y s for T w o ' s C o m p l e m e n t

Determine the bit-matrix (as in Figure 3.2) for m -- 7.

3 , 2

3 , 3

3 , 4

3 . 5

3 . 6

Reduction by [p :2] Modules

(a)

(b)

(c)
(d)

For the [4:2] module of Figure 3.5, show that the value ofw < 4. Show the
input values for which w - 4.

Since the network for both columns is the same, why is it necessary to
consider two columns as the basic module when using the model of
Figure 3.4 ?
Show that the module is a [4:2] module.
Compare the implementations of Figures 3.5 and 2.41, in terms of delay
and number of equivalent gates.

Show a linear array of [5:2] modules, implemented as in Figure 3.6(a), to
reduce five 8-bit operands to two bit-vectors. Determine the critical path. Is
there a carry-propagation chain? Compare with an array of [3:2] adders (carry-
save adders).

Design a [6:2] module with full-adders and determine the critical path.

Design a [9:2] module with full-adders and determine the critical path.

Using suitable CAD tools, synthesize [p:2] modules for p -- 4 and 7 at the gate
level and compare with implementations using full-adder modules.

3 , 7

Reduction by (p :q] Counters

(a)

(b)
(c)

(d)
(e)

Determine the delay (average) of the critical path of the gate network
implementing the (7:3] counter shown in Figure 3.9 using Table 2.4.
Determine the cost of the gate network in (a) in equivalent gates.
Determine the delay (average) of the critical path of the network of FAs
implementing the (7:3] counter shown in Figure 3.8 using Table 2.2.
Determine the cost of the network in (c) in equivalent gates.
Compare and discuss your findings in (a), (b), (c), and (d).

170 c N A p T ~ ~ ::~ Multioperand Addition

3 . 8

3 . 9

Show a network of full-adders implementing a (15:4] counter.

Determine how many levels of(15:4] counters are necessary to add 127 operands.

3 . 1 0

3 .11

Sequential Implementation

Show a design of the sequential multioperand addition scheme with the [3:2]
adder of Figure 3.11(c) at the binary level using full-adders and registers. The
operands X[i] are in the range [0, 127], and the maximum number of operands
is 32. The CPA adder is a carry-ripple adder. On the logic diagram indicate all
modules used and the precision in bits of all connections. Using a reasonable
delay model, estimate the delay in the critical path. If a CRA is used instead of
the carry-save adder, what is the increase in the delay in the critical path? Discuss
change in cost.

Repeat Exercise 3.10 for the operands X[i] in the range [-31, 31].

3 . 1 2

3 . 1 3

3 . 1 4

Linear Arrays and Tree of Adders for Reduction by Rows

Draw the linear arrays as in Figures 3.12 with p = 3 and p = 4 for m = 7
(magnitudes).

(a)

(b)

Design a network consisting of [5:2] and [4:2] adders to reduce 10 4-bit
operands to two operands.
Compare the network obtained in (a) with a [3:2] adder array in number
of full-adders and delay.

Estimate the delay of a linear array of adders to produce the sum of eight positive
integers in the range [0, 255]. Make reasonable assumptions on the delay model
in each case (see Chapter 2). The adders are of the following types:

(a)
(b)
(c)
(d)
(e)

Carry-ripple adder (CRA)
Single-level carry-skip adder with a fixed group size of 4 (CSK4)
Parallel prefix adder with minimum number of levels and fanout of two
Carry-select adder
[4:2] adder followed by a parallel prefix adder.

Exercises 171

3 . 1 5

3 . 1 6

Design a linear array of [3:2] carry-save adders for m = 8 and n = 6 (two's

complement) using full-adders and half-adders. The CPA is of a carry-ripple

type. Estimate the delay in the critical path using a reasonable delay model. What

percentage of the total delay is in the CPA? Using other modules as needed, design

a faster CPA and discuss its effect on the overall design.

(a) Show a bit-level design of a tree of carry-save adders followed by a CPA to

add m = 6 operands with n = 4 bits each in the two's complement form.

Determine the precision of each carry-save adder and the final CPA so that

the correct sign and the range of the result is obtained. Label all modules
and interconnections.

Estimate the delay in the critical path using a reasonable delay model of

the modules.

(c) Give the values on all input and output lines for the following set of input

operands:

(b)

a -- 1001

b -- 0010

c - 1110

d --0101

e -- 0011

f - 1010

3 . 1 7

3 . 1 8

3 . 1 9

Two schemes are considered for reducing four n-bit operands to one. Scheme

A uses three carry-propagate adders. Scheme B uses a [4:2] adder and a CPA.

Determine under which conditions scheme B is not faster than scheme A.

Add the following set of integers using [4:2] adders and a carry-propagate adder:

+73, -52 , +22, - 127, -31 , + 17, +47, -80. Use two's complement representa-
tion.

Bit-level linear arrays with carry-ripple adders and carry-save adders are shown

in Figure 3.26.

172 r A p T E R 3 Multioperand Addition

F I G U R E 3.26 Linear array for multioperand addition of magnitudes: (a) With carry-ripple

adders. (b) With [3:2] adders.

(a)

(b)

Determine the delay in the critical path for each scheme.
Under what circumstances is the scheme with [3:2] adders faster than the
scheme with CRAs?

Reduction by Columns

Modify Figure 3.21 for two's complement representation.

Show a table of the reduction by columns process for m = 9 and n = 6 for
magnitudes and for two's complement.

Compare the arrays in Figure 3.21 and in Figure 3.27 with respect to

(a)

(b)
(c)

the precision of the CPAs
the delay in the critical path if CRAs are used as final-adder
the number of FAs and HAS

174 c ~ :~ F~ ~ r r ::2 Multioperand Addition

3 . 2 3

3 . 2 4

3 . 2 5

3 . 2 6

Determine the critical path in each of the schemes shown in Figures 3.21 and 3.27
using the following delay models for FA and HA modules:

t F A (a , b ~ s) = 4r

tFA(Cin "---> S) --- 2T

tFA(a , b --+ Cout) = 37:

tFA(Cin ~ Cout) - - 2~

tHA(a , b --+ s) = 2~

tHA(a , b --+ Cout) = 1,:

where r = t2-NAND.

Design a network consisting of full-adders and half-adders to compute

z = a - 3b + 5c

where a, b, c are integers in the range [-4 , 3], represented in the two's comple-

ment system.

(a) What is the least number of bits necessary to represent z?
(b) Show the bit-matrix before and after simplification.
(c) Show your final network. Minimize the delay and the number of FA/HA

modules in the reduction to two operands.
(d) What is the minimum precision of the carry-propagate adder needed to

produce the final result? Which type of CPA would be best suited?

Design a network using reduction by columns to compute

G =] (P 0 + 2 • 2 1 5 2 1 5

- (P 0 + 2 x P 7 + P6)]

where the inputs P i are positive integers in the range [0, 255]. If there is an
overflow, the output is set to 255 (saturated). This function, known as the Sobel

f i l ter , is used in processing grayscale images consisting of 8-bit pixels.

Pipelined and Partially Combinational Implementations

Design a pipelined linear array for addition of eight operands in the range [0, 63]

similar to the scheme shown in Figure 3.23(a).

Further Readings 175

3 . 2 7 Show a pipelined implementation as in Figure 3.25 for six operands per iteration.
Determine the time required to add 24 operands and compare with a nonpipelined
scheme.

3 .7 Further Readings
The literature on the basic idea of carry-save addition with [3:2] and [4:2] adders,
used in multioperand addition, is discussed in Chapter 2. Multioperand addition
schemes for magnitudes and signed operands, [p :2] modules, and column counters
are frequently discussed in the literature on multiplication (Chapter 4).

A simplification of the sign extension in multioperand addition of operands
in two's complement form, equivalent to the approach discussed in this chapter,
is presented in Agrawal and Rao (1978).

Reduction by Rows

Early schemes for reduction by rows using [3:2] (carry-save) adders are described
in MacSorley (1961), Bucholz (1962), and in Wallace (1964). The former scheme
uses a tree of carry-save adders to add six summands per iteration in a radix-8
sequential multiplier, while in the latter, frequently referred to as the Wallace tree,
all summands are applied in parallel. A [4:2] adder with carry-save representation
was discussed in Weinberger (1981). It is generalized in Lim (1978) to [p :2] adders,
which are also called parallel compressors in Gajski (1980).

Reduction by Columns

A scheme for reduction by columns and the concept of parallel counters were
introduced in Dadda (1965, 1976). In particular, a reduction scheme using a full-
adder as a (3:2] and a half-adder as a (2:2] counter was developed. This method
has been frequently used in reduction arrays in multipliers called Dadda mul-
tipliers. In Stenzel et al. (1977) reduction by columns using (p:q] counters is
discussed. A tree of full-adders proposed in Foster and Stockton (1971) imple-
ments (p :q] counters. Implementation of parallel counters with partially analog
counters is discussed in Swartzlander (1973). An implementation of (p:q] coun-
ters using several tables and threshold switching functions is developed in Ho and
Chen (1973). Another approach for implementing (p:q] counters is presented in

176 c N APT E ~ s Multioperand Addition

Svoboda (1970): a column of p entries consisting of ls and 0s is sorted so that a
unique transition from l s to 0s produces a signal indicating the number of l s,
which after encoding, produces q.

Generalized Parallel Counters

Generalized parallel counters and methods of synthesis of large counters from
small ones are discussed in Meo (1975), Kobayashi and Ohara (1978), and Dormido
and Canto (1981, 1982).

Implementation
A variety of circuit-level implementations have been developed. Gate networks
with a minimal number of gates and interconnections for (3:2] counters (carry-save
adders) are described in Lai and Muroga (1982). [p:2] modules at the transistor
level for different p are developed in Song and Micheli (1991). Gate networks
for [7:3] modules and (7:3] parallel counters are presented in Mehta et al. (1991).
Implementations for [4:2] modules are presented, among others, in Nagamatsu
et al. (1990), Kanie et al. (1994), and Makino et al. (1996) and for [5:2] modules
in Kwon et al. (2000). A good discussion of VLSI cell designs for (3:2] and [4:2]
modules is presented in Zimmerman (1998). Power-efficient design of [4:2] and
[5:2] modules is discussed in Prasad and Parhi (2001).

Bounds on Delay

Bounds on delays and optimization techniques for networks of (3:2] and (2:2]
counters are presented in Paterson and Zwick (1993). The complexity of multi-
operand addition is presented in Atkins and Ong (1979).

Miscellaneous Schemes

Multioperand addition with conditional-sum adders is considered in Efe (1981).
Variations on multioperand addition using different digit sets are explored in
Parhami (1996). Pipelined m ultioperand adders are described in Yeh and Parhami
(1996).

Bibliography 177

3~ Bibliography
Agrawal, D. R, and T. R. N. Rao (1978). On multiple operand addition of signed

binary numbers. IEEE Transactions on Computers, C-27(11):1068-70.
Atkins, D. E., and S. Ong (1979). Time-component complexity of two ap-

proaches to multioperand binary addition. IEEE Transactions on Computers,
C-28(12):918-26.

Bucholz, W. (1962). Planning a New Computer System: Project STRETCH, Chapter
14, p. 210. Wiley and Sons, Inc., New York.

Dadda, L. (1965). Some schemes for parallel multipliers. Alta Frequenza, 34:349-
56.

Dadda, L. (1976). On parallel digital multipliers.Alta Frequenza, 45:574-80.
Dormido, S., and M. A. Canto (1981). Synthesis of generalized parallel counters.

IEEE Transactions on Computers, C-30(9):699-703.
Dormido, S., and M. A. Canto (1982). An upper bound for the synthesis of

generalized parallel counters. IEEE Transactions on Computers, C-31(8):
802-5.

Efe, K. (1981). Multi-operand addition with conditional sum logic. In Proceedings
of the 5th IEEE Symposium on Computer Arithmetic, pages 251-55.

Foster, C. C., and F. D. Stockton (1971). Counting responders in an associative
memory. IEEE Transactions on Computers, C-20:1580-83.

Gajski, D. D. (1980). Parallel compressors. IEEE Transactions on Computers,
C-29(5):393-98.

Ho, I. T., and T. C. Chen (1973). Multiple addition by residue threshold functions
and their representation by array logic. IEEE Transactions on Computers,
C-22:762-67.

Kanie, Y., Y. Kubota, S. Toyoyama, Y. Iwase, and S. Suchimoto (1994). 4-2
compressor with complementary pass-transistor logic. IEICE Transactions
on Electronics, E77-C(4):647-49.

Kobayashi, H., and H. Ohara (1978). A synthesizing method for large parallel
counters with a network of smaller ones. IEEE Transactions on Computers,
C-27(8):753-57.

Kwon, O., K. Nowka, and E. E. Swartzlander (2000). A 16-bit by 16-bit MAC
design using fast 5:2 compressors. In Proceedings of the IEEE International

Conference on Application-Specific Systems, Architectures, and Processors, pages
235-43.

178 c H • PT E R 3 Muhioperand Addition

Lai, H. C., and S. Muroga (1982). Logic networks of carry-save adders. IEEE
Transactions on Computers, C-31:870-82.

Lim, R. S. (1978). High-speed multiplication and multiple summand addition. In
Proceedings of the 4th IEEE Symposium on Computer Arithmetic, pages 149-53.

MacSorley, O. L. (1961). High-speed arithmetic in binary computers. IRE Pro-
ceedings, 49:67-91.

Makino, H., H. Suzuki, H. Morinaka, Y. Nakase, H. Shinohara, K. Mashiko,
T. Sumi, and Y. Horiba (1996). A design of high-speed 4-2 compressor for
fast multiplier. IEICE Transactions on Electronics, E79-C(4):538-48.

Mehta, M., V. Parmar, and E. E. Swartzlander (1991). High-speed multiplier
design using multi-input counter and compressor circuits. In Proceedings of
the 10th IEEE Symposium on Computer Arithmetic, pages 43-50.

Meo, A. R. (1975). Arithmetic networks and their minimization using a new line
of elementary units. IEEE Transactions on Computers, C-24(3):258-80.

Nagamatsu, M., S. Tanaka, J. Mori, K. Hirano, T. Noguchi, and K. Hatanaka
(1990). A 15-ns 32 • 32-b CMOS multiplier with an improved parallel struc-
ture. IEEE Journal of Solid-State Circuits, 25(2):494-97.

Parhami, B. (1996). Variations on muhioperand addition for faster logarithmic-
time tree multiplier. In Proceedings of the 30th Asilomar Conference on Signals,
Systems and Computers, pages 899-903.

Paterson, M., and U. Zwick (1993). Shallow circuits and concise formulae
for multiple addition and multiplication. Computational Complexity, 3(3):
262-91.

Prasad, K., and K. K. Parhi (2001). Low-power 4-2 and 5-2 compressors. In
Proceedings of the 35th Asilomar Conference on Signals, Systems and Computers,
pages 129-33.

Song, P. J., and G. D. Micheli (1991). Circuit and architecture trade-offs for high-
speed multiplication. IEEE Journal of Solid-State Circuits, 26(9):1184-98.

Stenzel, W. J., W. J. Kubitz, and G. H. Garcia (1977). A compact high-speed paral-
lel multiplication scheme. IEEE Transactions on Computers, C-26(10):948-57.

Svoboda, A. (1970). Adder with distributed control. IEEE Transactions on
Computers, C-19(8):749-51.

Swartzlander, E. E. (1973). Parallel counters. IEEE Transactions on Computers,
C-22:1021-24.

Wallace, C. S. (1964). A suggestion for a fast multiplier. IEEE Transactions on
Electronic Computers, EC-13(2):14-17.

Bibliography 179

Weinberger, A. (1981). 4:2 carry-save adder module. IBM Technical Disclosure
Bulletin, 23.

Yeh, C.-H., and B. Parhami (1996). Efficient pipelined multi-operand adders with
high throughput and low latency: Designs and applications. In Proceedings of
the 30th Asilomar Conference on Signals, Systems and Computers, pages 894-98.

Zimmerman, R. (1998). Binary Adder Architectures for Cell-Based VLSI and Their
Synthes#. Ph.D. dissertation. Series in Microelectronics, Vol. 37. Hartung-
Gore, Konstanz, Switzerland.

C H A P T E R 4 Multiplication

In this chapter we consider algorithms and implementations of multiplication of
signed integers in constant-radix representation (sign-and-magnitude and two's
complement). These units are used for fixed-point multiplication (applying ap-
propriate scaling factors) and are part of a floating-point unit, as discussed in
Chapter 8.

The multiplication operation is

p - - x x y 4.1

where x (multiplicand), y (multiplier), and p (product) are signed integers. High-
level descriptions of the algorithms for sign-and-magnitude and two's comple-
ment are as follows:

Sign-and-magnitude: Each operand is represented by a sign, with value + 1
and -1 , and an n-digit magnitude, and the result by a sign and a 2n-digit
magnitude. The high-level algorithm is

sign (p) - - sign (x) �9 sign (y) 4.2

Ipl = I x l - l y l

The representations of the magnitudes are
n--I

X - - (Xn_ l , X n _ 2 , . . . , x0) [x] -- ~"~i=0 x i r i (multiplicand)

(0 < x < r n - - 1)

n-1 i (multiplier) Y - - (Yn--1, Y n - - 2 , ' ' ' , YO) lyl- ~-~i=0 y ir

(0 < y < r n -- 1)
~-~2n-1

P -- (P2n-1, P 2 n - - 2 , . . . , PO)]P] Z..ai--0 Pi r* (product)
(0 <_ p ~ r 2n -- 2r n + 1)

Two's complement: We consider here only the radix-2 case. Each operand
is represented by an n-bit vector, and the result by an 2n-bit vector.

4.3

181

182 <: N,& {:, ~i ~ ~ g~ 4 M u l t i p l i c a t i o n

o

This 2n-bit result is required because the range is

- - (2 n - 1) (2 n - 1 - - 1) < p < (- - 2 n - 1) (- - 2 n - l) - - 2 2 n - 2 4.4

so that the most positive value is represented by a vector of 2n bits.
IfxR, yR, and PR are the corresponding positive integer representa-

tions of x, y, and p, respectively, the high-level algorithm is

P R -

XRYR

22n - - (2 n - - XR)YR

22n - - XR(2n -- YR)

(2 n --XR)(2 n --YR)

ifx > 0 , y > 0

if x < O, y > 0

if x > O, y < 0

if x < O, y < 0

4.5

As will be seen, this algorithm can be simplified when using the
corresponding digit-vectors.

In the next sections two types of algorithms are considered:

Add-and-shift algorithm. For magnitudes, this algorithm is based on the

following identity:

n - 1

x x y - - ~ s
i = 0

4.6

which is implemented by digit-by-integer multiplications (xy i) , arithmetic
shifts by i positions, and a multioperand addition. We consider the
sequential and combinational variants as well as the adaptation to two's
complement representation.

Composition of smaller multiplications.

Sequential Multiplication with Recoding
This basic algorithm was reviewed in Chapter 1. We here extend it to include
the recoding of the multiplier and consider radix-4 pipelined and higher-radix
implementations. We consider first the sign-and-magnitude representation and
then introduce the modifications for the two's complement representation.

Sequential Multiplication with Recoding 183

4 o l o l Sign-and-Magnitude
As reviewed in Chapter 1, the basic algorithm for magnitudes is

p[O] = 0

p [/ + 1] -- r - l (p [j] + (xrn)yj) for j -- 0, 1 , . . . , n - 1 4.7

p = p[n]

The relative position of operands in the recurrence is illustrated in Figure 4.1.
The execution takes n cycles, and each cycle corresponds to the delay of a

digit multiplication (one digit of the multiplier times the whole multiplicand),
the delay of addition, plus register delay. The delay of shift (constant by one digit
position) is negligible since it is implemented by wiring. That is,

T = n (tdigmult -F tadd + treg) 4.8

This time is reduced if a redundant adder is used. As shown in Figure 4.2, this
adder has one redundant operand and one conventional operand. If the result is
required in conventional representation, it has to be converted. The conversion
of the least-significant half of the product can be done during the shifting.

i Mult ipl icand X r n l ,. i
,
,
,

I i ,I L ,E i Vector-digi t mult ipl ier [-
,, ,,

xr n yj I :: i

p[j] ! !

I ' rp[j+l] , ~. k~ ii

p [j + l] i t i
,

Mult ip l ier Y
i i

Yj

k~ Shift right

F I G U R E 4.1 Relative position of operands in multiplication recurrence.

184 c • A P~ E • 4 Multiplication

X

I Register X

I

Y

I Shift Y Register I

REDUNDANT
ADDER

nonredundant
redundant

p[j+l]

Register PH

p[j] l

ADDER

=1~ CONVERTER
Shift Register PL I

i

P

F I G U R E 4.2 Sequential multiplier with redundant adder.

Radix 2 and Radix 4
The simplest implementation is obtained if the multiplier is represented in radix 2,
since the multiple of the multiplicand is either x or zero. However, the number of
iterations is reduced by using a larger radix. When the radix is 2k, this is equivalent
to considering k bits of the radix-2 multiplier per iteration. The main problem
with this approach is the digit multiplication, since now the digit of the multiplier
has 2 k values.

For radix 4, this digit multiplication can be simplified by recoding the mul-
tiplier into radix-4 digits with values (-2, -1 , 0, 1, 2) since the multiplication by
these digit values is simple (complementation and shifting of the multiplicand).
The recoding produces z such that

z -- y, Z i ~ { - 2 , - 1 , 0, 1, 2} 4.9

Sequential Multiplication with Recoding 185

Since the sequential multiplication algorithm uses the digits of the multiplier
from least significant to most significant, the recoding algorithm can also be
sequential. In this case, the nonredundant digit set {-1, 0, 1, 2} can be used. 1
This set allows a simpler implementation (fewer multiples) than the redundant set
{-2 , - 1, 0, 1, 2, }. Calling vi the radix-4 digit of the multiplier (corresponding to
two bits of the radix-2 multiplier), the recoding uses a carry bitci and is performed

by the recurrence

Zi = P i - t - tTi - - 4ci+1 4 . 1 0

The carry ci+ 1 is selected so that the value Z i = 3 is avoided. Consequently, when
vi +ci > 3 we produceci+l = 1 andzi = vi +ci - 4 . This recodingis described
by the following table:

Vi + Ci Zi Ci+l

0 0
1 0

2 0
- 1 1

0 1

Note that the recoding (of a magnitude) produces a final carry. This carry
has to be considered as an additional digit. The carry is avoided if the number
of bits of the multiplier is odd, so that the most-significant radix-4 digit of the
nonrecoded multiplier has values 0 or 1 only. That is, for an n-bit magnitude
multiplier the number of radix-4 digits of the recoded version is [(n + 1)/2].

A radix-4 multiplier using this recoding is shown in Figure 4.3. This imple-
mentation is pipelined into three stages as follows:

�9 Stage 1: multiplier recoding
�9 Stage 2: generating the multiple of the multiplicand
�9 Stage 3: addition (using a redundant adder, illustrated with a carry-save

adder) and shift (with conversion of the shifted-out bits).

The number of bits of the carry-save adder and of register SCH is n + 3 since the
n bits of the multiplicand are extended by one bit because of the multiple 2 and

1. We later describe a parallel recoding algorithm, which requires the redundant digit set
{-2, -1, O, 1, 2}.

186 c u A p'r ~ R 4 Multiplication

Stage3 [RegisterX I
B

X X

Stage 1

Stage 2

Stage 3

2X
. n _

r

SELECTOR

I Shift-register M ili

I

IRegister I

onel I zero

neg

carry

Register XY [.,
I- /

n + 2 ~ Multiple of X
/

, de..~ Sign-extended

~n+3

CARRY-SAVE
ADDER

n+3 f n+3 f
Shifted SC Shifted PS

n+3 i aog,~terSCH I i aeg,,ter PSH I

. n - ~ (Lower) n-2

FINAL STEP

ToCPA
(Register control signals not shown)

n+3

(SC1,PSI)

(most significant part)

Register CS[1,0]

2}'2 2 ~ 2 merged register M)

Iloo~v~l ~o~,,tor~ I

' f s ~ o ,) s o ,
2

Cin Product
(least significant part)

n e Y e n

FIGURE 4.3 Radix-4 sequential multiplier. The CONV module has an internal carry signal,

which in the last step is used as a tin for the CPA.

Sequential Multiplication with Recoding 187

Cycle

Stage 1

Stage 2

Stage 3

CPA

0

LOAD X

LOAD Y

0

0

0

zo

0

0

Zl

Xzo

0

Z2

Xzl

PS[1]

SC[I]

z3

Xz2

PS[2]

sc[2]

F I G U R E 4 .4 Timing diagram.

Z4

Xz3

PS[3]

sc[3]

m + l

XZm_l

PS[m - 11

SC[m - 11

m + 2

PS[m]
SC[m]

Final product

by another bit because the multiple is signed (in two's complement representa-
tion); finally it is necessary to extend one more bit to accommodate the range of
the result of the addition.

The number of iterations is equal to the number of digits of the recoded
multiplier, that is, m = [(n + 1)/2]. The execution is illustrated in the timing
diagram shown in Figure 4.4.

The recoding uses the two rightmost bits of the multiplier register (MI, M0)
and the carry flag C. For this, the M register is shifted two bits per iteration. The
signals are described as follows:

0 select2x
one - - M o ~3 C - - 4.11

1 select x

0
n e g - M 1 C + M 1 M o - - 1

select direct

select complement
4.12

' M o C ' zero - - M 1 M o C + M 1
{0

1

load nonzero multiple

load zero multiple (clear)
4.13

Cnext = M 1 M o § M 1 C = neg 4.14

Note that when zero = 1 the selection made by neg is irrelevant. This allows a
simpler expression for neg and Cnext. Figure 4.5 illustrates a recoder implemen-
tation.

188 c H A P T E R a Multiplication

E X A M P L E 4.1

C

M1

mo
- - T T _ _T I

one neg Cnext zero

F ! G U R E 4,S Sequential recoder implementation.

The generation of (-1)x is performed by a bit complement, and the added
1 is placed in the least-significant bit of the carry vector, as follows:

PS [j'] PSn+2 PSn+I PSn "'" PS1 PSo

SC [j] SCn+2 SCn+I SCn . . . SC1 SCo

--X Xtn+ 2 Xtn+ 1 X ' n . . . X ' l X1o

CSA Sn+2 Sn+l Sn " ' " S1 S0

�9 1" Cn+2 r r . . C 1

* For two's complement ofx.

n -- 5 bits m - 3 radix-4 digits

x - - 2 9 X = l l l 0 1

y - -27 Y = 11011
B

Z = 2 1 1 (z - - y) (- 1 = 1)

As discussed before, the carry-save adder has 8 bits (see Figure 4.6).
The least-significant bits (PSI[j] ,PSo[j]) and (SCI[j], SC0[j]) are added
and shifted out, producing two final product bits per recurrence step. 2
The final product consists of the lower 6 bits produced during the three

2. See Exercise 4.3 for details. Note that in this example the conversion is simple because the
digit to be converted is not larger than three; in general this might not be the case.

Sequential Multiplication with Recoding 189

CSA Shifted out

PS[O] 00000000

sc[o] oooooooo

x Zo 11100010

4PS[1] 11100010

4SC[1] 00000001

PS[1] 11111000

sc[1] oooooooo

X' Z 1 11100010

11

4PS[2] 00011010

4SC[2] 11000001

PS[2] 00000110

SC[2] 11110000

x Z2 00111010

1111

4PS[3] 11001100

4SC[3] 01100100

PS[3] 1111 O011

SC[3] 00011001

P 1100

001111

001111 = 783

F l a U R E 4 . 0 Example of radix-4 sequential multiplication with carry-save adder.

recurrence steps and the 4 upper bits obtained by a 4-bit CPA. Note that
the least-significant bit of 4SC[j] (shown in boldface) is 1 when the multi-
plier digit is negative so that the two's complement of the multiplicand is
required. �9

Higher Radices

Sequential multiplication can be done using a multiplier representation with a
radix higher than 4 to further reduce the number of iterations. The algorithm is

190 c H • pT E R ~ Multiplication

a direct extension of the radix-4 case. For instance, for radix 8 the multiplier can

be recoded into the digit set {-3 , - 2 , - 1 , 0, 1, 2, 3, 4} with a direct extension of

the algorithm presented for radix 4. The main problem with the implementation

of this multiplication is the generation of 3x. This can be done as a preprocessing

step by addition of 2x plus x.
The extension to even higher radices requires the preprocessing of more mul-

tiples. An alternative is to use several radix-4 and/or radix-2 stages in one iteration.

For instance, Figure 4.7 shows a radix-16 multiplication unit in which the mul-

tiplier is recoded into a radix-16 signed digit vj in the set {-10, . . . , 0, . . . , 10}.

This recoding is actually performed by recoding into two redundant radix-4 digits

u j and wj such that 3

vj -- 4uj -~- Wj Uj, Wj ~ { - 2 , - 1 , 0, 1,2} 4.15

The recurrence is

q[j] = p [j] + x w i

1
p [/ + 1] - ~ (q [j] + (4x)uj)

4.16

where p[j] is the partial product, q [j] is its intermediate value, and x wj and

4xuj are multiples of the multiplicand and shifted multiplicand, respectively.
The use of a higher radix r -- 2k reduces the number of iterations to n /k .

Due to a more complex iteration step for higher radices, the reduction of the total

delay is less than k times with respect to radix-2 multiplication (see Exercise 4.8).

Use o f [p:2] Adder

As discussed in Chapter 3, in a multioperand addition it is possible to use [p:2]
adders. Since multiplication is a multioperand addition, this can also be done for

multiplication. In such a case, p - 2 multiples of the multiplicand are used per

iteration. For instance, in the radix-16 example of Figure 4.7, two multiples are

used per iteration, so that a [4:2] adder can be used.

3. The sequential radix-4 recoding algorithm can be used without increasing the cycle delay if
the delay of recoding is not larger than the delay of a full-adder.

Sequential Multiplication with Recoding 191

Radix- 16
signed digit

vj
{-10 10}

Register X

/
wj

I I

SELECTOR

(-2,-1, 0, 1, 2) multiple of X

SELECTOR

(-2, -1, 0, 1, 2) multiple of 4X

4xuj

Register SC

xwj

. . . . t t -
CSA 1

] I RegisterPS I

J~" 1 A [4:2] adder can be used
instead of two [3:2] adders

SC

q[j]

CSA 2

.

e s 1 6 p [j + l]

n+3 (See comments in Section "Radix 4")

x x . . . x x x

C S A 1 x x . . . x x x

X X . . . X X X

o,se;"n extension ~ [- k - - - ~ x x . . . x x x
Ixxl X X X X X

I I

x x . . . x x x -q- = To shill conver ter
C S A 2

_r-- - - -

X X . . . X X X

X X . . . X X X

X X . . . X X X

To SC and PS x x . . . x x x
I I

registers (shifted) I t_~ = To spill conver ter
,l l

FIGURIE 4.7' Radix-16 multiplication datapath (partial).

192 c ~ A ~'v [~ ~ 4 Multiplication

4o t ~2 Two's Complement

We now describe the modifications required when the operands and the result
are in two's complement representation. As indicated by the algorithm shown
at the beginning of the chapter, one possibility is to transform the operands
into sign-and-magnitude, perform the mtiltiplication, and then transform the
result. However, this is not necessary when using the add-and-shift algorithm. In
this case, the following modifications to the sign-and-magnitude algorithm are
suitable.

First, for operands of n bits (in two's complement representation) the range
of the product is --(2 n-1 -- 1)(2 n-l) < p < (22n-2), requiring 2n bits in two's

complement representation.
Second, since the multiplicand is represented in two's complement, the addi-

tion and shift operations are performed in this system, as discussed in Chapter 1.
Third, the effect of the two's complement multiplier can be taken into account

in the following two ways, both based on the relation of the multiplier value and
its two's complement representation, namely,

n-2

y = --Yn-12n-1 -+- ~ Yi 2 i 4.17
i=0

which in radix 4 corresponds to

n--3
y - - (- 2 y n - 1 Jr- Yn-2) 2 n-2 + ~ Yi 2 i

i--0
m-2

4 m-1 ~ 4 i
- - - - /-"m - 1 "+" /"i 4 . 1 8

/

i--0

where m = n/2 (n even) and the radix-4 digit values are Vm--1 e {--2, -- 1, 0, 1}
and vi e {0, 1, 2, 3}.

Consequently the two alternatives are

1. Subtracting instead of adding in the last iteration when the multiplier digit
is negative. The subtraction is done by addition of the two's complement
of the multiple of the multiplicand.

2. Recoding the multiplier into a signed-digit set.

For radix 2, this can be done by a modification of the recoding for sign-and-
magnitude (extending the sign); however, in this case it seems preferable to use

Combinational Multiplication with Recoding 193

4 ~

the first approach. Consequently, we concentrate on the radix-4 case, in which
the recoding is done anyhow to eliminate the multiple 3x.

The sequential radix-4 recoding for sign-and-magnitude presented before
has to be modified for the two's complement case. One possible modification is
to extend the sign: one bit ifn is odd and a whole radix-4 digit if it is even. Then,
as in two's complement addition, the carry-out of the extended digit vector is
discarded. However, this increases the number of cycles when n is even.

Two variations are possible to eliminate the need for the additional cycle:

1. Consider the most-significant radix-4 digit as described by expression
(4.18). Then, the recoding of the last digit is

Vm_ 1 -+- Cm_ 1 Z m-1

- 2
- 1

0
1

2

- 2
- 1

0
1

2

This requires a special recoder for the last digit. However, in terms of the
bits of y and the carry, this recoder differs from the one for sign-and-

magnitude only in the case Vm-1 + Cm-1 = --2 (that is, Yn-lYn-2 = 10,

Cm-1 = 0). Consequently, the recoder is quite easy to modify for this case.

Use the parallel recoder discussed for combinational radix-4 multiplication
(see page 286).

Combinational Multiplication with Recoding
Instead of performing the multiplication in several cycles (iterations), reusing the
hardware, in the combinational case the operation is performed in a single cycle.
The combinational add-and-shift algorithm (actually shift-and-add) is based on

n - 1

p -- ~ xyir
i=0

4.19

In this case, the multiplication is done in two steps"

1. Generation of the (shifted) multiples of the multiplicand (x x yi) ri

2. Multioperand addition of the multiples generated in step 1

194 r N ApT E ~ 4 Multiplication

We now consider each of these steps and then show the implementation of com-
plete multipliers.

4=2~I G e n e r a t i o n o f Mul t ip l e s a n d B i t - A r r a y

The multiples are

re[i] - xyi ri 4.20

This corresponds to a multiplication of the multiplicand by one digit of the
multiplier and an arithmetic shift left of i positions. Usually, the multiplicand is
in radix-2 representation so that the result of this digit multiplication is a bit-vector
and the shift is ofi • log 2 r bit positions. The set of these bit vectors, adequately
range extended, forms a bit matrix that is added in the second step.

Consider now the generation of the bit-matrix for the multiplier in radix 2
and in radix 4.

Radix 2

For the multiplier in radix 2, the digit multiplication is especially simple since yi
has only values 0 and 1. Consequently, each multiple is produced by a set of AND
gates, as shown in Figure 4.8(a). The resulting bit-matrix for multiplication of
magnitudes is shown in Figure 4.8(b).

For multiplication in two's complement representation, two modifications
are required:

1. The range extension is done by replicating the sign bit of each of the
multiples. Since the largest negative operand value is - 2 n-l, the maximum
product positive value is 2 2(n-1). Consequently, to avoid an overflow, the
array should produce a product represented by 2n bits, so that the extension
should be performed accordingly.

2. The multiple Xyn_l 2n-1 is subtracted instead of added. This is because, as
already used in the sequential implementation, in two's complement

n--2
__ 2 n - 1 2 i y -Yn-1 + ~ Yi 4.21

i=0

Combinational Multiplication with Recoding 195

Xn_l Xl XO

re[i]

(a)

Xl Y3

m[0]

re[l]

m[2]

m[3]

m[4]

m[5]

m[6]

m[7]

(b)

F ! G U R E 4.8 (a) Radix-2 multiple generation. (b) Bit-matrix for multiplication of magnitudes

(. = 8).

The subtraction is done by complementation and addition. The comple-
mentation is performed by a bit-complement plus the addition of 1. 4

We now show how to construct a bit-matrix for radix-2 multiplication of two's

complement operands x -- (Xn--1, X n - - 2 , - . - , X'0) and y - - (Y n - - 1 , Y n - - 2 , . . . , yo).

4. Instead of doing this subtraction step, it has been proposed to recode the (two's
complement) multiplier into the digit set {-1, 0, 1}. However, there seems to be no
advantage in following this approach.

196 c N A p T E R 4 Multiplication

7 6 5 4 3

x3yo x3yo x3yo x3yo x3yo

x3yl x3yl x3yl x3yl x2yl

x3y2 x3y2 x3y2 x2y2 xly2
! ! ! ! t

x3Y3 x3Y3 x2Y3 xlY3 XoY3

Y3

(a)

2

x2yo

Xlyl

xoy2

1

xlyo

xoyl

xoyo

7 6 5 4 3 2 1 0

(x3Y0)'

(x3Yl)' x2yl

(x3Y2)' x2Y2 xlY2
! ! ! l !

(x3Y3) x2Y3 xlY3 XoY3

Y3

- 1 - 1 - 1 - 1

(b)

x2Yo

x ly l

xoY2

xlYO

xoYl

7 6 5 4 3 2 1 0

xoYo

(x3Y2)'
!

1 (x~y3)' x2Y3

y3 (x3y0)' x2yo

(x3yl)' xzyl Xlyl

x2Y2 xly2 xoy2
! !

xly3 (x0Y3)

xlyo

xoYl

xoyo

(c)

F I G U R E 4 . 9 Constructing bit-matrix for two's complement multiplier (n - 4). (a) Basic bit-
matrix with each row sign-extended. (b) Bit-matrix after initial transformation. (c) Bit-matrix
after final transformation.

As mentioned above, to handle the largest positive product (--2n-1)(--2n-1), the

bit-matrix has 2n columns.
The bit-matrix after sign extension is shown in Figure 4.9(a). The increase

in the number of bits due to the sign extension would complicate the addition

Combinational Multiplication with Recoding 197

step. As discussed in Chapter 3, the effect of this sign extension can be reduced by
applying the following identity in the sign position (which is of negative weight):

(- s) + 1 - 1 - (1 - s) - 1 - - s ' - 1 4.22

Consequently,

is replaced by

Xn--lYi Xn--2Yi . . �9 XoYi

(Xn--lYi) ' Xn--2Yi . . . XoYi

--1

The bit-matrix resulting from this transformation has n + 2 rows as shown in
Figure 4.9(b). The two extra rows can be eliminated as follows"

1. The digit-vector in row 6

(0, (-1) , (-1) , (-1) , (-1))

has value -15 • 23, which can be replaced by its two's complement
representation, namely, 10001000.

2. Precompute

!

xoY3 + y3 + 1

in column 3, rows 4, 5, and 6, resulting in a carry y3 and a sum (x0y3)'. The
carry is placed in row 1, column 4, and the sum in row 4, column 3.

The application of this modification results in the final bit-matrix shown in
Figure 4.9(c). Consequently, with respect to the array for magnitudes, only two
additional bits are required.

R a d i x 4

To reduce the number of multiples and, therefore, the complexity of the mul-
tioperand addition, it is convenient to consider the multiplier represented in a
radix higher than 2. For radix 4 with conventional representation of the multi-
plier digit, the values of the digit are 0, 1, 2, and 3. As discussed for the sequential
case, the implementation of the multiple generation consists of an AND-OR net-
work for each bit to select among the three possible multiples different from 0.
The generation of the multiples x and 2x is simple, but the multiple 3x requires

198 c N A p~1r E R 4 Multiplication

an addition. As also done for the sequential multiplication, to avoid this multi-
ple it is possible to recode the multiplier into a signed-digit set. To optimize the
recoding we consider two cases:

1. The bit-array is added by a linear array of adders. As discussed further in
the next section, in this case each adder in the array has as operands the
partial sum (of the previous additions) and one multiple. Consequently, the
recoding can be done as in the sequential multiplication case (digit set
{-1, 0, 1, 2}). This has the advantage of requiring only four values per
digit. 5

2. The bit-array is added by a tree of adders. In this case all the multiples are
obtained simultaneously and applied as operands in the first level of the tree.
Therefore, the recoding has to be done in a parallel fashion; that is, all digits
of the recoded multiplier should be obtained simultaneously. In this case,
the digit set is {-2, - 1 , 0, 1, 2} and the recoding algorithm is as follows.

Parallel Radix-4 Recoding

We present the high-level arithmetic algorithm using the same technique as for
signed-digit addition in Chapter 2. Then we consider a bit-level implementation.
We show that the recoding is correct for two's complement representation of the
multiplier. If the multiplier is a magnitude, it should be extended by the sign bit
equal to zero.

Let us call vj a radix-4 digit of the multiplier (obtained by pairing consecutive
bits of y). That is,

uj = 2y2j+l + Y2j j = (m -- 1 , . . . , 0) m = n/2 4.23

and

Y,-1, Yn-2, . . . , Yl, Yo

is the radix-2 representation of the multiplier.
At the high level the algorithm has two steps:

1. Obtain wj and tj+l such that

Uj = Wj "~- 4tj+l 4.24

5. If a [p :2] adder is used, with p > 3, then the parallel recoding is needed.

Combinational Multiplication with Recoding 199

~-1

I A~ II A~176 I

Zj Zj_ 1

F I G U R E 4.,O Radix-4 parallel recoding from {0, 1, 2, 3} into {-2, -1, 0, 1, 2}.

2. Obtain

Zj --- W j 2t- t j 4.25

For a parallel algorithm, the second step should be performed without carry
propagation. This is achieved if

- 2 ~ W j ~_~ 1 0 ~ tj+l ~ 1 4.26

Consequently, the algorithm is

(0, vs)
(tj+l, w j) - - (1, v j - 4)

Zj m Wj + tj

i f v j < 1

i f v j > 2
4.27

As shown in Figure 4.10, digits j - 1 and j of the multiplier are involved in the
generation of zj.

We now show that the recoding algorithm is correct for two's complement
representation. For this, consider the most-significant digit. The value of this
digit is U m _ 1 = --2yn-1 + Yn-2. On the other hand, the recoding algorithm
uses b ' m _ 1 = 2yn-1 + Yn--2 and produces Win-1 = U r n - 1 - 4tin. Since t m = 1 if
/-"m-1 >-~ 2, we get

200 C H APT E R 4 Multiplication

Yn- lYn-2 •m-1 Wm-1 Um-1

00

01

10

11

0

1

- 2

- 1

0

1

- 2

- 1

Consequently, the algorithm is correct if we discard the transfer digit tm.
We now consider a bit-level implementation. The radix-2 multiplier is

Y = (Yn-1, Yn -2 , . . . , YO) Yi ~-{0, 1} 4.28

and the recoded radix-4 multiplier

Z = (Zm_l , Zm_2, . . . , Z0) Z i c {-2, -1 , 0, 1, 2} 4.29

From the high-level algorithm, bits y2j+l, y2j, y2j-1, y2j-2 are involved in the
generation ofz j . However, since tj+i -" 1 only when vj > 2, bit y2j-2 has no
effect. Specifically,

Zj -- Wj -~- tj = (Pj -- 4 t j+ l) + t j

Since p j = 2y2j+l + Y2j and t j --- Y2j-1 , we get

z j - - (2y2j+1 + Y2j -- 4y2j+1) + Y2j-1 = --2y2j+1 + Y2j + Y2j-1

This bit-level recoding can be described by the following table:

Y2j+l Y2j Y2j-1 z j

4.30

4.31

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0

1

1

2

- 2

1

1

0

Combinational Multiplication with Recoding 201

E X A M P L E 4.2 Following are two examples of the bit-level recoding:

y = 01011110 y -- 10001101
m u m

z - - 1 2 0 2 z - - 2 1 1 1

We implement the recoder with a representation of Zj by the triple (sign, one,

two), as follows:

�9 sign = 1 i f z j is negative
�9 o n e - 1 i f z j is either 1 o r - 1
�9 two -- 1 i f z j is either 2 or - 2

From the table we obtain the following switching expressions:

sign = y 2j +1

one ~ y2j ~ y2j-1 4.32
l l I

two -- Y2j+lY2jY2j-1 + Y2j+lY2jY2j-1

The bit-level implementation of this recoder and the multiple generator are
shown in Figure 4.11. The generation of the two's complement for negative
multiples is produced by the signal sign, which controls the bit-inverter, and
the signal c, which completes the two's complement operation. Note that the 0
for (y2j+l, y2j, y2j-1) - 111 is obtained by a bit-vector 1 at the output of the
bit-inverter and c - 1.

The algorithm can be extended to higher radices in a straightforward
manner. That is, for z j ~ { - (r / 2) , . . . , + (r / 2) } the recoding is described by

I(O, v j) i f v j < (r / 2) - 1
(tj+l, w j) -- - 4.33 / (1, v j - r) i f v j > r / 2

Z j - - W j -]- tj

The bit-level implementation uses log2(r) + 1 bits of Y to produce z j .

B i t - A r r a y

Because of the recoding, the multiples of the multiplicand are signed; conse-
quently, they are represented in the two's complement system (even for multipli-
cation of magnitudes). For multiplication of n-bit operands the result has 2n bits
so that the rows of the bit matrix have to be extended to 2n bits. The negative

202 r ~ ApT E R 4 Multiplication

Y2j+I

V �9

J

I
sign c

�9 T
I

l

Y2j-1

I
i _ l

V
l

Multi)licand X

twO

sign I BIT-INVERTER I

2x, x, Z, o_, x, 2x

me two "-- Bit-vector

one

(a) (b)

F ! G U e E 4.11 (a) Implementation of parallel recoder. (b) Implementation of multiple

generator.

multiples are obtained by bit complement and addition of 1 (these additional bits

are called c in what follows). The bit array is formed by the multiples (and the c

bits). Because of the radix 4, consecutive multiples are shifted two positions.

There are some differences in the array, depending on whether the operands

are magnitudes or signed in two's complement representation. We now discuss

both cases.

For magnitudes, the multiplier is extended with a 0. Consequently, the num-

ber of radix-4 digits (rows in the array) is [(n + 1)/27. Moreover, the most-

significant radix-4 digit has to be positive (with value 0, 1, or 2), so that no sign

bit nor c bit is needed for that row.

As an example, the bit array for multiplication of 7-bit magnitudes is shown in

Figure 4.12(a). To reduce elements of the bit array, we use similar modifications to

those discussed for the radix-2 case and for multioperand addition. The resulting

array is shown in Figure 4.12(c).

Combinational Multiplication with Recoding 203

13 12 11 10 9 8 7 6 5 4 3 2 1 0

XZO" Se Se Se Se Se Se e e e e

X Z 1" S f S f S f S f f f f f f f

xz2" Sg Sg g g g g g g g g

xz3" h h h h h h h h Cg

(a)

!
x z o " Se e e e e

' f f f f f f X Z l " S f

x z 2" s t g g g g g g g g g

XZ3" h h h h h h h h cg

- 1 - 1 - 1

e e

f f

c f

e e

f f

c f

e e

Ce

Ce

(b)
!

xzo" 1 1 Se Se Se e e e e e e

' f f f f f f f f X Z 1" S f

i
xz2" s s g g g g g g g g c f

xz3" h h h h h h h h c s

e e

Ce

(c)

F I G U R E 4 . 1 2 Radix-4 bit-matrix for multiplication of magnitudes (n = 7). There are 8 bits

plus sign for each row because of the possible multiple 2. The result is a magnitude, no sign

included. The - l's of the last row of (b) are combined with s ~ to form the first row of (c).

A similar array is used for multiplication of signed values in two's complement

representation since the multiplier recoding is applicable for this representation.

In this case, In/2] rows are required, and all digits of the recoded multiplier can

be negative. The max imum positive value of the product is 22n-2, requiring 2n bits

for the two's complement representation. Figure 4.13 illustrates multiplication

of two's complement 8-bit operands. Note that one additional row is required

(formed of bit ca).

204 c N A pT E R 4 Multiplication

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XZO" Se .-r Se -r -r Se Se Se e e e e e e

xzl" s f s f s f s f s f s f f f f f f f f f

xz2" Sg Sg Sg Sg g g g g g g g g c f

xz3" sh sh h h h h h h h h Cg

Ch

e e

Ce

(a)

t C C C C C C XZO" Se

' f f f f f f f f X Z I " S f

I xz2" Sg g g g g g g g g c f

xz3" s h' h h h h h h h h Cg

- 1 - 1 - 1 - 1 ch

Ce

(b)

!
xzo: 1 1 1 S e $e Se e e e e e e

' f f f f f f f f X Z 1" ..Of
!

xz2" Sg g g g g g g g g c f

' h h h h h h h h Cg XZ3" $h

Ch

e e

Ce

(c)

F I G U R E 4 . 1 3 Radix-4 bit-matrix for two's complement multiplication (n = 8). See com-

ments in caption of previous figure.

Radix 8

Considering a radix-8 representation of the multiplier (three bits per digit),

reduces the number of multiples by a factor of 3. Since the generation of the multi-

ples of x (up to 7x) is complicated, the multiplier can be recoded to signed-digit

representation. The algorithms for this are direct extensions of the radix-4 cases.

For sequential recoding it is possible to use a nonredundant digit set (for instance

Combinational Multiplication with Recoding 205

- 3 to 4), whereas for the parallel recoding the redundant digit set - 4 to 4 is
appropriate. In any case, the multiple 3x has to be generated, usually as 2x + x,
which requires an addition. In principle, it is possible to keep this 3x in carry-save
representation (two vectors), in which case no addition would be needed; how-

ever, this would effectively double the number of vectors that have to be added in
the array, which eliminates the advantage of recoding. The addition for 3x can
be done in parallel with the recoding of the multiplier.

Whether radix-8 recoding reduces the overall delay depends on the organi-

zation of the adder array. In any case, it reduces the number of adders required
in the array.

4 . 2 ~2 Addition of the Bit-Array

For the addition of the bit-array we consider the same approaches discussed for
multioperand addition; namely, reduction by rows using adder arrays (linear and
tree) and reduction by columns using (p:q] counters. We therefore concentrate

here on the effects of the particular shape of the bit-array in multiplication.

Since redundant addition is used to limit the carry propagation, the bit-array

addition has two steps: reduction to two rows and conversion to conventional
representation. In this section we concentrate on the reduction to two rows and
discuss further the conversion in the next section.

Reduction by Rows: Linear Adder Array

We consider now the addition by a linear adder array. The difference with respect
to the multioperand addition of Chapter 3 is the shape of the bit array. Figure 4.14
shows linear adder arrays for radix 2 and radix 4 using [3:2] and [4:2] adders (for
the case with signed-digit adders, see Exercise 4.6).

In the radix-2 case, one bit of the result is produced at each level so that the
final adder has n + 1 bits. In the radix-4 case, the carry bits do not make 2-bit
product digits directly obtainable. One possibility is to carry out conversion of

the least-significant outputs of the CSA stage so that 2 bits of the product are

obtained per stage (see Exercise 4.13). In this case the final adder has n bits. The
final conversion is optional (although almost always done) and can use any of the
fast carry-propagate adders discussed in Chapter 2.

206 c. ~q.#v {::~'~' E ~ 4 Multiplication

x (multiplicand)
12

VAN D = vector AND gate

p (product)

I

I 2xvAmo I--

I VAND + [3:2] Y2

I I VAND + [3:2] I Y3

I VAND+[3:2] i Y4

! I VAND + [3:2] I

I VAND + [

" I ~ + P7,

I VAND, ~ ~ P8 + [3:211 I

! I VAND + [3:2] I

+ + 'il CPA

t ,
P23- -~ P 10--P0

Y6

Y9

Ylo

Yll

y0
YI

x (multiplicand)
12

r t

M G = multiple generator

I (z3' z2, zp %)
8 14x MG+ [4:21 ,-I~ 4x, RECI /

i ~ ~ (zs, z4)

I ~ x ~ + ~ < ~x~Ec I .~-

Ma+[3:2] ~ REC I /

CPA I
~ ~4

p (product)

Recoding:

0 0 Yll Yl0 Y9 Y8 Y7 Y6 Y5 Y4 Y3 Y2 Yl Y0 0

T 11
Z6 (Z 5 , Z 4) (Z3' Z 2, Z 1 , Z O)

(b)

~

~

(a)

F I G U R E 4.14 Linear array for 12 x 12 multiplication of magnitudes: (a)r = 2. (b)r = 4.

Also included are the modules to produce the multiples.

Combinational Multiplication with Recoding 207

The delays of the 12 x 12 multiplication implementations shown in
Figure 4.14, with conversion of the four least-significant bits in the radix-4
case, are

�9 for radix 2,

�9 for radix 4

T = raND + 10tf~ + tCPA(13) 4.34

T =tRec + tvo + 2t[4:2] + tfa + tCPA(21) 4.35

Adder Tree

To reduce the number of levels of adders, a tree can be used, as discussed for multi-

operand addition. This is applicable for both radix-2 and radix-4 bit-arrays. Ifm is
the number of digits of the multiplier (n for radix 2 and n/2 for radix 4), the num-

ber of levels is [log2(m/2)] for 4-to-2 adders, and approximately [log3/2(m/2)]
for an array of 3-to-2 adders.

Note that from radix 2 to radix 4 the reduction in the number of levels is

just one. Moreover, for the radix-4 case it is necessary to add the delay of the

recoder. Consequently, it is not clear that there is a reduction in the overall delay.

However, the radix-4 case might be considered because of possible area reduction

due to a reduced number of partial products. Figure 4.15 shows [3:2] and [4:2]

adder trees. The carry-propagate adder used for conversion is now wider than

in the case of a linear array. In the case of using [3:2] adders, the number of full
adders can be reduced by considering the shape of the bit-array. This is illustrated
in Figure 4.16.

Pipelining

The adder arrays can be pipelined to increase the throughput of multiplication.
An implementation for a linear array is shown in Figure 4.17.

Reduction by Columns Using (p :q] Counters

This is an application of the method discussed for multioperand addition. That is,

each column of the bit-array is reduced individually until two rows are obtained.

These are then reduced to one row by a carry-propagate adder. The method is

208 c x A p T E R 4 Multiplication

Multiples of x

I I I [
}

k

I [3:21

113:211
I

Ic~ I
Product ~

(a)

Multiples of x

I I I I 1111
I E4:21 I I, E4:21 I

1

I E4:21 I
I I

I CPA
l

Product

(b)

F I G U R E 4 . 1 5 Tree arrays of adders: (a) With [3:2] adders. (b) With [4:2] adders.

especially suited for multiplication because the different column height is used
to reduce the number of counters. The height of each column is better shown in
the bit-array of Figure 4.18.

One possibility is to use (3:2] and (2:2] counters. For this case, the design
method presented in Chapter 3 produces Table 4.1 and Figure 4.19. As discussed
also in Chapter 3, larger (p:q] counters can be used for the reduction.

Combinational Multiplication with Recoding 209

[3:2] I adder*

[3:2] I adder

�9

.

[3:2]
adder

[3:2]
adder

[3:2] I adder

I �9

I

Level 4
(16 FAs + 3 HAs)

Level 3
(10 FAs + 7 HAs)

Level 2
(7 FAs + 5 HAs)

[3:2] Level 1
adder (3 FAs + 9 HAs)

2"////////// 11-bit CPA

* [3:2] adder uses HAs when possible.

F I 6 U n t 4.16 Reduction by rows with FAs and HAs (n -- 8): cost 36 FAs, 24 HAs, and 11-bit
CPA.

210 c u • pT E R 4 Multiplication

x3 x2 Xl x0 Y3
o. o [o. o I o. o I o. o, I 1

0
\

0
\

0 \

Y2 Yl Y0

P

D

�9 Latch

Full-adder
with AND

gate

I

I

I

Modules with
0 inputs can
be simplified

P7 P6 P5 P4 P3 P2 Pl P0

FIGURE 4,17 Radix-2 pipelined linear CSA multiplier for magnitudes (n = 4). Adapted

from Noll et al. (1986).

4~ ~3 Final Adder for Converting Product to Conventional Form

In most multipliers the product is required in conventional representation. In
such cases the two-row result of the reduction are inputs to a carry-propagate
adder, which produces the product. Since the delay of this addition contributes to
the overall multiplication delay, it is convenient to use a fast adder (see Chapter 2).

Combinational Multiplication with Recoding 211

, ; ; ; ; ; ; ; ; m[O]

~ m [1]

m[2]

m[3]

m[4]

m[5]

m[6]

m[7]

F ! 6 U R t 4.18 Bits of(shifted) multiples organized as bit-triangle (for magnitudes and radix-2

multiplier).

However, typical fast adders are designed under the assumption that all

operand bits arrive at the same time. This is not the case in the multiplier, 6

especially when using column reduction since the length of the columns (includ-

ing carries from previous columns) is not uniform. Consequently, it might be

beneficial to design an adder that takes into account the characteristics of the

arrival time of the operand bits. Consider, for instance, the idealized arrival pro-

file of Figure 4.20(a). We see three regions: at the least-significant side the arrival

time increases when moving to the left, in the middle region the time is large

and constant, and at the most-significant side the time decreases. For this case, a
hybrid adder of the following characteristics might be convenient: 7

�9 For the least-significant region a carry-ripple adder seems appropriate,
since any faster structure would need to wait for the higher bits.

�9 For the middle region a fast adder is required.
�9 For the most-significant region, a carry-select adder would be suitable since

the sum of the most-significant bits can be computed earlier.

The corresponding implementation is illustrated in Figure 4.20(b).

6. This effect is lost if the multiplier is pipelined and the final adder corresponds to another
stage of the pipeline.
7. See Stelling and Oklobdzija (1996) for further details.

212 c N A p T E R 4 Multiplication

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

l - - 4

ei 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1

m3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

hi 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

f 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0

1 = 3

ei 1 2 3 4 6 6 6 6 6 6 5 4 3 2 1

m2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

hi 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

f 0 0 0 1 2 2 2 2 2 1 0 0 0 0 0

l - - 2

ei 1 2 4 4 4 4 4 4 4 4 4 4 3 2 1

ml 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

hi 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

f i 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0

l - - 1

ei 1 3 3 3 3 3 3 3 3 3 3 3 3 2 1

mo 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

hi 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

f i 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0

CPA 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1

Note: ei is the number of inputs in column i; fi is the number of FAs; hi is the number of HAs; mj is the number of
operands in the next level in the reduction sequence.

l A B I. E 4.1 Reduction by columns using FAs and H A s for 8 x 8 radix-2 magni tude multiplier.

4.3 Partially Combinational Implementation
To reduce the area required for a fully combinational multiplier, it is possi-

ble to use a mixed implementation, which essentially corresponds to a sequen-

tial implementation in which a high radix is used to represent the multiplier.

Then, this high-radix digit of the multiplier is represented in radix 2 or radix 4 and

Partially Combinational Implementation 213

I - - - " 1
�9 �9 �9 �9 �9 I O I �9 �9 �9 �9 �9 �9

�9 �9 �9 �9 I O I �9 �9 �9 �9 �9

�9 �9 �9 �9 �9 �9 �9 �9

I I I I
�9 �9 I O] l O l �9 �9 �9

�9 �9 �9 �9 �9

�9 �9 �9

�9 �9 �9 �9 �9 �9 �9

�9 �9 �9 �9 �9

�9 �9 �9

Level 4
(3 FAs + 3 HAs)

Level 3
(12 FAs + 2 HAs)

�9 �9 �9 �9 �9

�9 �9 �9 Level 2
(9 FAs + 1 HA)

�9 I o l �9 �9

I-I Level 1
(11 FAs + 1 HA)

14-bit CPA

FIGURE 4.19 Reduction by columns using FAs and HAs (n -- 8): cost 35 FAs, 7 HAs, and

14-bit CPA.

214 c ~ ~ p~:~;~ ~ ~ Multiplication

Carry-select 1_.]
adder 1-" [

(a)

Product (redundant form)

 asta er

Product (conventional form)

(b)

FIGURE 4.20 Final adder: (a) Arrival time of the inputs to the final adder. (b) Hybrid final

adder.

a combinational implementation is done for this partial multiplication.

Figure 4.21 shows such an implementation in which 12 bits of the multiplier

are used each iteration 8 (radix 212). Note that to reduce the overall delay, the it-

eration is pipelined in the same way as was discussed for multioperand addition.

8. The additional bit of the multiplier is used for the recoding.

Arrays of Smaller Multipliers 215

x (multiplicand)

!

].].].].].].]. (12+1) bits of
~ _ _ ~ ~ multiplier

[[4:21 [3:21]

I [4:21

tt
[4:21 I

�9 Latch I I

To CPA

FIGURE 4.111 Radix-212 pipelined sequential multiplier using CSA tree.

4~ Arrays of Smaller Multipliers
We now consider the multiplication of two n-bit magnitudes using modules that
perform the multiplication of a k-bit magnitude by an/-bit magnitude (a k by l
multiplication). The module performs

p = a • b 4.36

in which the bit vectors representing a, b, and p are

A = (ak_l ,ak_2 , . . . , a o)

B = (bl-1, hi-2, . . . , bo) 4.37

P = (Pk+l-1, Pk+l-2, . . . , P0)

To perform then x n multiplication using these 4 x / modules, the operands are

decomposed into digits of radix 24 and 2', respectively. That is,

i =O
4.38

j =O

Then the multiplication is

i=O j = O

That is,(n/k) x(n/Z) modulesareneeded. Theoutputsofthese modules, suitably
aligned, produce a bit-matrix that can be added by any of the methods discussed
before.

EXAMPLE 4 3 Consider the 12 x 12 multiplication of magnitudes using 4 x 4 multiplication
modules. The decomposition of the operands is

The multiplication is then

4.40

The corresponding bit-matrix is shown in Figure 4.22. This can be reduced
by any of the methods discussed before.

Multiply-Add and Multiply-Accumulate (MAC) 217

x(O)y(o)

(

�9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9

F I G U R E 4,22 12 x 12 multiplication using 4 • 4 multipliers: bit-matrix.

13 12 11 10 9 8 7 6 5 4 3 2 1 0
!

XZo: Se Se Se e e e e e e e e

�9 ' f f f f f f f f Ce X Z l 1 S f

I
xz2" 1 s e g g g g g g g g c f

xz3" h h h h h h h h c e

W" W W W W W W W

FIG U R S 4.23 Radix-4 bit-matrix for multiply-add of magnitudes (n = 7). zi's are radix-4

digits obtained by multiplier recoding.

4~ Multiply-Add and Multiply-Accumulate (MAC)
In many applications the operation of multiplication is followed by an addition

to perform

s = x • 4.42

This can be implemented efficiently by including the operand W as part of the

bit-array, as illustrated in Figure 4.23. A block-diagram of a multiply-add unit is

shown in Figure 24(a).

A variation of the multiply-add is the multiply-accumulate, which is useful

to perform operations such as a sum of products of the form

m

s -- ~ x [i] • y[i]
i=1

4.43

218 r ~ ApT E • 4 Multiplication

x (multiplicand)

y (multiplier)

Recoders + multiple
generators

I ... L
Bit-array]
reduction

To CPA

(a)

x (multiplicand) y (multiplier)

I
Recoders + multiple

generators
0 0 0

Incrementer

INCR

S[i +

S[i]

Bit-array reduction

II
I~l [4:2] I

�9 Latches

T, \
Precision of

To CPA the product

(b)

FIGURE 4.a4 Block-diagrams of (a) multiply-add unit and (b) multiply-accumulate unit.

This can be accomplished effectively by repeatedly using a multiplier-accumulator
(MAC) that performs the operation

s[i + 1] = x[i] x y[i] + s [i] 4.44

wheres[1] = 0ands = s [m + 1].

After the carry-save product is produced, the accumulation is performed in
two parts: the least-significant (LS) part is obtained in redundant form using a [4:2]
adder of the precision required by the multiplication, and the most-significant
(MS) part using a carry-save incrementer. The number of bits of the MS and LS
parts is determined by the number of bits of the result s. Figure 4.24(b) shows a
block diagram of the implementation. The carry-save result is converted to the
final result using a carry-propagate adder.

Truncating Multiplier 219

4~ Saturating Multiplier
Integer multiplication of n-bit operands produces an integer of 2n bits. Some
applications in signal processing and graphics keep only n bits of the result and,

in case of a result larger than what can be represented with n bits (overflow),

saturate the result to the maximum representable value (2 ~ - 1 for magnitudes
and 2 n-1 - 1 and - 2 n-1 for two's complement). These are called saturating
multipliers.

The direct implementation incorporates a standard multiplier, a detection of

the overflow, and setting the result. Detection has two forms:

�9 For magnitudes, overflow is detected by one or more bits with value 1 in the
n most-significant bits. This detection is implemented by an n-input OR gate.

�9 For two's complement representation, the detection is different for positive

and for negative results: if positive (bit in position 2n - 1 is zero), detect as

for magnitudes; if negative, detect by one or more bits with value 0 in the n

most-significant bits.

Setting the result also has two forms:

�9 For magnitudes, the n-bit result is set to 2 n - 1 (all ones). This can be

implemented with a 2-input OR gate for each result bit.
�9 For two's complement representation, the n bits are set to 011. . . 1 for

positive result and to 100. . . 0 for negative.

Figure 4.25 illustrates detection and result setting in the case of multiplication of

magnitudes. Exercise 4.22 discusses an implementation that reduces the required

hardware.

4 o 7 Truncating Multiplier
Multiplication of n-bit fractions produces a fraction of 2n bits. Some applications
in signal processing keep only the n most-significant bits of the result and dispose
of the least-significant bits after performing rounding. If a larger roundoff error
is allowed, not all LSB bits of the final result are generated, which leads to a

simpler implementation as indicated in Figure 4.26.
The error in the result consists of Ered due to simplified reduction, and Ernd

due to rounding of the n + k computed bits to the n most-significant bits. To
achieve a specific total error smaller than one ulp (unit in the last significant place),

220 c H APT E R 4 Multiplication

P2n-1

Computed product

Pn Pn-1 PO

O 0 0 g O 0

O v e r f l ~ : �9

1 i
All ls if overflow

FIGURE 4.2S Detection and result setting for multiplication of magnitudes.

�9 �9 �9

�9 �9 �9 �9

�9 �9 �9 �9 �9

�9 �9 �9 �9 �9 �9

�9 �9 �9 �9 �9 �9 �9

�9 �9 �9 �9 �9 �9 �9 �9

�9 �9 �9 �9 �9 �9 �9 �9

�9 �9 �9 �9 �9 �9

�9 �9 �9 �9 �9

�9 �9 �9 �9

�9 �9 �9

�9 Not implemented

�9 �9 �9 �9 �9 �9 �9 �9 �9 �9 Truncated product

�9 �9 �9 �9 �9 �9 �9 �9 Rounded product

F n G U R E 4.26 Bit-matrix of a truncated magnitude multiplier.

Squarers 221

4.8

the e r r o r s Ered and Erna can be reduced by choosing k, the number of positions
not implemented, and by adding a suitable constant to the reduction array. This
approach and several others are discussed in detail in the literature mentioned at
the end of the chapter.

Rectangular Multipliers
The multipliers discussed up to now had both operands with the same number of
bits (square multipliers). In many applications the multiplication operands have
different number of bits (say, k and n). These multipliers are called rectangular
multipliers.

The implementation of these rectangular multipliers follows the same
approach as for the square case: construction of the bit array and reduction to two
rows. For the two's complement case, the same type of analysis as for the square
case has to be performed to reduce the required sign extensions (Exercise 4.23).

4~ Squarers
A squaring operation s = x 2 is frequently used in signal processing and mul-
timedia applications. For example, computing the Euclidean distance between
two points a and b in the three-dimensional space

(ai - h i) 2

where a i (b i) i s the coordinate of point a (b)in dimension i, is frequently used in
graphics applications. It requires computing a large number of squares, making
a dedicated implementation desirable. While a general multiplier can be used to
compute squares, a dedicated implementation is attractive because of a simplified
partial-product bit-array.

A bit-array for x 2 (magnitudes, radix 2) consists of the diagonal with entries
X i X i = X i (I dentity 1) and two bit-array regions: A above the diagonal and B below
the diagonal. Sincexixj = x j x i (Identity 2), the sum ofentries in regions A and B
are the same (A + B = 2A = 2B). Therefore, an equivalent bit-array consists of
the diagonal entries and the A (or B) bit-array moved one position to the left. The
transformed bit-array has a reduced number of entries and a reduced number

222 C ~,~.:~ ~,~'~~ ~!~ ~:~ 4~ Multiplication

11 10 9 8 7 6 5 4 3 2 1 0

X5X5

X5X4

X4X5

X5Xo X4Xo x3xo

X5Xl X4Xl X3Xl X2Xl

x5x 2 x 4 x 2 x 3 x 2 x 2 x 2 x lX2

x 5 x 3 x 4 x 3 x 3 x 3 x 2 x 3 x lX3 xox3

X4X4 X3X4 X2X4 X 1X4 XOX 4

X3X5 X2X5 XlX5 XOX5

X2XO

X l X l

XOX2

XlXO

XoX1

XOXO

X5X4 X5X3 X5X2 X5X 1 X5XO X4XO X3XO X2XO X lXO

X5 X4X3 X4X2 X4X 1 X3X 1 X2X 1 X 1

X4 X3X2 X2

X3

(a)

11 10 9 8 7 6 5 4 3 2 1 0

x0

X5X4 X5X3 X5X2 X5Xl X5XO X4XO X3X0 X2XO X1XO XO

X5 X4X3 X4X2 X4Xl X3X1 X2X1 Xl

l
X4 X3X2 X3X 2 X2

(b)

FIGURE 4.27 Bit-array simplification in squaring of magnitudes (n -- 6). (a) Bit-array after

using Identities 1 and 2. (b) Further reduction in number of rows after using Identity 3.

x ! of rows as illustrated in Figure 4.27(a). Moreover, xi + X iX j - - 2X iX j + iX j

(Identity 3) can be used to achieve further reduction in the number of rows at the
expense of extra inverters and A N D gates (Figure 4.27(b)). It can also be used to

reduce the number of bits of the final adder.

For n-bit magnitudes the number of rows in the simplified bit-array is no

larger than [(n/2)] and the number of inputs to the reduction network is

~ ' ~ i - - (/7 2 + n) / 2

i=1

Any of the previously discussed bit-array reduction methods is applicable.

Although the bit-array resulting from a multiplier recoding to radix 4 also

Constant and Multiple-Constant Multipliers 223

has ~ n / 2 rows, the bit-array obtained by the simplification discussed here is
preferable to radix-4 recoding since it does not require recoding and multiple-
generation networks. Squarers for two's complement operand are obtained in a
similar manner.

4o10 Constant and Multiple-Constant Multipliers
If one of the operands of a multiplication is constant, the multiplication P = X x C

can be described by

P -- ~ X X Cj 2 j 4.45
{jICj=I}

where the set {j } corresponds to all the ones' in the binary representation of C.
Consequently, the number of rows of the bit-matrix is reduced since no row is

necessary when the bit C i = 0. The number of rows can be further reduced by
recoding, as follows:

1. Radix-4 recoding reduces n bits to no more than (n + 1)/2 nonzero digits
from the set {-2, - 1, 0, 1, 2}.

2. Canonical recoding into the digit set { - 1, 0, 1 } is a sequential recoding that

minimizes the number of nonzero binary digits. It transforms the constant

n-bit operand, with n/2 nonzero bits on the average, to a representation

with n /3 nonzero bits on the average. For example, C = 0101111001,

which has six nonzero digits, is recoded into the canonical form

10T 000i001, with four nonzero digits. Moreover, since two consecutive
digits in the recoded form cannot both be nonzero, the canonical form has
at most n/2 nonzero digits.

The resulting bit-matrix is then reduced using any of the techniques presented
before.

In addition to reducing the nonzero digits, it is possible to factor the constant
into the product of smaller constants. The implementation, which consists of the
connection of smaller multipliers, might be simpler than the direct implementa-

tion. This is illustrated in the following example.

EXAMPLE 4 . 4 Consider the computation of 45X using implementations that utilize only

carry-propagate adders.

224 c }~ ~ pT E ~ .4 Multiplication

X

/
- - - - _ m _ _
I I

, S L 2 '
I

' - -] 4X

A d d e r

5X

_ . . _ L _ _
! !

, S L 3 ' I
I

40X

A d d e r

~ 4 5 X

SLk = shift left k positions

FIGURE 4.2S Implementation of P = X • C for C = 45 using common subexpressions.

The binary representation of 45 has four ls. Consequently, a direct im-
plementation would use three adders. The canonical recoding has also four
nonzero digits, requiring also three adders. On the other hand, we can factor
as follows:

45X = 5X x 9 = X(22 + 1)(23 + 1)

The implementation of this decomposition requires two adders, as shown in
Figure 4.28. �9

Of course, the implementation can use redundant adders with more than two
inputs. The best decomposition depends on the type of adders used. Exercises 4.26
and 4.27 illustrate designs with [3:2] carry-save adders. In some instances it is
beneficial to perform recoding followed by factoring. Several heuristic techniques
have been developed for this task, as described in the literature.

If several multiplications by constants are required simultaneously; that is,

Pk -- X x C k, k = 1, 2 , . . . , K (known as multiple-constants multiplication),

Concluding Remarks 225

: SL4i

I ~,dder]

21X [

x

. i

' I , S L 3 :

T

13X I

y-:-
Adder I

Addel]

t , !

i , SL1 ', i

9X 18X~

SLk = shift left k positions

F I G U R E 4 . 2 9 A n example of multiple-constants multipliers.

the use of common subexpressions leads to further reductions in the number of
adders, compared to implementation using separate constant multipliers. 9 The
following example illustrates such a case.

E X A M P L E 4.5 Consider the simultaneous computation of P1 = 9X, P2 = 13X, P3 = 18X,

and P4 -" 21X.
An implementation using separate constant multipiers requires six

adders. By decomposing the products as follows: P1 = 5X -+- 4X, P2 =
8X + 5X, P3 = 2 x 9X, and P4 -" 16X + 5X and sharing subexpressions,
the implementation can be done with four adders (Figure 4.29). �9

4,11." Concluding Remarks
We have presented a variety of implementation schemes for the multiplication
operation. We have considered the case of magnitude and signed operands rep-
resented in a conventional representation; it is important to stress that, as for

9. See Potkonjak et al. (1996) for further details.

226 c ~ ~ ~'f ~ ~ 4 Multiplication

any operation, the algorithms and implementations for multiplication depend
heavily on the representation of operands and result. Since multiplication for
conventional representation is performed as multioperand addition, the tech-
niques presented in Chapter 3 are applicable, the main difference being the shifts
required in multiplication, which change the shape of the bit-array to be added.

Let us now consider some design choices. The main choice for the delay/area
trade-offis between sequential and combinational implementation. In the sequen-
tial case, a higher radix reduces the number of cycles at the expense of a longer
cycle and a larger area. For high radices, each iteration actually corresponds to
a rectangular multiplier; therefore, this scheme is also called a partially combina-
tional multiplier, and there is a continuum from a sequential implementation to a
combinational one.

Since multiplication is performed by addition of multiples of the multipli-
cand, it is convenient to have few multiples and fast addition. The number of
multiples is reduced by a larger radix; however, this complicates the generation of
multiples. This can be simplified somewhat (especially for radix 4 and radix 8) by
recoding the multiplier. As a consequence of this, at the implementation level, the
basic radices used are 2, 4, and 8, and higher radices are implemented by arrays
using these lower radices.

With respect to the additions, as in multioperand addition, the reduction
of the bit-array can be done by rows or by columns. In the reduction by rows
redundant adders are used because of their small delay and area. Because of the
shape of the array the adders have a variable number of bits. The adder array can
be linear or a tree. For large multipliers, the tree is advantageous because of the
much smaller number of adder levels. However, the area of the tree multiplier
might be larger because of the irregularity and length of the interconnections. This
length might also affect the delay. Although we have presented only the linear
array and the complete tree, there are intermediate solutions that are obtained by
partitioning the linear array and merging the partial results.

The reduction by column uses several levels of counters to reduce the columns
to size two (two rows). A systematic method is presented to reduce the number of
counters. The reduction by columns makes better use of the shape of the array to
reduce the number of cells. However, the interconnection is more irregular than
that of reduction by rows.

The delay analysis we have done is quite rough since it has considered only the
number of cells (mainly for the case of full-adders and half-adders) in the critical

Exercises 227

path. More detailed studies have been done considering actual delays of sums and
carries and restructuring the array to reduce the critical delay. Moreover, since
not all outputs of the adder array are produced at the same time, it is possible to
reduce the overall delay by taking this into account in the design of the adder for
conversion to conventional representation.

Multipliers are sometimes pipelined to increase the throughput. A variety of
possibilities exist on the number of stages; this is very dependent on the technology
and the requirements. In Chapter 8 we consider these issues for floating-point
multiplication.

Large multipliers can also be implemented by the interconnection of smaller
multiplier modules. This was particularly interesting when only small multipli-
ers could fit in a chip, which is not the case anymore. However, it might still
be convenient to implement multipliers in this form to reduce the number of
long interconnections and to provide multiplications of several sizes; that is, par-
titionable multipliers (this is becoming important because of the variety of data
widths for different applications; for instance, the wide data for floating-point
applications and the much narrower data for multimedia).

In this chapter, we also consider more specialized units such as multiplier-
accumulators, squarers, saturating multipliers, truncating multipliers, and mul-
tiplication by a constant. In all these cases, the main operation is a multiplication,
but the unit is adapted because of the particular characteristics of the operands
and/or result. In addition to providing some design ideas for these cases, the lesson
here is that the designer should take into account the particular characteristics of
the operation, instead of using always a standard multiplier.

4 . 1

Exercises
For the design exercises use the circuit data shown on the inside cover pages.

Sequential Multiplication with Recoding
[Sequential radix-4 multiplication example] Show the multiplication ofx = 30
by y = -25 as in Example 4.1 (use two's complement representation with 6 bits).
Determine the number of cycles in the execution of this multiplication in the
unit of Figure 4.3. Show the values in registers during the last pass through the
pipeline.

228 c H A P T E ~t 4 Multiplication

4 . 2

4 . 3

4 . 4

4 . 5

4 . 6

4 . 7

[Sequential recoding] Determine the table for sequential recoding from a con-
ventional radix-8 digit set to the set {-4, -3 , -2 , -1 , 0, 1, 2, 3}.

[Converter carry-save to conventional] Design a sequential converter for the
radix-4 sequential multiplier shown in Figure 4.3. The converter has as external
inputs the least-significant bits produced by the carry-save adder:(P S1 [.I"], P So[./"])
and (SCI[j], SC0[j]), one internal state variable wo[j - 1] (the present state of
the converter) and produces two product bits P2j+I, P2j and the next state w0[j]
such that

2(PSi[j] + SCI[j]) -[- (PSo[j] + SCo[j] + wo[j - 1])

= 4w0[/] + 2p2j+l + P2j

Show the network and determine the minimum cycle time for the converter.

[Converter carry-save to conventional] Design an alternative sequential converter
for the radix-4 sequential multiplier shown in Figure 4.3. The external inputs are
in this case the least-significant bits produced by the multiple generator and the
PS and SC registers. Determine the arithmetic expression relating the inputs, the
state variables, and the outputs of the converter, similar to the expression given in
Exercise 4.3. Show the network and determine the minimum cycle time for the

converter.

[Gate-level design] Design at the gate level a 16 • 16 radix-4 sequential multi-
plier for operands in the two's complement form following the scheme given in
Figure 4.3. To reduce the critical path it might be convenient to place the CONV
module after the register; that is, first load the bits to be converted in a register
and then convert (at the beginning of next cycle). Determine the critical path and
the total cost in terms of equivalent gates.

[Use of signed-digit adder] Repeat Exercise 4.5 using a signed-digit adder for
accumulation of partial products. If you are doing both exercises, compare the
cycle time and cost of both implementations.

[Generation of muhiples for radix 16] Design a scheme to generate multiples of a
positive multiplicand for a radix-16 sequential multiplication unit with the digit
set {-8, . . . , -1 , 0, 1, . . . , 8}. Consider the following alternatives:

Exercises 229

4 . 8

4 . 9

4 . 1 0

4 .11

4 . 1 2

4 . 1 3

(a)

(b)
Precompute the multiples.
Generate the multiples during the recurrence execution.

Compare the cost and the effect on the cycle time and the total delay
of multiplication.

[Speedup of radix-16 multiplier] Determine the delay of the critical path of the
radix-16 multiplier of Exercise 4.7 and the speedup S = T2/T16 where T2 and T16
are the latencies of the radix-2 multiplier and radix-16 multiplier, respectively.
Does the speedup depend on n, the precision of the operands? Discuss.

Combinational Multiplication with Recoding

[Generation of bit-array for radix 2, two's complement] Generate the bit-array
for the multiplication ofx = 125 by y = -122. Use the techniques discussed in
the text to reduce the sign extension bits.

[Parallel radix-4 recoding] Recode the binary representation (two's complement)
y = 10101111 into radix 4 with digit set {-2, -1 , 0, 1, 2}.

[Generation of bit-array for radix 4: magnitudes and two's complement] Show
the bit-array for radix-4 multiplication of

(a) x = 67 by y = 76 (magnitudes)
(b) x = -67 by y = -76 (two's complement representation)

[Linear adder array] Design a gate network for a radix-4 linear CSA array for
two's complement multiplication (n = 16) following the scheme in Figure 4.14(b).
Use the design of the radix-4 recoder given in the text. Determine the delay of
the critical path.

[Converter for linear array] In the linear CSA array multiplier shown in
Figure 4.14(b) the precision of the final CPA can be shortened by converting
in an iterative manner the least-significant radix-4 (redundant) digits produced
by each CSA stage. (See Exercise 4.3 for the definition of the converter.) Design
a network to perform this conversion in parallel with the CSA reduction and
determine the precision of the final CPA. (Note: If the delay of the converter is
larger than one full-adder, try to reduce the delay of producing the carry in the
converter.)

230 C N A P T E ~ 4 Multiplication

4 . 1 4

4 . 1 5

4 . 1 6

4 . 1 7

4 . 1 8

4 . 1 9

[Reduction by columns] Modify the bit-triangle of Figure 4.18 for the following
cases:

(a)
(b)

(c)

Radix 2 with operands in two's complement representation
Radix 4 with operands in magnitude representation and multiplier
recoding
Radix 4 with operands in two's complement representation and multiplier
recoding

[Reduction by columns] Develop a table to determine the number of full- and
half-adders required for the addition of the cases in the previous exercise.

Partially Combinational Multiplication

For the multiplier shown in Figure 4.21, determine the number of cycles required
for a multiplication with a 47-bit multiplier.

Arrays of Smaller Multipliers

Show the bit-matrix corresponding to a 16 x 16 magnitude multiplication using
4 x 4 multiplication modules.

Consider the implementation of 12 x 12 multiplication with operands and product
in two's complement representation. Use 5 x 5 multiplication modules (two's
complement representation).

(a) Determine how many modules are required.
(b) Show the bit-matrix to be added, identifying the output bits of each

multiplication module.
(c) Determine the network of full-adders and half-adders required to reduce

the bit-matrix to two rows, using the column reduction approach.

Multiplier-Accumulator

For the computation of

32

s - - ~ x [i] y [i]
i=1

Exercises 231

4 . 2 0

4 . 2 1

4 . 2 2

with x[i] and y[i] represented by 16 bits in two's complement representation,
compare the execution time of the following two alternatives:

(a) Using a combinational multiplier with delay tM (this includes the
conversion of the product to conventional representation) and an adder
with delay ta

(b) Using a multiplier-accumulator (carry-save result) with delay tM - tA +

t[4:21 and a final adder of delay tA

Consider evaluating the inner product of 16-element vectors A and B:

16

s - ~ A[i] x B[i]
i=1

where each element A[i] (B[i]) is a positive integer in the range [0, 127].

(a) Determine the precision of the result S to avoid overflows.
(b) Design a pipelined linear array of[3:2] carry-save adders with radix-4

multiplier recoding (digit set {-2 , - 1 , 0, 1, 2}). Assume one pair of vector
elements is available each clock cycle. The intermediate values of the sum
are in carry-save form. The final result is obtained by a carry-propagate
adder that requires one cycle.

(c) Determine the critical path in the network in terms of the delay of basic
modules and determine the cycle time.

(d) Give a timing diagram of the inner product computation in terms of clock
cycles and determine the latency in terms of clock cycles.

(e) Show a modified network if[4:2] adders are used instead of[3:2] adders
and compare with the network in (b) with respect to the cycle time.

Saturating Multiplier
Design a network for obtaining the saturated product for a two's complement
multiplier with n -- 8.

Consider an n x n-bit magnitude multiplier (Schulte et al. 2000). The saturation

is performed when the most-significant half of the product (P2n-2 , . . . , Pn) is
nonzero. This condition V happens if any of the bit products xj yi in columns n
to 2n - 2 of the multiplication bit-matrix is one or if any of the carries co k into

column n is one.

232 r H A p T E R 4 Multiplication

Module AH
x3 x 2 x 1 x 0

\
y o - -

PO '

yl

, sPl ~
Y2

Module AF
sp2 xj

._ \
Y3 v4 Yi ~ ~ ~

1 C 0 4 ~ Sp3 ~LL_.7~F

I

Module A
x i vt

YJl I Yi) ~

Ui__. �9
xi Yj

Module UV

x4-i co i
N ~

N

\

I
c I ,~,

\

Ui+l Vi+l
I~ ! a U I! l! 4.a0 4 x 4 magnitude multiplier with saturation. Adapted from Schulte et al. (2000).

(a)
(b)

D e r i v e a sw i t ch ing express ion for V for n -- 4.

S h o w tha t the fo l lowing express ions , i m p l e m e n t e d in F i g u r e 4.30,

c o m p u t e V"

Ui+l m ui .jr_ x4_i
v i + l - - v i + c o i + u i + l . Yi

V = v4 + c o 4

w h e r e i - 2, 3, u2 = x3, and v z - x 3 y l .

Further Readings 233

4 . 2 3

4 . 2 4

4 . 2 5

4 . 2 6

4 . 2 7

(c)
(d)

Determine the delay in the critical path of the scheme in Figure 4.30.
Determine the delay in the critical path for the general case of an n • n
magnitude multiplier. Give the value for n = 24.

Rectangular Multiplier
Determine the bit-array for a 16 by 6 bits multiplication unit with operands in
two's complement representation. Reduce the bits required for sign extension.

Squarers
Apply Identity 3 to the reduced bit-array shown in Figure 4.27(b) to reduce the
precision of the final adder.

Design a squarer for a 6-bit two's complement operand.

Constant Multiplier
Let C = 2925. Design adder networks to compute P -- C • X for

(a) carry-ripple adders (CRA)
(b) [3:2] CSAs and prefix adder

For each network determine the delay in terms of the full-adder delay tFA and
the number of FAs, and compare the solutions.

Design adder networks to compute P1 = 27X, P2 = 36X, P3 = 41X, and
P4 = 67X using

(a) carry-ripple adders (CRA)
(b) [3:2] CSAs and prefix adder

For each network determine the delay in terms of the full-adder delay tFA and
the number of FAs, and compare the solutions.

4 , 1 3 Further Readings
The implementation of multiplication has been important since the introduction
of the digital computer. Because of its significance in engineering and scientific
computations, it has received much attention since. Multiplication is also used in
application-specific systems for signal processing, communications, and so on.

234 r H ApT E R 4 Multiplication

Sequential Multiplier and Sequential Recoding
Sequential multiplication was popular when hardware was expensive and bulky;
it is still of use in some applications and might be of interest for highly parallel
systems on a chip. The use of carry-save addition in sequential multiplication is
first mentioned in Burks et al. (1946), described in Estrin et al. (1956), and an
early implementation presented in Kilburn et al. (1956). Sequential recoding to
radix 4 with the digit set {-1, 0, 1, 2} is described in Ware et al. (1982).

Combinational-Sequential Multiplier
Partially combinational multipliers were used in the 1960s to achieve higher per-
formance but still with limited hardware. Examples are described in MacSorley
(1961), Anderson et al. (1967), and Gosling (1980). A more recent multiplier of
this type is presented in Santoro and Horowitz (1989).

Combinational Multiplier and Parallel Recoding
Today most multipliers are combinational because of the higher speed and the
available area. Radix-4 recoding of the multiplier is frequently used. This re-
coding, called radix-4 Booth recoding or modified Booth recoding, is an extension
of the radix-2 recoding (called Booth recoding) introduced in Booth (1951) and
its use first described in MacSorley (1961). Proofs of its correctness are given in
Rubinfield (1975), Vassiliadis et al. (1989), and Sam and Gupta (1990), and the
presentation based on ideas from signed-digit addition is given in Ercegovac and
Lang (1996). Radix-4 recoding of a redundant multiplier is discussed in Lyu and
Matula (1995) and Ercegovac et al. (1994). Extensions to radix 8 and radix 16
are described in Zurawski and Gosling (1987), Sam and Gupta (1990), Kornerup
(1994), and Ercegovac and Lang (1996). Several multipliers in recent floating-
point units use radix-8 recoding (Schwarz et al. 1997). Seidel et al. (2001) present
multipliers using radix 32 and radix 256.

Two's Complement Multiplier
Although many multipliers are for magnitudes, since the sign-and-magnitude
is the standard representation for floating point, two's complement is preferred

Further Readings 235

for fixed-point multiplication. Special cells for the two's complement case are
used in Pezaris (1971), and variations of the scheme presented in this chapter are
discussed in Robertson (1955) and Baugh and Wooley (1973).

Linear Array Multiplier
Linear adder arrays for multiplication have been frequently considered because
of their regularity (Braun 1963; Guild 1969; Agrawal 1979). The idea of separate
routing of partial products between odd rows and even rows to reduce the delay to
roughly one half while maintaining the regularity of the linear array is presented in
Iwamura et al. (1982). The odd/even scheme is generalizable to several partitions
followed by an additional reduction array. In the limit, such a scheme is equivalent
to a tree of adders.

Tree Array Multiplier
The design of tree adder arrays using row reduction with [3:2] carry-save adders
is described in MacSorley (1961), Bucholz (1962), and Anderson et al. (1967),
with a general description of the method given in Wallace (1964). The [4:2]
adder is described in Weinberger (1981) and used for multiplication in Luk
and Vuillemin (1983) and Santoro and Horowitz (1989). The use of signed-digit
adders is presented in Takagi et al. (1985), Harata et al. (1987), Briggs and Matula
(1993), and Makino et al. (1996). Column reduction with full-adders in a carry-
save approach is discussed in Dadda (1965). A comparison of row reduction and
column reduction using full-adders and half-adders is reported in Bickerstaff
et al. (2001). The use of counters is described in Dadda (1976) and of (7:3] coun-
ters in Montoye et al. (1990) and Mehta et al. (1991). In Song and De Micheli
(1991), several counters are used and the resulting multipliers compared; there is
also a comparison with several commercial multipliers. In Wang et al. (1995), a
column reduction scheme without predetermined column height is presented. In
Oklobdzija et al. (1996) and Stelling et al. (1998), an algorithmic method is given
to minimize the delay of the array reduction taking into account the cell delays.

Pipelined Multiplier
Pipelining of multipliers is a standard technique used to achieve high throughput.
An example ofa pipelined linear array multiplier is presented in Noll et al. (1986).

236 c N APT E R 4 Multiplication

Multiply-Accumulate Unit

Multiply-accumulate designs are discussed in Lu and Samueli (1993), Huang
et al. (1994), and Stelling and Oklobdzija (1997).

Integer Multiplier

Integer multiplication schemes and designs are the subject ofMagenheimer et al.
(1988), Zuras (1993, 1994), and Owens et al. (1995).

Hybrid Final Adder

The effect of the nonsimultaneous production of the output bits on the final
addition and design of a hybrid adder are discussed in Oklobdzija and Villeger
(1995) and Stelling and Oklobdzija (1996).

Left-to-Right Multiplier

Left-to-right multiplication to allow for the on-the-fly conversion of the redun-
dant result without using a carry-propagate adder is presented in Ercegovac and
Lang (1990) and improved in Ciminiera and Montuschi (1996) and Takagi and
Horiyama (1999). A VLSI implementation of a left-to-right multiplier without
a CPA is described in Kolagotla et al. (1997). Left-to-right multipliers have been
used in implementing recursive filters (Knowles et al. 1989).

Multiplier with Operands in Redundant Form

Multipliers with operands in redundant form allow preceding arithmetic oper-
ations to be performed without using a CPA to produce results in conventional
forms. Design of this type of multiplier is discussed in Flynn and Oberman (2001)
and Ferguson and Ercegovac (1999).

Miscellaneous Multiplier Schemes

Multiplication by constants is discussed in Dempster and Macleod (1994, 1995)
and Potkonjak et al. (1996). Squarers are presented in Chen (1971), Strandberg
et al. (1996), and Wires et al. (1999) and multiplication with saturation in Schulte
et al. (2000). Finally, there are many discussions of various schemes for truncated

Bibliography 237

multipliers (Yoshida et al. 1991; Lim 1992; Schulte and Swartzlander 1993; King
and Swartzlander 1998; Jou and Kuang 1999; Swartzlander 1999; Schuhe et al.
1999; Wires et al. 2000, 2001; Van et al. 2000).

Several Ph.D. dissertations have been recently devoted to the design of mul-
tipliers (Santoro 1989; Bewick 1994; Stelling 1995; Callaway 1996; A1-Twaijry
1997; Meier 1999).

Low-Power Multiplier

A comparison of the energy dissipation of several combinational multipliers is
given in Callaway (1996) and Callaway and Swartzlander (1997). The effects of
sign extension techniques and recoder design on energy dissipation are analyzed in
de Angel and Swartzlander (1996) and Fried (1997). A comprehensive treatment
of analysis and design of low-power multipliers is the subject of Meier (1999). A
methodology for analyzing the effect of physical layout on the design of low-power
multipliers is presented in Meier et al. (1996). Circuit techniques for low-power
multipliers are discussed in Abu-Khater et al. (1996) and Mahanti-Shetti et al.
(1999). Cherkauer and Friedman (1997) discuss a hybrid radix-4/radix-8 multi-
plier design for low-power applications. Schulte et al. (1999) discuss reduction of
power dissipation in truncated multipliers.

Delay/Area Bounds

Theoretical bounds on the area and time to perform multiplication are discussed
in Winograd (1967) and Brent and Kung (1981). An obvious decomposition is
to perform n • n-bit multiplication with four n/2 • n/2-bit multiplications.
Karatsuba and Ofman (1962) show that three n/2 • n/2-bit multiplications
and a few extra additions are sufficient. Optimal VLSI layouts are presented in
Cappello and Steiglitz (1983) and Luk and Vuillemin (1983).

4=14, Bibliography
Abu-Khater, I. S., A. Bellaouar, and M. I. Elmasry (1996). Circuit techniques

for CMOS low-power high-performance multipliers. IEEEJournal of Solid-
State Circuits, 31(10):1535-46.

238 ~: ~ A ~T ~! ~ ~ Multiplication

Agrawal, D. P. (1979). High-speed arithmetic arrays. IEEE Transactions on
Computers, C-28(3):215-24.

A1-Twaijry, H. A. (1997).Area and Performance Optimized CMOS Multipliers. PhD
thesis, Stanford University.

Anderson, S. F., J. G. Earle, R. E. Goldschmidt, and D. M. Powers (1967). The
IBM 360/370 model 91: floating-point execution unit. IBMJournal of Research
and Development, pages 34-53.

Baugh, C. R., and B. A. Wooley (1973). A two's complement parallel ar-
ray multiplication algorithm. IEEE Transactions on Computers, C-22:1045-
47.

Bewick, G. W. (1994). Fast Multiplication: Algorithms and Implementation. PhD
thesis, Stanford University.

Bickerstaff, K. C., E. E. Swartzlander, and M. J. Schulte (2001). Analysis of
column compression multipliers. In Proceedings of the 15th IEEE Symposium
on Computer Arithmetic, pages 33-39.

Booth, A. D. (1951). A signed binary multiplication technique. Quarterly Journal
of Mechanics and Applied Mathematics, 4(2):236-40.

Braun, E. L. (1963). Digital Computer Design. Academic Press, New York.
Brent, R. P., and H. T. Kung (1981). The area-time complexity of binary multi-

plication. Journal of the ACM, 28(3).
Briggs, W. S., and D. W. Matula (1993). A 17 • 69 bit multiply and add unit with

redundant binary feedback and single cycle latency. In Proceedings ofthe 1 lth
IEEE Symposium on Computer Arithmetic, pages 163-71.

Bucholz, W. (1962). Planning a New Computer System: Project STRETCH, Chapter
14, page 210. Wiley and Sons, Inc., New York.

Burks, A., H. H. Goldstine, and J. Von Neumann (1946). Preliminary discus-
sion of the logic design of an electronic computing instrument. Techni-
cal report, Institute for Advanced Study, Princeton. Reprinted in C. G.
Bell, Computer Structures, Readings and Examples, McGraw-Hill, New York,
1971.

Callaway, T. (1996). Area, Delay, and Power Modeling of CMOS Adders and Multi-
pliers. PhD thesis, The University of Texas at Austin.

Callaway, T. K., and E. E. Swartzlander (1997). Power-delay characteristics of
CMOS multipliers. In Proceedings of the 13th IEEE Symposium on Computer
Arithmetic, pages 26-32.

Bibliography 239

Cappello, E R., and K. Steiglitz (1983). A VLSI layout for a pipelined Dadda
multiplier. ACM Transactions on Computer Systems, 1 (2):157-74.

Chen, T. C. (1971). A binary multiplication scheme based on squaring. IEEE
Transactions on Computers, C-20:678-80.

Cherkauer, B. S., and E. G. Friedman (1997). A hybrid radix-4/radix-8 low power
signed multiplier architecture. IEEE Transactions on Circuits and Systems~II:
Analog and Digital Signal Processing, 44(8):656-59.

Ciminiera, L., and E Montuschi (1996). Carry-save multiplication schemes with-
out final addition. IEEE Transactions on Computers, 45(9):1050-55.

Dadda, L. (1965). Some schemes for parallel multipliers. Alta Frequenza, 34:349-
56.

Dadda, L. (1976). On parallel digital multipliers.Alta Frequenza, 45:574-80.
de Angel, E., and E. Swartzlander (1996). Low power parallel multipliers. In

Proceedings of the IEEE Worksho p on VLSI Signal Processing, pages 199-
208.

Dempster, A. G., and M. D. Macleod (1994). Constant integer multiplication
using minimum adders, lEE Proceedings Circuits Devices Systems, 141 (5):407-
13.

Dempster, A. G., and M. D. Macleod (1995). Use of minimum-adder multiplier
blocks in FIR digital filters. IEEE Transactions on Circuits and Systems~II:
Analog and Digital Signal Processing, 42(9):569-77.

Ercegovac, M. D., and T. Lang (1990). Fast multiplication without carry-
propagate addition. IEEE Transactions on Computers, 39(11): 1385-90.

Ercegovac, M. D., and T. Lang (1996). On recoding in arithmetic algorithms.
Journal of VLSI Signal Processing, 14:283-94.

Ercegovac, M. D., T. Lang, and E Montuschi (1994). Very-high radix division
with prescaling and rounding. IEEE Transactions on Computers, 43(8):909-
18.

Estrin, G., B. Gilchrist, and J. H. Pomerane (1956). A note on high-speed digital
multiplication. IRE Transactions on Electronic Computers, page 140.

Ferguson, M. I., and M. D. Ercegovac (1999). A multiplier with redundant
operands. In Proceedings of the 33rd Asilomar Conference on Signals, Systems
and Computers, volume 2, pages 1322-26.

Flynn, M. J., and S. E Oberman (2001). Advanced Computer Arithmetic Design.
John Wiley and Sons, Inc., New York.

240 c N ~ ~:~r E ~ 4 Multiplication

Fried, R. (1997). Minimizing energy dissipation in high-speed multipliers. In
Proceedings of 1997 International Symposium on Low Power Electronics and
Design, pages 214-19.

Gosling, J. B. (1980). Design of Arithmetic Units for Digital Computers. Springer-
Verlag, New York.

Guild, H. H. (1969). Fully iterative fast arrays for binary multiplication and
addition. Electronic Letters, 5:263.

Harata, Y., Y. Nakamura, H. Nagase, M. Takigawa, and N. Takagi (1987). A
high-speed multiplier using a redundant binary adder tree. IEEE Journal of
Solid-State Circuits, SC-22(1):28-34.

Huang, X., W.-J. Liu, and B. W. Y. Wei (1994). A high-performance CMOS redun-
dant binary multiplication-and-accumulation (MAC) unit. IEEE Transac-
tions on Circuits and Systems I: Fundamental Theory and Applications, 41 (1):33-
39.

Iwamura, J., K. Suganama, S. Taguchi, M. Kimura, and K. Maeguchi (1982). A
16-bit CMOS/SOS multiplier-accumulator. In Proceedings of the ICCD '82
Conference, pages 151-54, New York.

Jou, J. M., and S. R. Kuang (1999). Design of low-error fixed-width multiplier
for DSP applications. IEEE Transactions on Circuits and Systems--II: Analog
and Digital Signal Processing, 46(6):836-42.

Karatsuba, A., and Y. Ofman (1962). Multiplication of multidigit numbers on
automata. Soviet Physics-Doklaty, 7(7):595-96.

Kilburn, T., D. B. G. Edwards, and G. F. Thomas (1956). The Manchester Uni-
versity Mark II Computing Machine. Proceedings of the IEE, pt. 103B, Suppl.
2:247-68.

King, E. J., and E. E. Swartzlander (1998). Data-dependent truncation scheme for
parallel multipliers. In Proceedings of the 31st Asilomar Conference on Signals,
Systems and Computers, volume 2, pages 1178-82.

Knowles, S. C., R. F. Woods, J. McWirther, and J. McCanny (1989). Bit-level
systolic architectures for high-performance IIR filtering. Journal of VLSI
Signal Processing, 1(1):9-24.

Kolagotla, R. K., H. R. Srinivas, and G. F. Burns (1997). VLSI implementation
of a 200-MHz 16"16 left-to-right carry-free multiplier in 0.35/xm CMOS
technology for next-generation DSPs. In Proceedings of the IEEE 1997 Custom
Integrated Circuits Conference, pages 469-72.

Bibliography 241

Kornerup, R (1994). Digit-set conversions: Generalizations and applications.
IEEE Transactions on Computers, 43(5):622-29.

Lim, Y. C. (1992). Single-precision multiplier with reduced circuit complexity for
signal processing applications. IEEE Transactions on Computers, 41 (10):1333-
36.

Lu, F., and H. Samueli (1993). A 200-Mhz CMOS pipelined multiplier-
accumulator using a quasi-domino dynamic full-adder cell design. IEEE
Journal of Solid-State Circuits, 28:123-32.

Luk, W. K., and J. E. Vuillemin (1983). Recursive implementation of optimal
time VLSI integer multipliers. In VLSI "83. Proceedings of the IFIP TC WG
10.5 International Conference on Very Large Scale Integration, pages 155-68.
Elsevier Science Publishers (North-Holland).

Lyu, C. N., and D. W. Matula (1995). Redundant binary Booth recoding. In
Proceedings of the 12th IEEE Symposium on Computer Arithmetic, pages 50-
57.

MacSorley, O. L. (1961). High-speed arithmetic in binary computers. IRE Pro-
ceedings, 49:67-91.

Magenheimer, D. J., L. Peters, K. W. Pettis, and D. Zuras (1988). Integer mul-
tiplication and division on the HP precision architecture. IEEE Transactions
on Computers, C-37:980-90.

Mahant-Shetti, S. S., R T. Balsara, and C. Lemonds (1999). High performance
low power array multiplier using temporal tiling. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 7(1):121-24.

Makino, H., Y. Nakase, H. Suzuki, H. Morinaka, H. Shinohara, and K.
Mashiko (1996). An 8.8-ns 54 x 54-bit multiplier with high speed redun-
dant binary architecture. IEEE Journal of Solid-State Circuits, 31(6):773-
83.

Mehta, M., V. Parmar, and E. E. Swartzlander (1991). High-speed multiplier
design using multi-input counter and compressor circuits. In Proceedings of
the lOth IEEE Symposium on Computer Arithmetic, pages 43-50.

Meier, P. C. H. (1999).Analysis and Design of Low Power Digital Multipliers. PhD
thesis, Carnegie Mellon University.

Meier, R C. H., R. A. Rutenbar, and L. R. Carley (1996). Exploring multiplier
architecture and layout for low power. In Proceedings ofthe IEEE 1996 Custom
Integrated Circuits Conference, pages 513-16.

242 c N A P T E R 4 Multiplication

Montoye, R. K., E. Hokonek, and S. L. Runyan (1990). Design of the floating-
point execution unit of the IBM RISC System/6000. IBM]ournal of Research
and Development, 34(1):59-70.

Noll, T., D. Schmitt-Landsiedel, H. Klar, and G. Enders (1986). A pipelined
330-MHz multiplier. IEEE Journal of Solid-State Circuits, SC-21 (6):411-
16.

Oklobdzija, V. G., and D. Villeger (1995). Improving multiplier design by using
improved column compression tree and optimized final adder in CMOS
technology. IEEE Transactions on VLSI, 3(2):292-301.

Oklobdzija, V. G., D. Villeger, and S. S. Liu (1996). A method for speed opti-
mized partial product reduction and generation of fast parallel multipliers
using an algorithmic approach. IEEE Transactions on Computers, 45(3):294-
306.

Owens, R. M., R. S. Bajwa, and M. J. Irwin (1995). Reducing the number of
counters needed for integer multiplication. In Proceedings of the 12th IEEE
Symposium on Computer Arithmetic, pages 38-41.

Pezaris, S. D. (1971). A 40 ns 17 bit by 17 bit array multiplier. IEEE Transactions
on Computers, C-20(4):442-47.

Potkonjak, M., M. B. Srivastava, and A. E Chandrakasan (1996). Multiple constant
multiplications: Efficient and versatile framework and algorithms for explor-
ing common subexpression elimination. IEEE Transaction on Computer-Aided
Design of Integrated Circuits and Systems, 15(2):151-65.

Robertson, J. E. (1955). Two's complement multiplication in binary paral-
lel computers. IEEE Transactions on Electronic Computers, EC-34(3):118-
19.

Rubinfield, L. E (1975). A proof of the modified Booth's algorithm for multipli-
cation. IEEE Transactions on Computers, C-24(4): 1014-15.

Sam, H., and A. Gupta (1990). A generalized multibit recoding of the two's
complement binary numbers and its proof with application in multi-
plier implementations. IEEE Transactions on Computers, C-39(8):1006-
15.

Santoro, M. R. (1989). Design and Clocking of VLSI Multipliers. PhD thesis, Stan-
ford University.

Santoro, M. R., and M. A. Horowitz (1989). SPIM: a pipelined 64 x 64-bit iterative
multiplier. IEEE Journal of Solid-State Circuits, 24:487-93.

Bibliography 243

Schulte, M. J., and E. Swartzlander (1993). Truncated multiplication with correc-
tion constant (for DSP). In Proceedings of the IEEE Worksho p on VLSI Signal
Processing, pages 388-96.

Schulte, M. J., J. E. Stine, and J. G. Jansen (1999). Reduced power dissipation
through truncated multiplication. In Proceedings of the IEEE Alessandro Volta
Memorial Worksho p on Low-Power Design, pages 61-69.

Schulte, M. J., p. I. Balzola, A. Akkas, and R. W. Brocato (2000). Integer multipli-
cation with overflow detection or saturation. IEEE Transactions on Computers,
49(7):681-91.

Schwarz, E. M., R. Averill, III, and L. Sigal (1997). A radix-8 CMOS S/390
multiplier. In Proceedings of the 13th IEEE Symposium on Computer Arithmetic,
pages 2-9.

Seidel, P.-M., L. D. McFearin, and D. W. Matula (2001). Binary multiplication
radix-32 and radix-256. In Proceedings of the 15th IEEE Symposium on Com-
puter Arithmetic (Arith-15), pages 23-32.

Song, P. J., and G. De Micheli (1991). Circuit and architecture trade-offs for high-
speed multiplication. IEEE Journal of Solid-State Circuits, 26(9):1184-98.

Stelling, P. F. (1995).Application of Combinatorics to Parallel Multiplier Design, Tree
Reconstruction, and the Analysis of Strings. PhD thesis, University of California,
Davis.

Stelling, P. F., and V. G. Oklobdzija (1996). Design strategies for optimal
hybrid final adders in a parallel multiplier. Journal of VLSI Signal Processing,
14(3):321-31.

Stelling, P. F., and V. G. Oklobdzija (1997). Implementing multiply-accumulate
operation in multiplication time. In Proceedings of the 13th IEEE Symposium
on Computer Arithmetic, pages 99-106.

Stelling, P. F., C. U. Martel, V. G. Oklobd~ija, and R. Ravi (1998). Optimal circuits
for parallel multipliers. IEEE Transactions on Computers, 47(3):273-85.

Strandberg, R. H., L. G. Bustamante, V. G. Oklobdzija, M. Soderstrand, and
J. C. LeDuc (1996). Efficient realizations of squaring and reciprocal used in
adaptive sample rate notch filter. Journal of VLSI Signal Processing Systems,
14(3):303-9.

Swartzlander, E. (1999). Truncated multiplication with approximate rounding. In
Proceedings of the 33rd Asilomar Conference on Signals, Systems, and Computers,
volume 2, pages 1480-83.

244 e N A p T E R 4 Multiplication

Takagi, N., and T. Horiyama (1999). A high-speed reduced-size adder under
left-to-right input arrival. IEEE Transactions on Computers, 48(1):76-80.

Takagi, N., H. Yasukura, and S. Yajima (1985). High speed multiplication algo-
rithm with a redundant binary addition tree. IEEE Transactions on Computers,
C-34(9):789-96.

Van, L. D., S.-S. Wang, and W.-S. Feng (2000). Design of the lower error fixed-
width multiplier and its application. IEEE Transactions Circuits and Systems
II: Analog and Digital Signal Processing, 47(10):1112-18.

Vassiliadis, S., E. M. Schwarz, and D. J. Harahan (1989). A general proof for
overlapped multiple-bit scanning multiplication. IEEE Transactions on Com-
puters, 38:172-73.

Wallace, C. S. (1964). A suggestion for a fast multiplier. IEEE Transactions on
Electronic Computers, EC- 13(2): 14-17.

Wang, Z., G. A. Jullien, and W. C. Miller (1995). A new design technique for
column compression multipliers. IEEE Transactions on Computers, 44(8):962-
70.

Ware, E A., W. McAllister, J. R. Carlson, D. K. Sun, and R. J. Vlach (1982). 64
bit monolithic floating-point processors. IEEE Journal of Solid-State Circuits,
SC-17(5):898-907.

Weinberger, A. (1981). 4:2 carry-save adder module. IBM Technical Disclosure
Bulletin, 23.

Winograd, S. (1967). On the time required to perform multiplication.Journal of
the ACM, 14(4):793-802.

Wires, K. E., M. J. Schulte, L. E Marquette, and E I. Balzola (1999). Combined
unsigned and 2's complement squarers. In Proceedings of the 33rd Asilomar
Conference on Signals, Systems, and Computers, pages 1215-19.

Wires, K. E., M. J. Schulte, and J. E. Stine (2000). Variable-correction truncated
floating point multipliers. In Proceedings of the 34th Asilomar Conference on
Signals, Systems, and Computers, pages 1344-48.

Wires, K. E., M. J. Schulte, and J. E. Stine (2001). Combined IEEE compliant
and truncated floating point multipliers for reduced power dissipation. In
Proceedings of the IEEE International Conference on Computer Design: VLSI
in Computers and Processors (ICCD'O1), pages 497-500.

Yoshida, N., E. Goto, and S. Ichikawa (1991). Pseudorandom rounding for trun-
cated multipliers. IEEE Transactions on Computers, 40(9):1065-67.

Bibliography 245

Zuras, D. (1993). On squaring and multiplying large integers. In Proceedings of
the llth IEEE Symposium on Computer Arithmetic, pages 260-71.

Zuras, D. (1994). More on squaring and multiplying large integers. IEEE Trans-
actions on Computers, 43(8):899-908.

Zurawski, J. H. P., and J. B. Gosling (1987). Design of a high-speed square root,
multiply and divide unit. IEEE Transactions on Computers, C-36(1):13-23.

CRADTER 8 Division by Digit
Recurrence

This chapter describes algorithms and implementations for the division operation.
Several classes of algorithms exist for this operation, the most used being the digit
recurrence method, the multiplicative method, various approximation methods,
and special methods such as the CORDIC and continued product methods. The
algorithms and implementations of the type discussed here are based on a digit
recurrence. In this method, the quotient is represented in a radix-r form and one
digit of it is obtained per iteration. Many of the techniques presented here are
applicable to other digit recurrences, such as square root and reciprocal square
root, as well as to the class of online algorithms.

The implementations of the algorithms presented can be either sequential,
combinational, or a combination of both; moreover, in the combinational case
the implementation can be pipelined or nonpipelined. The design space is large
since many parameters are involved and the best solution depends on the par-
ticular requirements. Thus, it is impractical to describe the set of good designs.
In this chapter we concentrate on the method of design and give examples of
implementations that are representatives of the different approaches.

First, we present the algorithm for fractional operands and result, which
relates directly to the requirements of floating-point processors (see Chapter 8);
we then discuss the modifications required for integer division. We concentrate on
algorithms that use redundant quotient-digit sets since these have significant speed
and cost advantages. The most difficult problem in the digit recurrence division
algorithms is selection of quotient digits. We discuss a general theory useful in
developing quotient-digit selection functions and describe several instances of
selection functions and their implementations.

247

248 r H A pTER 5 Division by Digit Recurrence

5ot Definition and Notation
The division operation is defined by the following expressions:

x - q . d +re in 5.1

and

[rein] < Id[" ulp and sign(rein) = sign(x) 5.2

where the dividend x and the divisor d are the operands and the results are the

quotient q and, optionally, the remainder rem. The unit in the last position (ulp)

defines the granularity of the quotient. The two most typical cases produce a

fractional quotient or an integer quotient. For these cases we have

�9 fractional quotient: ulp = r -n (for radix-r representation and n-digit

quotient)

�9 integer quotient: ulp = 1

Correspondingly two types of division operation are defined:

1. Fractional division, in which operands and result are fractions. This case is

directly related to floating-point division. 1

2. Integer division, with integer operands and result.

The bulk of this chapter considers the fractional case. We then, in Sec-
tion 5.4, describe integer division and discuss its integration with fractional di-
vision. Moreover, the most-frequently used representation of operands/result is
sign-and-magnitude, so we consider only magnitudes.

Normalized Divisor

As will be apparent in the next sections, the preferred division algorithms require

that the divisor be in normalized form. For the fractional case, this corresponds

to

1 / 2 < _ d < 1 5.3

1. Although the IEEE Floating Point Standard 754 uses significands in the range [1,2), the
adaptation to this format is straightforward (see Chapter 8).

Algorithm and Implementation of Fractional Division 249

This is usually the case for floating-point representations. On the other hand, when
this restriction is not part of the representation of the operand, a prenormalization
step has to be included. This is achieved by a left shift, as is described in Section 5.4
for integer division.

Range of Quotient
For normalized fractional divisor and fractional dividend (not necessarily nor-
malized), the quotient is in the range 0 < q < 2. If a normalized fraction is
required, a normalization step should be included.

Algorithm and Implementation
of Fractional Division
The digit recurrence algorithm consists of n iterations of a recurrence, in which
each iteration (step) produces one digit of the quotient. This is preceded by an
initialization step and followed by a termination step. We now consider these
steps, beginning with the recurrence step, which is the core of the algorithm.

5~2 I R e c u r r e n c e Step
Let us call q [j] the value of the quotient after j steps; that is,

J
q[j] = q[0] + ~ q i r-i 5.4

i--1

where q [0] is determined by the initialization. The n-digit final quotient is then

q = q[n] = q[0] + ~ q i r-i 5.5
i=1

The quotient-digit set plays a crucial role in the characteristics of the algo-
rithm. The most-direct choice is to use the canonical digit set such that 0 < qj <__
r - 1. This leads to the basic restoring division, which is not convenient because of
an "expensive" quotient-digit selection. For radix 2, the situation is somewhat im-
proved by using the digit set { - 1, 1} (no 0), resulting in a nonrestoring algorithm.
However, because of the nonredundant nature of the digit set, the quotient-digit

250 r N •PTER 5 Division by Digit Recurrence

selection is still complex. 2 In the rest of the chapter, to obtain a s impler selection

funct ion (as is shown later), we use a redundant digit set. In par t icular we use the

symmet r i c s igned-digi t set of consecutive in t ege r s)

q j ~ 79a -- { - - a , - - a + 1, . . . , - - 1 , 0, 1, . . . , a -- 1, a } 5.6

Since for r e d u n d a n t representa t ion m ore than r consecutive integer values

inc lud ing zero are needed (exactly r values produce a n o n r e d u n d a n t representa-

tion), a has to satisfy

a >_ [r12l 5.7

T h e r e d u n d a n c y factor p is def ined as

a 1
p - - - < p < l 5.8

r - l ' 2 -

F r o m the defini t ion, a correct division a lgor i thm mus t p roduce a quo t ien t q wi th

a positive er ror (remainder) of less than one u l p , with respect to the infinite

precision value. 4 T h a t is, for fractional division the error is b o u n d e d by

x

0 < 6 q = q < r - n 5.9
- d

Moreover , the recurrence has to converge to this error. Cal l ing 6[j] the er ror after

i terat ion j , we have

x
6[/] = ~- - q [j] < E[n] + m a x (q i) r - i - - E[n] -+- (r - j - r -n) 5.10

i--j+l r - 1

This equa t ion has as solution 5

ELl] <_ pr - j 5.11

As will become clear in Section 5.5, to m a k e use of the negat ive values of

the quo t i en t digit it is necessary to have also negat ive errors after i terat ion j ,

2. Restoring and nonrestoring algorithms are reviewed in Chapter 1.
3. See Chapter 2. There are some instances in which a nonsymmetric set might be preferable;
we do not consider this generalization here.
4. This is consistent with the requirement that the remainder be bounded by Jdl" ulp.
5. The equal condition in the next expression is not applicable for the case p = 1; in this case
it is necessary to use the < condition to assure that the final error is less than r-" .

Algorithm and Implementation of Fractional Divkion 251

so that

I~F] l =
x

-~ - q[jl < pr - j 5.12

This assures that the magnitude of the error produced after n iterations is bounded

by r -n . However, this error can be negative; in such a case, a correction step is

required, as discussed in Section 5.2.2.

From expression (5.12) the recurrence is obtained as follows. First, multiply
by d, to eliminate the division operation. We get

Ix - dq[j]l <_ pdr - j 5.13

The bound of (5.13) decreases with j . To have a variable whose bound is inde-

pendent of j , we define the residual (or partial remainder) w so that

with bound

w[j] = r J (x - d q [j]) 5.14

iw[j]l < pd 5.15

To obtain the recurrence we compute

w[j + 1] - rw[j] = r J + l (q [j] - q [j + 1])d

Since, from (5.4), q [j + 1] = q[j'] + qj+l r-(j+l), the recurrence is

w[j + 1] = rw[j] - dqj+l 5.16

with the initial value obtained from (5.14) by setting j = O:

w[0] - - x - - d q [0] 5.17

Expression (5.16) is the basic recurrence on which the division algorithms are
based.

The recurrence is performed so that w[j + 1] is bounded by (5.15). This is
accomplished by selecting a suitable value of q j+l by means of the quotient-digit
selection function

qj+l = SEL(rw[j], d) 5.18

Actually, the use of a redundant digit set for qj allows that the selection function

uses ~', a truncated r w [j], and d, a truncated d. That is,
A

q j+l = SEL(~, d) 5.19

252 c H A PTER ~5 Division by Digit Recurrence

w[j] (present residual)

1_
! ,

' ARITHMETIC LEFT SHIFT ', i
i i

d (divisor)

rw[j] (shifted residual)

rw[j]

A y A

d /

SEL

l qj+l
DIVISOR MULTIPLE

GENERATION

l dqj+l

SUBTRACTION

w[j + 1] (next residual)

I
qj+l : dqj+l Subtraction

I

Selection,

I i
Quotient update

(on-the-fly)
i q

Recurrence step time

(b)

I UOTIENT CONVERSION I:

1
(a) q[j + 1]

qj+l

F I G U R E 5.1 Recurrence step: (a) components and (b) timing.

A

The number of bits of~" and d depends on the radix and on the quotient-digit
set, as discussed in Section 5.5

Implementation of a Recurrence Step

As indicated by the recurrence, each iteration consists of five subcomputations
(Figure 5.1(a)):

1. One digit arithmetic left shift ofw[j] to producerw[j]

2. Determination of the quotient digit qj+l by the quotient-digit selection
function

Algorithm and Implementation of Fractional Division 253

3. Generation of the divisor multipled x qj+l

4. Subtraction ofdqj+l from r w [j]

5. Update of the quotient q [j] to q [j + 1] by the on-the-fly conversion

q[j + 1] = CONV(q[j], qj+l) 5.20

discussed in Section 5.2.3, producing at each recurrence step the corres-
ponding quotient value in a nonredundant form

The five subcomputations are executed as indicated in the timing diagram of
Figure 5.1(b). Note that no time has been allocated for the arithmetic shift since it
is implemented by suitable wiring. Moreover, the relative magnitudes of the delay
of each of the components depend on the specific implementation. The quotient
update is not in the critical path.

This general description of the recurrence step can result in different specific
versions depending on several interrelated factors. We now list the most important
factors and mention their effect on the overall execution time and cost of the
implementation; the reasons for these effects are clarified later.

1. Radix r. For the same quotient precision, the number of iterations of the
algorithm is reduced by a factor k when going from a radix r to a radix r k.
However, this increase in radix produces a more complex implementation
because of the quotient-digit selection and the generation of the divisor
multiples. This additional complexity increases the time of each iteration.

2. Quotient-digit set. As indicated, a redundant signed-digit set is used to
simplify the quotient-digit. The value of the redundancy factor influences
the complexity of the quotient-digit selection and of the generation of the
divisor multiples in an opposite manner: a higher p reduces complexity of
the selection function but increases complexity of the generation of the
divisor multiples. Consequently, the choice of p is an important design
decision.

3. Representation of the residual. In particular, it can be represented in
nonredundant form (for example, conventional two's complement
representation) or redundant form (for example, carry-save two's
complement representation or signed-digit representation). The redundant
form has the big advantage that the addition/subtraction part of the

254 r N ~, pT E ~ 5 Division by Digit Recurrence

,

iteration is done using a carry-free adder (and is, therefore, fast). 6 Its

disadvantages are that it complicates somewhat the quotient-digit selection

and that it increases the number of register bits required to store the

residual. Moreover, if the remainder is needed, the final residual has to be

converted to conventional representation. Even if the remainder is not

needed, a sign detection has to be implemented for the correction step,

indicated in Section 5.2.2.

Quotient-digit selection function. The complexity of the implementation of

this function depends on all the previous factors. Its delay is an important

contributor to the iteration time, especially when a carry-free adder is

used.

5~ =2 Initialization, Number of Iterations, and Termination

We now consider the steps of the whole algorithm, which consists of an initial-

ization step, a number of iterations of the recurrence step, and a termination

step.

T h e initialization should satisfy the initial value of the residual and assure

convergence. As indicated, w[0] = x - d q [0] and the residual bound is]w[0]] <

p d . The following options for the initializations are possible:
1 �9 Make q [0] -- 0. For p -- 1, we make w[0] -- x /2 ; consequently, w[0] < i

forx < 1 .
1 1 For 2 < P < 1, we make w[0] -- x /4 ; this produces w[0] < ~ < p d .

This initialization produces a scaled quotient (divided by two or by four) in

the range 0 < q < p. To obtain the correct quotient (0 < q < 2), a scaling

by two or four is required during the termination step. Because of this

scaling, to obtain a final quotient ofn bits, one or two additional bits have to

be computed.

�9 For p = 1 and a normalized dividend, make q [0] = 1 and w[0] = x - d,
1 which results in Iw[0]l < 2" In this case the algorithm converges only if the

quotient is q < 1 + p (that is why it can be used only for p = 1). Moreover,

this method requires additional hardware to compute x - d.

6. We use the term "carry-free adder" to denote adders, such as carry-save adders and
signed-digit adders, characterized by carry chains of fixed (small) length (see Chapter 2).

Algorithm and Implementation of Fractional Division 255

The number of iterations N of the recurrence step is dependent on the number

of bits of the final quotient, the scaling of the dividend introduced by the initial-

ization, the guard bit required for rounding (see Chapter 8), and the radix. For

example, for a 53-bit quotient, using a radix 8 with p = 1, and rounding (one

guard bit) the number of iterations is

5 3 + 1 + 1]
N - - - -19

3

The termination step has to account for the following:

�9 The algorithm can produce a negative final residual w[N]. On the other

hand, the definition of division requires a nonnegative remainder (for

positive dividend). 7 Consequently, it is necessary to have a correction step

that adjusts the quotient as follows:

q [N] i fw[N] > 0
q = -N 5.21

q [N] - r i fw[N] < 0

�9 If the dividend has been shifted for initialization (divided by two or by

four), this is compensated by shifting the quotient correspondingly. 8

�9 For most floating-point implementations it is required to detect the

zero-remainder condition, to determine exact quotient and for rounding.

This condition is determined from w[N] -- 0 and the bits ofq [N] after

digit n.

Implementation o f Initialization and Termination

The initialization is implemented by a fixed shift of one or two positions or
by a subtraction (x - d). When the residual is in carry-save format, no actual
subtraction might be required.

The termination is implemented by a sign detection of the residual, by the
conditional decrement of the quotient (when the residual is negative), and by a
fixed shift (for the case in which the initialization is done with a shift).

7. In some applications the sign of the remainder can be arbitrary, as long as the remainder is
bounded; in such cases the correction is not necessary.

1 2). In a floating-point unit the quotient is 8. This produces a quotient in the range (3'
normalized and rounded (see Chapter 8), so that the shifting can be included as part of this
process.

256 c ~{ A ~-~'~.~ E ~'~ 5 Division by Digit Recurrence

5~ o3 On-the-Fly Conversion

The quotient has to be converted from signed-digit representation to conventional
representation. This can be done with an addition step after the quotient is com-
pletely computed. However, this addition would increase the overall execution
time. To avoid this, we now discuss an algorithm that performs the conversion
in a digit-serial manner as the digits of the quotient are produced.

A possibility is the following algorithm. Let Q [j] be the digit vector of the
converted quotient consisting of the j most-significant digits, that is,

J
Q[j] - ~ qir

i=1

-i

Then we have

5.22

Q[j + 1] - QF] + qj+l r-(j+l) 5.23

Since qj+l can be negative, we can use the following algorithm for this
addition:

_ [Q[j] + qj+l r-(j+l) if qj+l > 0 5.24 Q[j + 1] [Q [j] - r - j n t- (r - [q j + l i) r -(j+l) if qj+l < 0

This algorithm has the disadvantage that the subtraction Q[j] - - r -J requires
the propagation of a borrow and, therefore, is slow. To avoid this propagation we
keep another form, Q M[j], with value

Q M[j] -- Q[j] - r - j 5.25

Using this second form, the conversion algorithm is

+ 1] - [Q[j] + qj+lr-(J+l) if qj+l > 0 5.26
9[j ! QM[j] + (r -Iqj+ll)r -Ij+l) if qj+l < 0

so that the subtraction is replaced by loading the form Q M[/"]. It is necessary to
update also the form Q M[j], as follows:

QM[j + 1] - Q[j + 1] - r -(j+l)

- - [Q[j] + (q j + l - 1)r -/j+l) if qj+l > 0 5.27

! Q M [j] Jr-((r - 1) - I q j + l l) r -(j+l) if qj+l < 0

Algorithm and Implementation of Fractional Div#ion 257

5
6
7
8
9

10

11

12

qj

1

1

0

1

- 1

0

0

1

1

0

1

0

Q [j]

o
0.1

0.11

0.110

0.1101

0.11001

0.110010

0.1100100

0.11000111

0.110001111

0.1100011110

0.11000111101

0.110001111010

Q M [j]

0
0.0
0.10

0.101

0.1100

0.11000

0.110001

0.1100011

0.11000110

0.110001110

0.1100011101

0.11000111100

0.110001111001

T A B L S S.1 Example of conversion.

Now all additions are concatenations, so no carry/borrow is propagated. We call

this an on-the-fly conversion algorithm. In terms of concatenations the algorithm

is

(Q[j],qj+l) if qj+l > 0 5.28
Q[j" + 1] - (QM[j] , (r - Iq j+l l)) if qj+l < 0

(

_] (Q[j] ,qj+l - 1) if qj+l > 0
9 M [j + 1] / (QM[j] , ((r - 1) - [q j + l l)) i f q j + l < 0

with the initial conditions Q [0] - QM[0] - 0 (for a positive quotient).
As an example consider the radix-2 case in Table 5.1.

5.29

Implementation o f the Conversion

The implementation of the algorithm requires two registers to contain Q [j] and

QM[j], respectively. These registers are shifted one digit left with insertion in the

least-significant digit, depending on the value ofqj+l . They also require parallel

loading to load Q [.1.] with QM[j] and vice versa. This implementation is shown

258 c ~ ~ p'~' E ~ 5 Division by Digit Recurrence

~Q
2-1 MUX

/
Q REG

2-1 MUX

/
QM REG

~ QM Load
].. select

I-

Qin

II

Load
]_. select

r

QMin

II

F ! G u R E s.2 Implementation of on-the-fly conversion.

qj+l

in Figure 5.2. The operations on these registers are

shift Q with insert (Qin)

Q +-- shift QM with insert (Q in)

if CshiftO -- 1

if CloadQ - - 1
5.30

where

shift QM with insert (QMin)

QM +- shift Q with insert (Q M i n)

if C shiftQM = 1

if C loadQM = 1

[
_ ~ qj+l

9in ! r - - [q j+ l [

if qj+l >_ 0

if qj+l < 0

5.31

5.32

r

_ J q j + l - - 1
QMin ! (r -- 1) - - [q j+ l [

if qj+l > 0

if qj+l <_ 0
5.33

and the register control signals C loadQ ~ C t t shiftQ and C loaaOM = CshiftOM. Table 5.2
describes the operation for the radix-4 case.

Implementations of the Division Algorithm 259

qj+l

m

Qi. C shifiQ

1

1

1

1

0
0
0

Q [j + I]

(Q [j], 3)
(Q [j], 2)

(Q [j], 1)

(Q [j], 0)

(QM[j],3)
(QM[j],2)
(QM[j] , I)

QMi. C shifiQM

0
0
0

1

1

1

1

QM[j+I]

(9 [j], 2)
(Q [j], 1)
(Q [j], o)
(QM[j],3)
(QM[j],2)
(QM[j],I)
(QM[j],O)

T A B L E 5.2 Control signals and operations for radix-4 on-the-fly conversion.

Quotient Rounding

When division is performed in a floating-point unit, usually the result has to be
rounded. When the on-the-fly conversion is used, this rounding can be incorpo-
rated as part of the conversion. This is discussed further in Chapter 8.

Implementations of the Division Algorithm
As indicated, the core of the division algorithm consists of N iterations of the
recurrence. The implementation of this core can be totally sequential, where the
hardware of the recurrence step is reused for all the iterations and the residual

is updated in a register (Figure 5.3(a)); totally combinational, where the hardware
for the recurrence step is replicated (Figure 5.3(b)); or a combination of both,
where the step hardware is replicated k times and this superstep is reused N / k
times (Figure 5.3(c)). The combinational implementations can be pipelining so
that several division operations can use the hardware at the same time, with the
corresponding increase in throughput. The selection of one of these alternatives
is influenced by cost, speed, and throughput considerations.

The alternative implementations above are the same as discussed for multi-
plication in Chapter 4. However, there is a significant difference in the combina-
tional implementations. While in multiplication, because of the associativity of
addition, the sequence of additions can be performed either in a linear array or in
a tree, for division only the linear structure is possible because of the dependency
introduced by the quotient-digit selection. This, together with the fact that the

260 C H A p T E R 5 Division by Digit Recurrence

d

i

[INITIAL STEP I

[RESIDUAL REGISTER I
l wU]

d 61 RECURRENCE
-I STEP

/ /

q[j + 1] /] w[j + 1]

I I I w[N]

I TERMINAL STEP I

(a)

INITIAL STEP
~ w[O]

J ~ -I RECURRENCE STEP '
w[1]

~l I q2 -I RECURRENCE STEP =
w[21

~l RECURRENCE STEP I qN
-I I

I w[,~

or"
Iii
I---
iii ~>
z ~o

z > -

ur.,
o " ' -1--

(b) q

d

I INITIAL STEP

l w[ik] qik+l

I RECURRENCE STEP I
I

~ w[ik + l] qik+2
.J -[RECURRENCE STEP I

l w[ik +2]

q(i+ 1)k

=1 RECURRENCE STEP I1

w[(i + l)k]

(c)

_1

iii

iii

8 > z ~~
O

z > -
u.,

8"' -r"

Z
o

q

T
wiN] q

F i G U R E S . 3 Division implementation: (a) Totally sequential. (b) Totally combinational. (c)
Combined implementation. ("Recurrence step" in (b) and (c) does not include quotient con-
version part.)

Implementations of the Division Algorithm 261

5~3,1

delay of the quotient-digit selection is a significant portion of the iteration delay,
makes the combinational implementation of division less attractive.

In addition to this core, an initialization step and a termination step are
required, which can be implemented by additional cycles or incorporated in the
first and last iterations.

Examples of Algorithms and Implementations
We now illustrate several typical division algorithms and their implementations.
These algorithms show a progression of radices, namely, radix 2, 4, 8, 16, and 512.
The radix 2, 4, and 8 cases correspond directly to instances of the radix-r algo-
rithm described in the previous section. For higher radices, the direct algorithm
results in an impractical implementation, mainly because of the complexity of
the quotient-digit selection function; consequently, we illustrate a radix-16 im-
plementation that consists of two overlapped radix-4 iterations per cycle, and a
radix-512 implementation, which uses prescaling of the divisor (and dividend)
and selection by rounding.

In all cases, carry-save adders are used for the residual recurrence since this
results in a faster iteration. Included for the radix-2 and the radix-4 cases are
the quotient-digit selection functions, which are developed in the next section.
Because of the redundancy provided by the quotient-digit set, these selection
functions have as input the truncated residual and the truncated divisor.

Specifically, we illustrate and compare the following algorithms:

�9 r2 scheme. Radix 2 with carry-save residual (quotient digit set {-1, 0, 1 }).
�9 r4 scheme. Radix 4 with carry-save residual (quotient digit set

{-2, 1, 0, 1, 2}).
�9 r8 scheme. Radix 8 with carry-save residual (- 7 < qj < 7).
�9 rl6over scheme. Radix 16 with two overlapped radix-4 stages.
�9 r512 scheme. Radix 512 with carry-save residual, scaling, and quotient-digit

selection by rounding (-511 < qj < 511).

The estimates of the execution time and area reflect what is typical for CMOS
standard-cell libraries. More accurate evaluations need the use of specific data for
the particular library. Since the actual execution time and area are technology
dependent, we give here relative values for the schemes compared. These should
be more technology independent and give an indication of the merits of each
scheme. Specifically:

262 c H ApT E • ~ Division by Digit Recurrence

�9 Cells are modeled by a delay (as a function of the load) and an area. Delays

and areas are given in units of 2-input NAND gates. The unit of delay

assumes a fanout of three NAND gates. We include the delay and area of

registers for the operands, the result, and the residual. This assumes that the

implementation uses just one stage for the iterations. If, on the other hand,

the stages are unfolded to produce a higher-radix divider, the residual

register has to be counted only once.
�9 Interconnections are not included: we have not considered the delay, area,

nor load of interconnections.
�9 Degree of optimization: The same modules have been used in all designs.

Consequently, additional optimizations might be applied to most of them.

However, the cycle time and area ratios should not change significantly.

�9 The execution time and the area are calculated for 53-bit operands and

54-bit result (which is typical for a double-precision floating-point

implementation; the additional bit of the result is used for rounding to

produce a final 53-bit quotient).
�9 All implementations are composed of the basic modules whose

characteristics are given in Figure 5.4.

The detection of the negative-remainder and zero-remainder conditions

could be performed by first converting the carry-save representation to conven-
tional. However, that would require a carry-propagate adder, which is bulky and
slow. Consequently, we consider an implementation directly from the carry-save

representation.
Because the carry-save representation is redundant, the zero-remainder de-

tection is difficult. However, the representation o f - 2 -b, where b is the number
of fractional bits of the last residual, is unique. Moreover, in this representation
the sum of the sum and the carry bits is 1 for all positions. Consequently, we first

obtain

P = W L - 2 b 5.34

where WL is the last residual, represented in carry-save by WS and WC.

This is produced by a [3:2] addition with a third bit-vector of all ls. The

implementation simplifies to the following switching expressions:

PSi = (WSi ~ WCi) t, PCi-1 -- WSi '~ WCi 5.35

Implementations o f the Division Algorithm 263

2-input MUX 3-input MUX:

t 5 Delay: 1.6 Area: 4.4

4-input MUX:
Delay: 1.8
Area: 5.6

Delay: 1.4 (a)
Area: 3.0

BUFFER

Delay: 1.8
Area: 2.6

(b)

REGISTER CELL

D Q

CK

SET]

[3:2] module
(full-adder)

0

rci+l Delay: 4.0 vsi

Area: 4.0

a b c

(c)

a

I I

HA*

VCi+ 1 l)Si

Delays:

b c

I
I

a, b to rSi: 4.2

c to vsi: 2.2

a, b to VCi+l: 3.8

r tO rr 2.0

Area: 6.7

[4:2] module

a b c d

I I I I
ti+l < I [4:2]

I module
I

vci+l vs i

Delays:

to ti+l: 1.6

tO rCi+l: 5.6

to vsi: 6.0
Area: 15.5

ti

VC i

ti+l

vci+ 1

a b b c c a a b c d

d ti

] vc i

(d) vsi

F I G U R E 5 . 4 Basic modules: (a) Multiplexers. (b) Buffer and register cell. (c) Full-adder.
(d) [4:2] module.

T h e n the ze ro- remainder condit ion is obtained by

b

P i - - PS i �9 P C i , z e ro - - H p i 5.36
i=o

264 c MAPTER ~ Division by Digit Recurrence

The sign can also be detected using the PS and PC forms instead of WS and

WC: ifps + pc ~ O, then ws + wc > 0, and ifps + pc > 0, then ws + wc ~ O.

Therefore,

I
sign -- (p o ~ c o) zero 5.37

where c0 is the carry into the most-significant position (sign position).
The carry is obtained as co -- g~l,bl = Gout by a tree of P, G cells, which

also produces Pout - P ll,bl resulting in the following: 9

zero - p o Pout 5.38

sign -- (p o �9 G out) zero' 5.39

The implementation is shown in Figure 5.5(a).

R a d i x - 2 Div is ion wi th Res idual in Carry-Save Form

The algorithm is summarized in Figure 5.6, and an illustration of the first four

steps is given in Figure 5.7. The quotient-digit selection function for this scheme

is discussed in Section 5.5 (Example 5.2). 1~
The corresponding implementation using the modules of Figure 5.4 is shown

in Figure 5.8. The characteristics of this implementation are given in Table 5.3.
Moreover, the critical path is shown in Figure 5.8 and summarized together with

the area in Table 5.3.

R a d i x - 4 Divis ion wi th Res idua l in Carry-Save Form

The radix-4 algorithm with the residuals in carry-save form is similar to the
radix-2 algorithm in Figure 5.6 with the following differences:

1. We consider the case where the quotient-digit set is {-2, - 1 , 0, 1, 2}. This
is a redundant digit set and allows a simple implementation ofq j+ld .

2. For this case (p < 1) we initialize WS[0] +- x/4.

3. The next residual is

(WC[j + 1], WS[j + 1]) ~ CSADD(4WC[j] , 4WS[j], - q j + l d)

9. See Chapter 2 for a definition of these signals.
10. For this radix the input to the selection function does not include the truncated divisor.

Implementations of the Division Algorithm 265

WS WC

sign ~ SZ MODULE

I S,GN ANDZERO DETECTION
zero ~ LOOKAHEAD NETWORK

(needed in rounding;
see Chapter 8) 1 level of pg modules

6 levels of PG modules

Delay: 4 + 6 x 1.5 + 2 = 15

Area: 8 x 5 4 + 3 x (27 + 1 4 + 7 + 4 + 2 + 1) = 6 0 0

(a)

WSi-1 WCi-1 WSi WC i

j kl I.A I I I I I
I i

I ' - " - I " V " - ~ / ~ ' - '~1 ,
pgmodule \ / ' , \ / \ / , \ / ' , % / \ / ,

V " ~ P S i y ,
I I I , I~'c,, ' , l , I m ' ,
"lJ II !
| l

"LJ ' I I I
I I I

. I

�9

G P

~Q ~QM
I 2-1 MUX I_

I-

Q

~QM
I 2-1 MUX l_ I-

C O N V E R T

q:+l

sign

Delay: SZ + CONVERT =

SZ + CONTROL + MUX + REGISTER

= 15 + 3 + 3.2 + 4 = 25.2

Area: 2 registers 2 x (54 x 4) = 432

2 2-1 MUXes 2 x (54 • 3) = 324

SZ module = 600

Total SZ + CONVERT: --1360

(On-the-fly conversion module)

(b)

FIGURE 5,5 I m p l e m e n t a t i o n of(a) sign and ze ro - r ema inde r detect ion n e t w o r k and (b) quo-

t ient conversion ne twork .

266 c N A P ~ E }~ ~,; Division by Digit Recurrence

(a)

(b)

[Initialize]
WS[0] <-- x/2; WC[0] +-- 0; Q[-1] - 0, q0 - 0 (for the conversion)

[Recurrence]
for j -- 0 . . . n + 1 (n + 2 iterations because of initialization and guard bit)

qj+l <--- SEL(y'~);
(W C b + 1], WS[j + 1]) <---CSADD(2WCb], 2WS[j], -qj+ld);
Q[j] <---CONVERT(Qb - 1], qj)
end for

(c) [Terminate]
Ifw[n + 2] < 0 thenq -- 2(C O N V E R T (Q [n + 1], qn+2 -- 1))

else q -- 2(CONVERT(Q [n + 1], qn+2))

where

�9 the residual is in redundant form, represented by the sum W S and
stored-carry W C bit-vectors, i.e., w[j] = (W C [j], W S [j]) ,

�9 n is the precision in bits,

�9 q j E {-1, 0, 1 } is the j th quotient digit,

�9 S E L is the quotient-digit selection function (discussed in Section 5.5,

Example 5.2):

1

-- S E L (~) -- 0 qj+l

--1

if 0 < ~" < 3/2

i f T = - 1 / 2

if - 5 / 2 < 7 < - 1

with'y" the value of the truncated carry-save shifted residual (2w[j]) with
four bits (three integer bits and one fractional bit).

Because of the range of "y', 2w[j] requires also three integer bits and,

therefore, w[j] has two integer bits.

�9 C S A D D is carry-save addition,

�9 - q j + l d is in two's complement form, and

�9 C O N V E R T is on-the-fly conversion function producing the accumulated
quotient in conventional representation (discussed in Section 5.2.3).

F I G U R E S.S Radix-2 algorithm with residual in carry-save form.

Implementations of the Division Algorithm 267

D i v i d e n d x - (0 .10011111) , d iv i so r d - - (0 . 11000101) ,

sca led r e s i d u a l 2w[0] - 2 (x / 2) - x , q~ome,,t~a = q / 2

2 W S [0] + - 000.10011111

2 W C [O] + - - 000.00000001 * ~ ' [0 1 - 0.5 q , - - 1

- q l d -- 11.00111010

W S [I] - - 11 .10100100

W C [1] - - 00 .00110110

2 W S [1] + - - 111.01001000

2 W C [1] + - 000 .01101100 ~"[1] - - - 1 q 2 - - - 1

- q 2d - - 00 .11000101

W S [2] - - 11.11100001

W C [2] - - 00 .10011000

2 W S [2] + - - 111.11000010

2 W C [2] + - - 001.00110001 * ~"[2] - - 0.5 q3 - - 1

- q 3 d -- 11.00111010

W S [3] - - 01.11001001

W C [3] - - 10 .01100100

2 W S [3] + - 011 .10010010

2 W C [3] + - - 100.11001001 * ~"[3] - - 0 q4 - - 1

- q 4 d - - 11 .00111010

W S [4] - - 00 .01100001

W C [4] - - 11 .00110100

2 W S [4]+ - 000 .11000010

2 W C [4] + - 110.01101000 ~ ' [4] - - - 1 . 5 q s - - - 1

- q s d = 00.11000101

w[5] - - 11.11101111

�9 least-significant 1 for two's complement ofqj+ld
+ only two integer bits in the recurrence, because of the range of w[j + 1].

q[51 - - . l i l l i - - .01101

F I G U R E S.7 Example of radix-2 division with residual in carry-save form. (On-the-fly con-

version and termination not shown.)

Element Delay Area

Quotient-digit selection

Buffers

MUX
CSA
Registers (3)
Convert

Cycle time

Total area

6.8 50
1.8 5
1.4 160
2.2 360
4.0 650

(NC) 1360
16.2

2585

T A B L E 5.3 Radix-2 stage.

4j+l

Divisor d WC[O] = 0 w C [j + 11

Buffers

2-1 MUX

WS[O] = x/2 W S [j +
I T

Register WS

11

WS[j + 11

t
‘j+l [3:2] adder

Critical path

F I G U R E 5.8 Implementation of radix-2 scheme and Its critical path. The q - at the input

of the [3:2] adder is a carry used to produce the two’s complement of d . Modules defined in

Figure 5.4.

268

Implementations of the Division Algorithm 269

. The quotient-digit selection has as arguments the truncated carry-save

shifted residual ~" and the truncated divisor d" (this is in contrast to the
radix-2 case, in which the selection is independent of the divisor). As

presented in detail in Section 5.5, the selection is described in terms of
selection constants m k (i) so that

qj+l - k if mk(i) < ~ < mk+l(i) k ~ {-2, -1, 0,1, 2}

where
A A

�9 i - - 16 d and d is the divisor truncated to the fourth fractional bit.
S i n c e l / 2 < d < 1, w e g e t 8 < i < 15

�9 ~" is 4w[j] in carry-save form and truncated to the fourth fractional bit.

Its range is -44 /16 < ~" < 42/16, with three integer bits for a total of
seven bits

�9 m3(i) -- max(y-") + ulp and m-2(i) -- min(y~)

As developed in Section 5.5, Example 5.3, the corresponding selection
constants are given by the following table:

i 8 9 10 11 12 13 14 15

m2(i) + 12 14 15 16 18 20 2 0 2 4

m l (i) + 4 4 4 4 6 6 8 8

m0(i) + - 4 - 6 - 6 - 6 - 8 - 8 - 8 - 8

m -1 (i) + - 13 - 15 - 16 - 18 - 2 0 - 2 0 - 2 2 - 2 4

+: real value m shown value/16

5. Because of the initialization, the final quotient is produced by multiplying
the obtained quotient by four.

An example of execution is shown in Figure 5.9.

An implementation of the radix-4 scheme is shown in Figure 5.10. The

critical path is shown in Figure 5.10 and is summarized together with the area in
Table 5.4.

270 c ~ ~ ~*'~:E ~ ~".~ Division by Digit Recurrence

Div idend x - - (0 .10101111) , d iv isord - - (0 .11000101) (i -- 1 6 (0 . 1 1 0 0) 2 - 12)

scaled residual 4w[0] - 4 (x /4) - x, qcomputed = q / 4

4WS[0] + -- 000.10101111

4WC[O] + -- 000.00000001 " ~ ' [0] - 10/16 q] - 1

- q l d + -- 11.00111010

WS[1] -- 1.10010100

WC[1] -- 0.01010110

4WS[1] + -- 110.01010000

4WC[1] + -- 001.01011000 ~ ' [1] - - - 6 / 1 6 q2 -- 0

- q 2 d + -- 00.00000000

WS[2] -- 1.00001000

WC[2] -- 0.10100000

4WS[2] + -- 100.00100000

4WC[2] + -- 010.10000001" ~" [2] -- - 2 2 / 1 6 q3 -- - 2

- q 3 d + -- 01.10001010

w[3] -- 0.00101011

* least-significant 1 for two's complement ofqj+ld
+ only one integer bit used in the recurrence, because of the range of w [1" + 1].

q[3] -- .1024 -- .0324

F I G U R E S.9 Example of radix-4 division with residual in carry-save form. (On-the-fly con-

version and terminat ion not shown.)

Rad ix -8 Divis ion wi th Res idual in Carry-Save Form

For the radix-8 implementat ion, we describe the case with quot ient-digi t set

{ - 7, . . . , 7}. To simplify the generat ion o f d q j +1, the quot ient digit is decomposed

into two components so that q j+ l - q j~ l + q~+] with Clj+ 1H _ _ {--8, - 4 , 0, 4, 8}

and q~+l - { -2 , - 1 , 0, 1, 2}. As a consequence of this, the recurrence is imple-

mented with two carry-save adders, as shown in Figure 5.11.

The quotient-digi t selection depends on the t runcated shifted residual (eight

bits) and the t runcated divisor (four bits, of which three are used in the

implementa t ion since d > 1/2). Since the two components of qj+l do not

Element Area Delay

Quotient-digit selection

Buffers

M U X

CSA

Registers (3)

Convert

Cycle time

Total area

10.8 160

1.8 10

1.8 300

2.2 360

4.0 650

(NC) 1360

20.6

Note: NC denotes a delay not in the critical path.

2840

T A B L E S,4 Radix-4 stage.

B u f f e r s $ d $ d

qj+l--/--[~,~ 4-1 MUX I 4

Divisor d WC[0] = 0 WC[j + 1] WS[0] = x/4 WS[j + 1]

I RegisterD I I Reg isterwcl I Reg isterwSI
7 4WS[j] / 7

{2a, a, o, a, 2a} ~ %§ < o) 4 '

.~ ws[j + 11
"- wc[j + 11

qj+l
(q2 + q2- ql +, q l -)

4WC[j] I ,..,

I [3:2]
I ' I

] SZ; Convert il~

q

qj+l = 0 c o d e d as

(o, o, o, o)

FIG U RE S.IO Implementation of radix-4 scheme and its critical path. Modules defined in

Figure 5.4.

271

272 c ~ APT E ~ ~ Division by Digit Recurrence

Divisor d

Buffers
H q j+ l~ 4-1 MUX ,l

4 I
{8d, 4d, O, 4d, 8d}

WC[0] = 0 WC[j + 1] WS[0] = x/2 WS[j + 11

RegisterD] [RegisterWC[[RegisterWS 18

* l 4f4f 4
Buffers ~d ~ d

q +14-4>q 4- ux I
r

{2d, d, O, d, 2d}

[.... [3:21

I [3:2]
I I ,

t
[SZ; Convert k. I-"

q

~ ,~__[qj"+ 1 < o) /-/ ~.

qj+l: qj+l qj+l
(decoded)

(qL+ 1 < O)

~ WS[j + 11
WC[j + 11

H (qj+l, qL+l)

F ! 6 u R E s. 11 Implementation of radix-8 scheme and its critical path. Modules defined in

Figure 5.4.

affect in the same way the crit ical pa th , 11 the des ign of the select ion func t ion 12 is

d o n e so as to m i n i m i z e the crit ical path .

11. The path that includes one of the components traverses two carry-save adders, whereas
the path of the other traverses only one carry-save adder.
12. The corresponding selection function is not shown in this text, but follows the method
described in the next section. A specific set of selection constants is given in Nannarelli (1999).

Implementations of the Division Algorithm 273

Element

Quotient-digit selection
Buffers
MUXes
CSAh

CSA1
Registers (3)
Convert

Cycle time

Total area

Delay

(qh) 12.2
1.8
1.8
2.2
4.2
4.0

(NC)

26.2

Note: NC denotes a delay not in the critical path.

Area

610
20

600
360
360
650

1360

3960

T A B L E 5 .5 Radix-8 stage.

An implementation of the radix-8 scheme is shown in Figure 5.11 together
with the critical path delay. A summary of delay and area is given Table 5.5.

Radix 16 with Two Radix-4 Overlapped Stages

Since the digit selection function for radix 16 is too complex (large delay) to im-
plement directly, the unit for this radix is implemented with two radix-4 stages.
Figure 5.12(a) shows the updating of the residual. In a straightforward implemen-
tation the delay would correspond to two times the delay of a radix-4 implementa-
tion, except for the delay of the register, which would be counted only once. To re-
duce the delay, the second radix-4 digit is computed conditionally so that the stages
are overlapped. Specifically, the second digit is computed for all the possible values
of the first digit and then the final value is selected when the first digit is known.
To do this, it is necessary to first compute the conditional truncated residuals as

cond(w [j + 1], k)trunc - - (4W [j])trunc - - kdtru,c 5.40

f o r - 2 < k < 2.
These conditional residual values are then input to the quotient-digit selec-

tion networks. The implementation of this conditional quotient-digit selection is
shown in Figure 5.12(b). Note that, because of the carry-save addition, eight bits
of the operands are needed to produce seven bits of the result.

The critical path is shown in Figure 5.13, and Table 5.6 summarizes the cycle
time and area.

Divisor d WC[0] = 0 WC[j + 2] WS[0] = x/4 WS[j + 2]

I Register D I I Reg isterwCI I Reg isterwsl
~ d 4 WC[j]

Buffers ~d 4WS[j]

q j + l ~ 4-1 MUX I
4

{ 2d, d, O, d, 2d} ; ;

~:)'~S'[]]Iwc [3:2] ~- - - (qj+l < 0)
Buffers J + 11 I ~ + 1] .

qj + 2 4- ~ -11~lU
{#,&O,a, 2d} I~ ~ : ' 4u~j+ll

[3:21 ~ (qj+2 < O)

; ;
(a)

- 2 - 1 0 . 1 2 3 4 5 6 7

4WS[1] x x x. x x x x x x x] {4Wb]17
4WCb] x x x . x x x x x x x

I
7 most 8 least

{4Will} 7

{~-~}7 i -

8 ~east I

most// / / / 8 8

7," 7//
c

I

I .J

(b)

{d}7 {2d} 7

I

I -

I I
5-1 MUX

Conditional truncated
qj+2 residuals

F I G U R E 5.12 Implementation of radix-16 with radix-4 stages: (a) Generation of residuals.

(b) Quotient-digit selection. (SZ and quotient conversion modules not shown.)

274

Implementations of the Division Algorithm 275

Element

CSA
Quotient-digit selection

MUX

Buffers

MUXes

CSA1

CSA2

Registers (3)

Convert

Cycle time

Total area

Delay

4.2

11.2

1.4

1.8

1.8

(NC)

2.2

4.(]

(NC)

26.~

Note: NC denotes a delay not in the critical path.

Area

220

820

20

600

360

360

650

1360

439(]

T A B L E 5 . 6 Radix-16 stage (two overlapped radix-4 stages).

F I G U R E 5 .13 Critical path in radix-16 scheme.

Radix-512 with Scaling and Selection by Rounding

As indicated, the direct implementation of the quotient-digit selection is practical

only for small radices, such as 2, 4, and 8. So, for very high radices, such as 512,

it is necessary to modify the algorithm. It can be shown that if the divisor is

276 c H ApT E ~ 5 Division by Digit Recurrence

sufficiently close to one, the quotient digit corresponds to the rounded shifted
residual. So, one possibility is to prescale the divisor (and dividend) so that the

scaled divisor is close to one and then do quotient-digit selection by rounding the
shifted residual. We now summarize the algorithm and the implementation; for

details see the references given at the end of the chapter.

We use a quotient-digit set Iq j+ l l ~ 511 (p = 1). For a quotient of 54 bits,

including the guard bit for rounding, the algorithm consists of the following

cycles:

Cycle 1" Compute the scaling constant M ~ l /d ; since Md ~ 1, this
constant is used to scale the divisor and dividend. Compare 13 x and d

and set g = 1 if x ~ d andg - - 0 otherwise.
Cycle 2: Compute the scaled divisor z = Md (in carry-save form);

compute v -- 2 -3x.

Cycle 3: Compute Mv and initialize w[0] - Mv (in carry-save form);

assimilate z.
Cycles 4-9: Perform iterations:

quotient-digit selection qj+l - - round(y~)
residual updating w[j + 1] - 512w[j] - qj+lz
Cycle 10: Quotient correction (if residual is negative) and normalization.

The implementation is shown in Figure 5.14. In this figure:

The constant M is computed in module M, in carry-save form.
The multiplier-accumulator is used to scale the divisor (cycle 2) and the
dividend (cycle 3) and then computes qj+lZ (cycles 4-9).
The recoder converts the multiplier from carry-save form to radix 4 with
digit set {-2, - 1 , 0, 1, 2}. This multiplier can be either M or q j + l , which is
obtained by rounding ~. The addition of 0.5 for rounding is also done in the

rer

Table 5.7 gives the cycle time and area. The recoder delay corresponds to one

AND-OR network plus one multiplexer. The cycle time is similar to the radix-8
case. However, because of the scaling, there are three cycles of overhead. 14

13. This is done so that the initialization does not increase the number of iterations.
14. For details, see Ercegovac et al. (1994).

Implementations of the Division Algorithm 277

F I G U R E 5.14 Implementation of radix-512 scheme.

Overall Comparisons

As an indication of the merits of the schemes presented, Table 5.8 summarizes

the speedups and area factors, relative to the radix-2 case. The values have been

rounded to give rough estimations. As can be seen from the table, increasing the
radix produces a speedup; however, for a radix 2 k this speedup is significantly

278 c ~,:~ ~. ~:~ T ~! ~? .5 Division by Digit Recurrence

5~

Element

M-module

MUX

Recoder

Buffer

Multiplier-accumulator

Registers (3)

Convert

Cycle time

Total area

Delay

(NC)

1.4

6.0

1.8

13.8

4.0

(NC)

27

Note: NC denotes a delay not in the critical path.

Area

1800

70

6100

650

1360

9980

T A B L E 5 .7 Delay and area for radix-512 scheme.

Scheme r2 r4 r8 r16

Cycle-time factor

Number of cycles*

Speedup

Area factor

1.0

57

1.0

1.0

1.3

29

1.5

1.1

1.6

20

1.8

1.5

1.6

15

2.4

1.7

Correcnon: Two cycles for radix-2, one cycle for other cases.

r512

1.7

10

3.4

3.9

T A B L E 5 . 8 Comparison of schemes.

smaller than the ideal k because of the increase in the cycle time and of additional
overheads. Moreover, there is an important increase in area.

Integer Division
Integer division (for unsigned operands) has integer operands 0 < x < r n - 1

and 0 < d < r n - 1 and produces an integer quotient q such that

q - - [x / d] 5.41

It also produces the integer remainder

r e m - (x) mod d 5.42

Integer Division 279

In Chapter 1 basic integer division algorithms are described. However, these

algorithms require full-precision comparisons for the quotient-digit selection. In

order to use the selection functions discussed in this chapter, the divisor is first
normalized (shifted so that the most-significant bit is 1). is Consequently, for a

shifting of m bits we get

d* = 2md 5.43

and the integer quotient

q - I x / d] = 2 m I x / d *] 5.44

The number of bits of the integer quotient is not larger than m + 1. Conse-

quently, the number of iterations required to obtain these bits is

N = [(m + 1) / k7 5.45

where r = 2 k is the radix of the quotient digit.

We want to perform the integer division using the fractional division units

discussed in the previous section. For this we define the fractional operands xf

and d f so that

x f -- x x r -n (not normalized)

d f -- d* x r - n (normalized)

5.46

5.47

Moreover, it is necessary to satisfy the following requirements:

1. To satisfy the residual bound, the initial residual is equal to x f / 2 (for
p -- 1) or x f / 4 (for p < 1). This requires thatm + 1 + v bits of the

quotient be computed, where v = 1 (for p = 1) or v = 2 (for p < 1). The
resulting number of iterations is

N - - [(m + 1 + v)-] 5.48

2. To obtain a correct remainder the last bit of the quotient has to be aligned
with a radix-r boundary. Since the quotient is in the range 1/2 < q < 2

(one integer bit and m fractional bits), this is achieved by shifting xf right

by v + s bits, so that (m + v + s)mod k = 0.

The quotient has to be aligned to the integer position. This can be done by

placing the digits in the correct final position or by placing the digits aligned to

15. This is directly applicable when the radix is a power of two.

280 r NA PTE ~ ~ Division by Digit Recurrence

EXAMPLE 5.1

the left (to combine with fractional division) and then performing a right shift of

n - N digits.

As in the fractional division discussed before, the use of signed quotient

digits requires the conversion to conventional representation and the correction

to obtain a positive remainder.
Moreover, since the remainder should be less than the divisor and the divisor

has n log 2 r - m bits, we obtain

w [N]2 n l~ --m if w [N] > 0 5.49

rem - - (w [N] + d f) 2 n l~ if w [N] < 0

We now show an example of integer division for 8-bit operands using a radix-

4 algori thm with p -- 2/3. Consider the case x = 125 and d = 6 with binary

representations

x - - 0 1 1 1 1 1 0 1 , d =00000110

We normalize d to produce d * = 11000000 with m - - 5 . Since p < 1, we

have v = 2 and s = 1. Consequently, we shift x f by three positions and

require N = (m + 1 -+- v) /2 = 4 iterations. The initial condition is

w[0] -- x f / 8 = .00001111101

The iterations are shown in Figure 5.15. �9

The details of an implementation are left as an exercise.

5 . 5 Quotient-Digit Selection Function
In previous sections we have described the recurrence step consisting of arithmetic

shift, quotient-digit selection, multiple generation, subtraction, and quotient con-

version. We now present the basic theoretical background required to design the

quotient-digit selection function and give examples for radix 2 and radix 4.

The quotient-digit selection function determines the value of the quotient

digitqj+l as a function of the residual w[j] and the divisor d. As indicated before,

we use a symmetric signed-digit set for the values of the quotient digit; that is,

q j + l E 7Da -" {- -a , - -a + 1, . . . , - - 1 , 0, 1 , . . . ,a -- 1, a } 5.50

Quotient-Digit Selection Function 281

A

Init ial res idual w[O] - - x f / 8 - - O.O0001111101,d = 0.1100 -- 12/16

4WS[0] -- 000.001111101

4 W C [0] = 000.000000000 "~ [0] -- 000.0011 q 1 = O0

WS[1] = 000.001111101

W C [1] = 000.000000000

4WS[1] = 000.111110100

4 W C [1] = 000.000000001"

- d f = 111.001111111

~"[1] - - 000.1111 q2 = O1

WS[2] = 111.110001010

WC[2] = 000.011101010

4 W S [2] - - 111.000101000

4 W C [2] -- 001.110101001"

- d f = 111.001111111

~"[2] = 000.1110 q3 -- O1

WS[3] = 001.111111110

WC[3] = 110.001010010

4WS[31 = 111.111111000

4 W C [3] = 000.101001001*

- d f = 111.001111111

~"[3] = 000.1001 q4 = O1

WS[4] = 000.011001110

WC[4] - - - 111.011110010

Res idual n e g a t i v e m c o r r e c t the quo t i en t and the residual

+ d f -- 000.110000000

w [4] = 000.101000000

T h e quo t i en t and the r e m a i n d e r are

q -- 00010100 = (20)10

rem = w[4] • 23 = 1 0 1 = 5

q4 = 0 0

F ! G U R S S. lS Example of radix-4 integer division with residual in carry-save form and n -- 4

(radix-4 digits).

282 c H A p ~ E R 5 D i v i s i o n by D i g i t R e c u r r e n c e

with the redundancy factor p

a 1
p - - - < p < l 5.51

r - 1 ' 2 -

The specific selection function depends on the way the residual is represented. Of

particular practical interest is the case of redundant representation, either carry-

save or signed-digit, because the addition in the recurrence is faster. Consequently,

our goal is to present the quotient-digit selection for those cases. However, the
case for nonredundant residual representation is simpler, so we discuss it first and

then present the modifications required to use the redundant representations.

There are two fundamental conditions that must be satisfied by a selection

function: containment (all residuals must be bounded) and continuity (for any value

of the shifted residual there must exist a valid choice of the quotient digit). The

containment condition determines a selection interval for each value ofqj+l . The

continuity condition is used for choosing the specific selection function. We now
discuss these concepts and then present several alternative selection functions.

5 o 5 , t Containment Condition and Selection Intervals

One basic requirement for the quotient-digit selection is to guarantee a bounded

(contained) next residual. This containment condition determines the selection
intervals, which are then used to design the selection function.

As developed in Section 5.2 the division recurrence is

w[j Jr- 1] - - rw[j] -- dqj+l

Moreover, for convergence, the residual has to be bounded so that

5.52

Iw[j] _< pd 5.53

where p = a / (r - 1) is the redundancy factor and - a < qj < a.

Selection intervals

Define the selection interval ofr w [/']for qj +1 - - k to be [Lk, U k]. That is, L k (Uk)

is the smallest (largest) value ofr w[j] for which it is possible to choose qj+l k

and keep the next residual (w[j + 1]) bounded. Therefore,

L k <_rw[j]<U k ==~ - p d < w [j + l] - r w [j] - k . d < p d 5.54

Quotient-Digit Selection Function 283

Consequently,

and

U , - k . a = p a , Lk - k" d = - p d 5.55

Uk = (k + p)d Lk = (k - p)d 5.56

The division recurrence, the residual bounds, and the selection-interval

bounds can be represented in Robertson's diagram (Figure 5.16(a)). This diagram
has as axes the shifted residual r w[j] and the next residual w[j + 1]. It represents

the recurrence by the lines with parameter q j+l = k for k = --a, . . . , a and the
residual bounds by the rectangle w [j + 1] = pd, w [j + 1] = - p d , r w [j] =

rpd, and rw[j] = - r p d . The selection interval for qj+l = k is obtained

from the projection of the corresponding line on the r w[j] axis. The diagram of

Figure 5.16(a) illustrates the computation of w[6] = r w[5] - k d.

Another diagram, which is useful in the design of the quotient-digit selection

function, is the r w[j] versus d diagram, called the P-D diagram (Figure 5.16(b)).

The bounds of the selection intervals U k and L k are plotted as lines originating

from (0, 0) with slope k + p and k - p, respectively. The regions delineated
by these lines are helpful in analyzing the quotient-digit selection function, as

described later.

Continuity Condition, Overlap, and Quotient-Digit Selection
We now relate the quotient-digit selection function to the selection intervals. As
stated, the function is of the form

qj+x = SEL(w[j] , d) 5.57

We can represent this function by the set {Sk}, - a < k < a, such that

qj+l = k if s k < rw[j] < Sk+l - ulp 5.58

That is, s k is defined as theminimum value oft w[j] for whichqj+l = k is chosen.
As indicated by the function SEL above, the s k'S are functions of the divisor d.

To satisfy the containment condition, s k must be inside the selection interval;

that is,

L k < s k < U k 5.59

284 c H APT E R 5 Division by Digit Recurrence

pd I w[j + 1]

_rpd rw[5] /

,,

(a)

rgd

rw[j]

r I G U R E S. 16 (a) Robertson's diagram. (b) P-D diagram.

Quotient-Digit Selection Function 285

Moreover, to satisfy the continuity condition, it is necessary to selectqj+l - k - 1

for r w [j] - - s k -- u l p . Consequently,

S k - u l p < Uk_l 5.60

Since U k > Uk_ l Jr- u l p , the combined restriction on Sk is

Lk < S k < Uk_l .qt_ u l p 5.61

For simplicity, in some cases, we use the more conservative bound

L k < s k < Uk_ 1 5.62

Consequently, the values s k have to be inside the overlap between consecutive

selection intervals, as shown in Figure 5.17. This is the basic condition required

by the quotient-digit selection functions we describe later.

The subscript k - 1 for U, in contrast with the subscript k for L in (5.61),

results from the choice o f s k as the min imum of the interval for qj+l = k. If,

on the other hand, we selected Sk tO be the max imum of the interval, then the

subscripts would be reversed. We will comment further on this asymmetry later.

The amount of overlap is given by

Uk-1 - L k - - (k - 1 + p) d - (k - p) d - (2p - 1)d 5.63

This overlap depends on p and on d. Note that the overlap is zero for nonre-

dundant quotient-digit set (p - 1/2). The main reason for using a redundant

quotient-digit set is to provide a suitable overlap to simplify the quotient-digit

selection. Moreover, for this same reason, it is common to restrict the range of

the divisor so that d > 1/2 (normal ized divisor). 16 This restriction is shown in

Figure 5.17. As indicated before, for floating-point representation, the divisor is

usually in normalized form, and in cases in which the original value is not nor-

malized, it is possible to normalize it by shifting both the divisor and the dividend.

Unless noted otherwise, we assume that the divisor is normalized.

16. We normalize the divisor tod > 1/2 even for higher radices, since the higher radix is used
only to reduce the number of steps in the algorithm, but the representation of the divisor
remains in radix 2. This restricts the radix to be a power of 2.

286 <',':: ::!~-it .~!:., i!;:::..~ :"~:: ~!!: :ili::~i~. :. ,~!:.!i; Division by Digi t Recurrence

qj+l = k - 1

Lk- 1

~, w[j + 11

k - 1

L k

7

~- Vk_ 1

< ~ Overlap
k or

k - 1

(a)

rw[j]

Ii,

v~

rw[j]

Normalized divisor range

(b)

~k

Lk ~ qj+l = k

Overlap

(k o r k - 1)

qj+l = k_1

F I G U R E S. 17 Over lap between selection intervals and selection function.

Quotient-Digit Selection Function 287

rw[j] Uk_ 1

k>O

1 1 "-d

. Uk_ l

F I G U R E 5.18 Boundsonm k.

L~

5 . 5 . 3 Quotient-Digit Selection Using Selection Constants

'S The simplest selection function is to make the s k constants, independent of the

divisor. We call these constants m k" From (5.61), the constants have to satisfy

max(Lk) _< m k <_ min(Uk_l) + ulp 5.64

where the max and min have to be obtained for the range 2 -1 _< d < 1.

As shown in Figure 5.18 and using the expressions for L and U"

�9 For k > 0

(k - p) < m k < (k - 1 + p)2 -1 + ulp 5.65

which requires

p > k + l
5.66

288 c ~ A ~T E ~ 5 Division by Digit Recurrence

�9 For k < 0

which requires

(k - p) 2-1 < k - 1 + p 5.67

(- k) + 2
p >_ 5.68

3
For a quotient-digit set - a < qj < a (p - a / (r - 1)), the worst case is k -- - a ,

resulting in

2
p >_ 5.69

4 - r

Since p < 1, we get that r -- 2 is the only radix for which the selection function

can be independent of the divisor.

Using Truncated Residual

The selection function corresponds to comparisons between the selection con-

stants m k and rw[j]. If the selection constants are of the form Ak 2-c, with A k

integer, then for r w[j] in two's complement representation the comparisons are

done using {r [W]}c, the truncated r w[j] with c fractional bits. This is because

r w[j] > {r w[j]}c, independently of the sign of the residual since in two's com-

plement representation the portion discarded by truncation is always positive. 17

We use two's complement representation for the residual, unless noted otherwise.
As a consequence of this, to simplify the implementation of the selection

function the selection constants chosen should correspond to the smallest c

possible.

Radix -2 Division with N o n r e d u n d a n t Residual

This algorithm is an extension of nonrestoring division (in which the quotient-

digit set is { -1 , 1 }). Now the quotient-digit set is signed digit with the inclusion

of 0. This algorithm is called SRT. 18

Since the nonrestoring algorithm already uses selection constants (ml = 0),

it seems unnecessary to include the value qj = 0. The purpose of introducing the

17. On the other hand, if the representation is in sign-and-magnitude, the portion discarded
by the truncation has the sign of the residual.
18. After D. Sweeney (Cocke and Sweeney 1957), J. E. Robertson (Robertson 1957), and K. D.
Tocher (Tocher 1958).

Quotient-Digit Selection Function 289

quotient-digit value 0 is to eliminate the need for subtraction/addition when this

value 0 is selected (skipping over zeros).

F rom expression (5.56) the selection intervals are 19

U1 = 2 d L1 - - 0
1 1

U 0 = d > - L 0 = - d <
- 2 - 2

U-1 = 0 L-1 = - 2 d

5.70

Consequently, from (5.64), the selection constants have to satisfy

1 1
0 < m l < - < m0 < 0 5.71

-- - - 2 2 - - --

A possible quotient-digit selection function would be to choose m l = m0 = 0;

however, this is the same as the nonrestoring case and does not use the quotient-

digit value 0. To maximize the region for 0 (and therefore its frequency), we

choose

1 1
. . . . 5.72 m l - ~, m 0 - 2"

The corresponding quotient-digit selection function is

1 i f g < 2 w [j]

1 1 5.73 q j + l - - 0 if - g < 2 w [j] < g
1 - 1 if 2w[j] < 2

This selection function is illustrated in Robertson's diagram (Figure 5.19(a)) and

in the corresponding P-D diagram (Figure 5.19(b)). It requires only the compar-

1 1 The selection rules effectively correspond to ison with the constants g and - g .
1 checking if the shifted residual is normalized; that is, if 12w[j]1 >__ g.

Staircase Select ion F u n c t i o n

For radix larger than 2 it is not possible to find one constant m k for the whole

range of the divisor. In this case, the range of the divisor is divided into intervals

19. Since p = 1, the bound used for these selection intervals would allow the value w[n] = d,
which would require a restoration step. This is avoided if w[0] < d and m0 < 0 (to avoid
qj+l - -1 for 2w[j] = 0).

290 C ~,~, ~ T ~ ~ .5 Division by Digit Recurrence

- 2 d

l dw[J + 1]

. . . . - - 1 - - -

m

.

2w[j7

2d

L_ 1
I

Lol

U-1 L 1

Iu0

(a)

2 w [j]

2
i

l
U '

1 ~

" q j+ l = 1

1

_ 1
1 m l =
2 ~,_1 'I
1 1 q +2o__1

_1

2,
-2 '_, _ _qJ+l = -1

(b)

F I G U R t S , 1 9 Radix-2 division: (a) Robertson diagram and selection intervals. (b) P-D dia-

gram and selection function.

Quotient-Digit Selection Function 291

rw[j]

mk+l(i)

m/~(i) 1
i

i

i

i

i

i

i

I
.

i

d i

i i i i .,__L_ qj+l = k+l
i

4- ulp

I'
i

._ _ ~ - q j +] = ~

i

i
I

i

i

i

i

i

i

i

' , d
i

2-8 ,
di+l

F I G U R E 5 . 2 0 D e f i n i t i o n o f m k (i).

[di, d i+ l) w i t h

1
do -- -~, di+l -- di + 2 -a 5.74

so that the 8 most-significant fractional bits of the divisor represent the interval.

Moreover, in the interval [di, di+l) the quotient-digit selection is described by the

set of selection constants ink(i) . That is,

for d ~ [di, d i + l) , qj+l -- k i f m k (i) < r w [j] < mk+l (i) - u lp 5.75

as illustrated in Figure 5.20.
Since a single selection constant is used for the whole interval [di, d i+ l) , from

(5.64) we get (as shown in Figure 5.21) that

m a x (L k (d i) , Lk(di+l)) <_ ink(i) < m i n (U k -] (d i) , Uk- l (d i+l)) '1-ulp 5.76

The quotient-digit selection is a function of the 8 most-significant fractional
1 bits ofd . Actually, only 8 - 1 bits are needed because d > 3" In addition, for

, ~ k (i) - A k (i) 2 - c 5.77

with Ak(i) integer, the selection function uses {rw[j]}c , which corresponds to

the truncated r w [j] with c fractional bits. The use of these selection constants is

illustrated in Figure 5.22.

292 c N A p T E R .5 Division by Digit Recurrence

F I G U R E 8 .21 Selection constant region.

rw[j]

2_ c ~"
mk(4)-l'-

mk(2, 3)

m/~(1)
m/r

- - - ~ - - - ~ ~ Uk_ 1
. : _ f

I I I I
. L - - - L - _ - L . . L _ ~ _ L _ -

, , , , i . ,
. L _ - _ L - _ - L l f ,L _ _

I I I / I I
- - . J - - - . J J T , ' C - I I - - -

, , / " , , i L k
_ _ , _ _ _ . _ . , _ _ _ , _ _ _ . . _ _

- - - ~ , - ~ j ~ - ~ , - - -

_ _ _ , . _ _ . _ _ _ . . _ . _ _ _ , _ _ _

_ 7 ~ . ~ , . ~ _ 1 ~ . J _ _ _ - J _ _ _ . _ _ _
. - . . ~ , / ~ - - - ~ - - - ~ - - - ~ - - -

- - - . - - - . - - - . - - - , - - - , - - -

~ I I I I I
- - _ , - _ - , - _ _ . _ - _ , _ _ _ , _ _ _

I I I I I

' ' ' ' ' , d

- 4 ~ ' , - - I ' ' 2 - i i
I I I I I

ao ,t~ ,12 a3 a4 ,t5
F I a U R E S.22 Quotient-digit selection with selection constants.

In terms of the low-precision selection constants, from (5.74), (5.76), and
(5.77), the quotient-digit selection must satisfy

for k > 0

fork < 0

Lk(di 4-2 -8) < Ak(i)2 -c < Uk-l(di) + ulp

Lk(di) < Ak(i)2 -c < Uk_l(d i Jr-2 -'s) + ulp
5.78

for all i and all k.
The design problem consists, therefore, in finding selection constants and

divisor intervals so that c and 8 are minima. Unfortunately, there is no single

Quotient-Digit Selection Function 293

{rw[j]}c

l+log2r+c t ~

SELECTION 1-., /

I- FUNCTION 5- 1

l qj+l

log2r + c + 8

{d}~

F ! G U R E S.2S Selection with truncated residual and divisor.

solution since as 8 is reduced c increases. Consequently, a possible optimization
criterion is to minimize c + 8 since this relates to the number of bits of the input
of the quotient-digit selection function, as shown in Figure 5.23. Note that the
integer part of{rw[j]}c requires 1 + log2(rpd) bits (< 1 + log2r for p < 1).

A lower bound on 8, the number of divisor bits required, is obtained by
requiring a nonnegative overlap. Consider the case k > 0 (a similar argument
can be made for k < 0); then

Uk_l(di) - Lk(d i + 2 -8) > 0 5.79

From (5.56) we obtain the expressions for Uk_ 1 and L k so that

(P + k - 1)di - (- p + k)(di + 2 -a) > 0 5.80

which results in

(2 p - 1)di > (k - P) 2-8 5.81

This must be true for all values ofdi and k, the worst case being the smallest
1 value ofdi and the largest value of k. Since d >_ g and k < a, expression (5.81)

becomes
2 p - 1 2 p - 1

2 -a < =
- 2(a - p) 2p(r - 2)

5.82

However, the use of this minimum value of 8 can result in a large value of
c; that is, many bits of the shifted residual. Consequently, the values of 8 and c
have to be selected so that the implementation is simplified; the actual values for

294 c H A P T E ~ 5 Division by Digit Recurrence

this to occur depend on the particular technology used. The bound is helpful in

reducing the number of alternatives to consider.

Radix-4 Division with a -- 2 and Nonredundant Residual

In the radix-4 case, 2~ two possibilities exist for the redundant digit set: a - 2

and a - 3. The case a - 2 has the advantage that the multiples of the divisor

that have to be generated are d, 2d, - d , and - 2 d , which are simple to generate,

whereas the alternative a - 3 also requires the multiples 3d and - 3 d , which are

more complex to obtain. On the other hand, because of the greater redundancy,

the case a -- 3 results in a simpler quotient-digit selection function. The choice

of the digit set depends on specific implementation constraints. Here we describe

the case a = 2.
2 from (5.56) the selection intervals are Since p - ~, (2)

+ k a a 5.83

Figure 5.24 shows the corresponding Robertson's diagram and P-D diagram.

From (5.82) we get the bound on ~ to be

2 p - 1 1
2 -8 < = - 5 . 8 4

- 2(a - p) 8

Consequently, a truncated divisor of at least three bits is required. However, in
this case the use of three bits results in a large value of c. For example, for the
selection constant m2(1) for the region of the divisor between 4 and 5 - we get

5 4 5. Therefore, the only possible value of m2(1)is 856, which Le(g) = Ul(g) - -

r e q u i r e s a selection constant of full precision. Because of this, we use a truncated

divisor offour bits instead.
We now use this value of 8 = 4 to determine the minimum value ofc and

the resulting selection function. We do this by considering all cases ofdi and k to

satisfy expression (5.78). The results of the analysis are shown in Table 5.9.

As expected, there is symmetry between positive and negative constants.

Since the selection constant with highest precision is of the form A �9 2 -3, three

fractional bits of the shifted residual are needed. The selection constants m2(i)

are shown in the P-D diagram of Figure 5.25(a). Since the shifted residual is

20. This algorithm is called Robertson's Division Algorithm (Robertson, 1958).

Quotient-Digit Selection Function 295

w[j + 1]

/'1 I 2 d / I s ~ / 8,t / "
3 (a)

= 4w[j]

4w[j]

2

1 2-- L2U1

1

Vo

L 1

~-~/ ~_l
. -1 L~

-1

U_ 2

-2

L_ 2

d

(b)
F I G U R E $,24 Radix-4 division wi th a = 2" (a) Rober tson ' s d i ag ram. (b) P - D d iag ram.

296 C H APT E R ~ Division by Digit Recurrence

[di,di+l) +

L2(di+l), Ul(di) #
m2(i)*

Ll(di+l), Uo(di) #
ml(i)

Lo(di), U-l(di+l) #
mo(i)

L-l(di) , U-2(di+l) #

m-l(/)

[di,di+l) +

L2(di+l), Ul(di) #
m 2 (i)

Ll(di+l), Uo(di) #
m l (i)

Lo(di), U-l(di+l) #

mo(i)

L-l(di) , U-2(di+l) #

m-i(/)

[8, 9) [9, 10) [10, 11) [11, 12)

36, 40 40, 45
6 7

9,16 10, 18
2 2

-16, - 9 -18, -10
- 2 - 2

-40, -36 -45, -40
- 6 - 7

44, 50
8

11,20
2

-20, -11
- 2

-50, -44
- 8

48,55
8

12, 22
2

-22, -12
- 2

-55, -48
- 8

[12, 13) [13, 14) [14, 15) [15, 16)

60,70 64,75
10 12

15,28 16,30
4 4

-28, -15 - 3 0 , - 1 6
i

- 4 - 4

- 7 0 , - 6 0 - 7 5 , - 6 4
- 1 0 - 1 2

52, 60 56, 65
10 10

13,24 14,26
4 4

-24, -13 -26, -14
- 4 - 4

-60, -52 -65, -56
- 1 0 - 1 0

Note: +: real value -- shown value/16; #: real value -- shown value/48; *: real value = shown value/8.

T A B L E 5.9 Selection intervals and m k constants (radix 4, nonredundant residual).

bounded by
8

14w[/]l < 4pd < - 5.85
- 3

three integer bits are needed for the two's complement representation. Therefore,
the selection function is implemented using three bits of the divisor and six bits
of the shifted residual, as illustrated in Figure 5.25(b).

5 . 5 . 4 Use of Redundant Adder

The quotient-digit selection discussed previously requires that the residual be
computed to full precision, although a truncated version is used in the selection

Quotient-Digit Selection Function 297

{4w[jl }3 1, ~ U1

12 J ~ ~ , ~ _ ~ , { 4w[j] }3 { d}4 m2(8) 8
/ J , , , ,, ,,y~ ,, , xxx.xxx 0 . 1 x x x

~ 4 - - _a _ _ .a _ _ - _ _ - _ _ .a l l_ _a _ _ - _ / f -q

/ / e l ' ; T'a" ~21 t t m2(5,6,7) t~ i / ' i ' ,.4I' / , , , / , , ,/,'? , 6 3
/ ' ' I ' / ' ' 7 " , '

9 - I - - " - - z _ i : ~a_ _ J _ _ �9 _AFJ _ _ 7 - - " -
-8 / ' ' , 4 ' ' ' ~ " 1 ' , ' q J + l = 2

. . . . " I I m 2 (3 , 4) 1 4 ~ ' - i - i . . i . - . ~ - - .J _ ~ . J _ _ _~ S E L E C T I O N
/ I I / I I I / I I J L I I I I

' " : - - ' - : ' - - = i t - 1 7 r T " - ' - 2 r 7 - - 7 - - 5 - - -~ - - -~ ,
~] i / " I [, , , , ', , q j + l = 1 3

m 2 (1) 8 6. ~ , ~ - ~ - - -] - - ~ - - ~ - - , - - ~ -

U i I i ' , , , , ,, ,
5 _ . t _ ~ . _ i r . a _ _ . _ _ . _ _ . _ _ . - , j _

16 , ' q#+l I �9 I I I I I I I I

I , ' ,' { d } 4 I l , I I I I I I I

' i_0 ' ! , 12 , 1 4 , 1 (b)

2 9 16 11 16 13 16 15
1-6 1--6 1--6 16

(a)

I=la u R I~ 5.25 Radix-4 with nonredundant residual. Quotient-digit selection: (a) a fragment

of the P-D diagram and (b) implementation.

function due to the l imited-precision selection constants. In this implementa t ion

a substantial fraction of the step time is due to the addit ion required for the

computa t ion of the residual.

T h e overlap between selection intervals can be fur ther used to reduce the

step t ime by basing the selection on an estimate of the residual. We derive the

requi rements for such use and apply the results to estimates involved when using

a r edundan t (carry-free) adder.

If we call y the actual value of the shifted residual and ~" its estimate, we can

write

A

E-min ~ y - y < ~max 5.86

where ~min and Emax are the m i n i m u m error and m a x i m u m error, respectively.

Note that usually Emi n is nonpositive.

We now develop expressions that have to be satisfied to design a quot ient-

digit selection function for a general estimate. T h e basic constraint that must be

satisfied is that if we choose qj+l - - k for an estimate'S", then this choice must be

correct for the interval

y E ['ff-~-(:min, ?'Jf-~max] 5.87

298 C H,& ~~ E ~ 5 Division by Digit Recurrence

F ! G U R �9 S.20 Constraints for selection based on estimates.

Consequently, the restricted selection interval is [Lk, Uk] such that

L k -- L k - ~min 5.88

S k - - S k - ~ . m a x

The range of values of ~ for which m k can be chosen is determined as

before by replacing U and L by U* and L*, respectively, namely,

max(Lk(di) , Lk(di+~)) < mk(i) < min(Uk_~(di), Uk_l(di+~)) + ulp 5.89

This expression is illustrated in Figure 5.26.

From (5.89) we get the minimum overlap required

min(Uk_l(di) , Uk_l(di+l)) - max(Lk(di) , L~(di+l)) > 0 5.90

The range of the estimate ~ determines the number of bits of the representation.

Since the range ofr w[j] is

[rw[j]] < rpd < rp (ford < 1) 5.91

we get

- - r tO - - Ema x < y < r tO - ~min 5.92

Quotient-Digit Selection Function 299

~ Ernax
V

--1"

y = rw[jl '1
m l

--s ~*

.!
(e s t i m a t e)

rp

F I G U R E 5 . 2 7 Range of estimate.

as shown in Figure 5.27. Note, however, that in specific cases the maximum errors

might not occur for the maximum values ofr w [j]. In such cases, a more detailed

analysis is required to obtain a better bound on ~".
One way of having an estimate of the residual is to use a redundant represen-

tation (carry-save or signed-digit), produced by a redundant (carry-free) addition,

as shown in Figure 5.28(a). The quotient-digit selection function uses an estimate

of this shifted residual obtained by truncating the redundant representation to t

bits. The error introduced by this truncation depends on the type of redundant

adder (carry-save or signed-digit), as discussed now.

Ca r r y - S a ve A d d e r

For the carry-save case, the representation is in a two's complement form (as that

of the nonredundant case). Consequently, the error due to the truncation is always

positive, as illustrated in Figure 5.28(b). That is,

Emi n - - 0 5.93

Moreover, the maximum positive error corresponds to the maximum value

of the discarded portion. Consequently,

(Jmax - - 2-t+1 -- u lp 5.94

Using these values for the error, we get the restricted selection interval

U k -- U k - 2 -t+l + u l p

L k -- L k
5.95

Moreover, since the estimate is the truncated shifted residual with t fractional

bits, the selection constants cannot have more than t fractional bits. They should

be located on the grid of granularity 2 -t , as shown in Figure 5.29. Consequently,

300 c H A p T E R 5 Division by Digit Recurrence

1 l
(redundant)

REDUNDANT ADDER

w[j + 1] I (redundant)

(a)

t

WS X X X. X X X X X X X'~

WC X X X. X X X X X X
- + + . + + + + + \ + +

\
rwIj]

Y Y Y. Y Y Y
- + + . + + +

O_<e <_ 2 - t+ l -u lp

(truncation error)

(estimate)

t
X X X. X X X X X X X X)

+ + + '+ + + . + + ~ N ~

Y Y Y. Y Y Y
+ + + . + + +

rw[j]

- (2 - t -u lp) _< ~ <_ 2 - t - u l p

(truncation error)

(estimate)

(b) (e)

F I G U R E 5,28 Use of redundant adder: (a) Redundant adder. (b) Carry-save case. (c) Signed-
digit case.

A A

for the region in which rnk can be located we use U and L located on the grid.
Tha t is,

A A A A

m a x (L k (d i) , L k (d i + l)) < m k (i) < m i n (U k _ i (d i) , U k _ i (d i + l)) 5.96

A A * L * *
We now relate U, L with U , . Since U k _ 1 is the largest value for which

it is still possible to select q j + l - - k - 1, the u p p e r b o u n d of the region for m k is
the next grid value that is larger 21 than Uk_ 1. Tha t is,

A

U k _ l - LUk_ 1 qt_ 2 - t i t - LU k - l - 2-t i t 5.97

21. This is equivalent to saying that in expression (5.89) the ulp for ~" is 2 -t.

Quotient-Digit Selection Function 301

. UAk~I

............ Uk_l (representedby O)

^
L k (represented by O)

L k L~

d i di+l di+2

Case A: Uk. 1 is on the grid;
A * t
Uk_l = U~_ 1+2- on the grid

Case B: U~. 1 is off the grid;
A

Uk_l > U~. 1 on the grid

glGUlIE 5.29 U and ~ for residual in carry-save form. Note that when L* passes through a

grid point this is also L, whereas this is not the case for U.

where Ix]t corresponds to the carry-save representation of x truncated at frac-

tional bit t.
On the other hand, since L k is the smallest value for which it is possible to

selectqj+l = k, thelower bound of the region for m k is the grid value that isequal

or larger than Lk, so that

FL I,- rL l, s.98

These bounds are shown by dots in Figure 5.29.

302 ci;~ H ~ ~:~ ~:~:~!~. ~ !~:ili Division by Digit Recurrence

E X A M P L E 5 . 2

We now obtain a lower bound for t and 8 by requiring a nonnegative overlap.

That is (for positive k),

Uk_l(di) - Lk(d i+l) > 0 5.99

A lower bound is now obtained by replacing U by its upper bound and L by its

lower bound. This results in

U k _ l (d i) - 2 - ' - L k (d i + l) > 0 5 .100

_ 1 Introducing the corresponding expressions and the worst-case condition di -- ~

and k - a , we get

2 p - - 1
(a - - p) 2 -s > 2 - t 5.101

2

Finally, we determine the range of the estimate. Since the estimate involves

truncation of the carry-save representation to t fractional bits, the difference

between the estimate and the truncated two's complement representation cor-
responds to a possible carry into fractional bit t. This carry affects the negative
range of ~, so that the range becomes

L - r p - 2 - t] t <~ "ff <~ Lr p - u lp]t 5.102

where [zJt -- 2-t [2 tzj. The term ulp is required to use < instead of <. Note

that because of the asymmetry of the error, this range is also asymmetric. As noted
before, the actual range might be smaller because the neglected carry might not
occur for the maximum value of t w [j].

Radix-2 Division with Carry-Save Adder.
For this case, from (5.101)

0 x 2 -~ > 2 -t 5.103

This bound indicates that it is possible to have a single set of selection constants

for the whole range of the divisor. That is, the quotient-digit selection function
is independent of the value of the divisor. The bound also indicates that t > 1.

Now we see whether t - 1 results in valid selection constants. These
constants have to satisfy (5.96)"

A A A A

max(Lk(d i) , L k (d i + l)) < m k (i) < m i n (U k _ l (d i) , U k _ l (d i + l)) 5.104

Quotient-Digit Selection Function 303

for the whole range of the divisor. From (5.70), (5.97), and (5.98), we get 22
A

L 1 (1) - - 0

0

1 5.105

1 A

-

2
Consequently,

A A

(L I (1) - - 0) ___ m l ~ (U 0 (1 / 2) - - 0)
(~ 1) (A ~) 5.106

0 (1 / 2) - - - ~ < m 0 < U - l (1) - - -

1 This results in the selection constants m l -- 0 and m0 = 2' as shown in
the P-D diagram of Figure 5.30(a). Therefore, t -- 1 results in valid selection
constants.

The range of the estimate is obtained from (5.102) as

L-2 - 2 - 1 j l _< ~ _< L2 - u l p J l 5.107

which results in
5 3

< ~" _< ~ 5.108
2 -

The corresponding quotient-digit selection function is 23
3 1 i f 0 < ~ < ~

1 5.109 q j+l - - 0 if ~ - - 2
5 A - 1 if - ~ < y < - 1

The estimate has four bits (three integer bits and one fractional bit), as
shown in Figure 5.30(b). The corresponding algorithm was summarized in
Figure 5.6 and an example of execution was given in Figure 5.7. The quotient-
digit selection function can be implemented in two ways:

22. Since p = 1 the bound of the residual could produce w[n] = d, requiring a restoration
step; as indicated for the case with nonredundant residual, this is avoided by making
w[0] < d andre0 < 0.
23. Note the difference from (5.73).

304 c ~ ~:: {~{~::E ~,{ ~ Div is ion by Dig i t R e c u r r e n c e

.Y[j]

T 2w[j]

2 . ,,
~ .. UO

^ 2 ~ 1 t . i L l *

~0
-"-----~ qj+l = 11 m (1) = O l j ' t _ g o

o q, ~ - I , . , i ''Z'L.---'6-
q j + l = u 1 .

1-- , , ().,, --- - " - ' - ~ " a, ~ . . L I ' U - 1

; - < <

L o, L;

5 ,, L ~
2

d = 1 d = 1 - u lp
2 (a)

~d

~[j] xxx. x
X X X . X

t 4 + 4

SELECTION
FUNCTION

qj+l [
(b)

F I G U R E 5 .30 Radix-2 d iv is ion w i t h ca r ry -save adder : (a) P - D plot. (b) Select ion func t ion .

By first converting into non-redundant representation the four most-
significant binary positions of 2w[j] to produce ~ and then using the
four resulting bits as inputs to a combinational network for the
selection.

Quotient-Digit Selection Function 305

E X A H P L R 5 . 3

2. By using the eight bits of the four most-significant positions of the
carry-save representation of 2w[j] as inputs to the combinational
network, as shown in Figure 5.30(b).

Since this combinational network is relatively simple, we use this second
scheme to obtain a faster implementation. A possible implementation in which
the digit qj+l is represented in sign-and-magnitude by (qs, qm) is as follows:

q m : (P - I P O P l) r 5.110

qs = P-2 G (g-1 + P-lgo at- P-lPogl)

where

Pi - - c i ~ .-r i gi " - Ci " S i

and (c-2, c-1, co, c 1), (s -2, s -1, s o, s 1) are the carry and sum components of
the carry-save representation of ~ [j]. Note that in this case the representation

ofqj+l = 0 is (qs, qm) -- (1, 0). []

Radix-4 Division with Carry-Save Adder.
Another algorithm that has received significant attention is the radix-4

case with digit set { - 2 , . . . , 2} and carry-save adder. This digit set is ad-
vantageous because the multiples dqj+l are easy to implement. We obtain a
lower-bound relation between 8 and t from (5.101):

1 4
- - - 2 - 6 > 2 -t 5.111
6 3 -

If we use 8 -- 4 we get

1 1 1
2 -t < = ~ 5.112

- 6 12 12

so we can try t = 4. The selection intervals are obtained from

5.113

To determine the quotient-digit selection function, we use expressions
(5.97) and (5.98) and obtain Table 5.10. A fragment of this selection function
is shown in the P-D diagram of Figure 5.31 (a).

306 g H A {a T E ~{ s Division by Digit Recurrence

[di, d i + l) + [8, 9) [9, 10) [10, 1 1) [11, 12)

~2(di+l), U1 (di) +

m2(i) +

~l(di+l), W'~o(di) +
rex(/)

~'Lo(di), U-l(di+l) +

too(i)

~-l (di) , U-2(di+l) +

m-l(/)

12, 12

12

3,4

4

-5 , - 4

- 4

-13, -13

-13

14,14

14

4,5

4

-6 , - 5

- 6

-15, -15

-15

15,15

15

4,5

4

-6 , - 5

- 6

- 1 6 , - 1 6

- 1 6

16, 17

16

4,6

4

-7 , - 5

- 6

-18, -17

-18

[di,di+l) + [12, 13) [13, 14) [14, 15) [15, 16)

~2(di+1), Ul(di) +

m2(i)

El(d/+l), U~o(di) +
rex(i)

~o(di), U-I(d/+I) +

too(i)

~-l (di) , U-2(di+l) +

m-l(/)

18, 19

18

5,7

6

-8 , - 6

- 8

-20, -19

-20

19,20

2O

5,7

6

- 8 , - 6

- 8

-21, -20

-20

20,22

20

5,8

8

-9 , - 6

- 8

-23, -21

-22

22,24

24

6,9

8

-10, - 7

- 8

-25, -23

-24

+: real value = shown value/16; ~k = [Lk-14, U"k = [Uk - 1]4"

T A B L E 5 . 1 0 Selection intervals and constants m k (radix 4, carry-save residual).

15 13 and 15 the input of ~ t o the Because of the selection constants 16, 16' - - Y6'

selection function has four fractional bits (c = 4), which in this case is equal
to t. The range of the estimate is obtained from (5.91) to be

L 8 lj A L8 <y_< ~-u
3 16 4 4

5.114

which results in
44 42 A < y < ~
1 6 - - 16

5.115

Quotient-Digit Selection Function 307

F I G U R E 5.31 Selection function for radix-4 scheme with carry-save adder: (a) a fragment of

P-D diagram and (b) implementation.

308 r H A ~ T E ~ 5 Division by Digit Recurrence

requiring three integer bits. Consequently, the selection function has the inputs
shown in Figure 5.31(b). An example of the execution of this algorithm was

given in Figure 5.9. �9

S i g n e d - D i g i t A d d e r

Instead of using a carry-save adder, it is possible to use a signed-digit adder,

resulting in a residual in signed-digit representation. For the case of radix-2

representation, we now determine the error produced by using as estimate the

shifted residual truncated to t fractional digits. In this case, the discarded part

when truncating can be positive or negative (see Figure 5.28(c)). Consequently,

the errors are

E m a x - - 2 - t -- u l p , E . m i n - - --(2 -t -- u l p) 5.116

The restricted selection interval is

U k -- U k - (2 - t - u l p) 5.117

L k - - L k + 2 - t - u l p

By a similar reasoning as for the carry-save case, we obtain

A

U~_l- LUg_lit 5.118
A

L k -- [Lk + 2 - t] t

The relation between 8 and t is, from (5.90),

2 p - 1
(a - p) 2 -a > 2 -t 5.119

2

Note that the relation between 8 and t is the same as for the carry-save case, but

the actual value of the selection constants might be different.

Finally, from expression (5.92) we have

L - rp] t <_ ~ <_ Lrp + 2 -t - u lp] t 5.120

The design of the selection function and an example of execution is left as an

exercise.

Excercises 309

5~ Concluding Remarks
As for other digital modules, the design of a digit recurrence division unit is a
trade-off among several characteristics, such as execution time, area, and energy.
We have shown that the main parameters to consider in this trade-off are the
radix of the quotient digit obtained each iteration and the quotient-digit set. We
have given some example implementations that show the speedup achieved for
higher radices, as well as the increase in area.

A higher radix reduces the number of iterations, but complicates the selection

function and the multiplication of the divisor by a quotient digit. The use of a
redundant quotient-digit set simplifies the selection function because it allows
the utilization of a truncated residual and a truncated divisor. Moreover, to have
a fast addition, a redundant residual is used.

The direct implementation of the selection function is practical for radices
up to 8. For radix 16 an implementation of interest uses two overlapped radix-4
stages. For higher radices, prescaling of the divisor and selection by rounding
provides a good speedup with a reasonable area.

We have presented a method to design quotient-digit selection functions
and given some examples. The method can be applied to other radices, quotient-
digit sets, and residual representations. It is also the basis to the implementation
of other digit recurrence algorithms, such as square root and reciprocal square
root.

Other methods to perform the division operation are presented in Chapter

7, together with some comparison comments.

5~

5 , 1

Exercises
E x a m p l e s o f e x e c u t i o n

6 [Radix 2 and radix 4] Divide 126 • 2 -s by ~ and produce an 8-bit result, using
the following algorithms:

�9 radix 2, qj E {0, 1}, conventional (nonredundant) residual

�9 radix 2, qj E {-- l, 0, 1 }, carry-save residual

�9 radix 4, qj E {--2, -- 1, 0, 1, 2}, carry-save residual

310 <:: !i!:~ #i~,.~ ~:~:~ :{~ ~{ii: ;~::~i~::: 5 Division by Digit Recurrence

5.2

5.3

[Radix 16] For x -- 0.1001001110100101 and d -- 0.110 perform two iterations of
the division recurrence using a radix-16 implementation with overlapped radix-4

stages.

[Scaling and selection by rounding] For x -- 126 x 2 -8 and d -- 6 x 2 -3
produce an 8-bit quotient using a radix-16 algorithm with scaling and selection

by rounding. For the scaling factor M use 1.3125.

5.4

5.5

5.6

5.9'

O n - t h e - F l y C o n v e r s i o n

[Example of conversion] Perform the on-the-fly conversion of the signed-digit

result 1211100i2, where the digit set is {-2, - 1 , 0, 1, 2}.

[Conversion for digit set {0, 1, 2}] Develop an algorithm to convert on-the fly a
radix-2 positive redundant representation with digit set {0, 1, 2 } into conventional

representation.

C h a r a c t e r i s t i c s o f t h e I m p l e m e n t a t i o n

[Delay and area] For a 24-bit division unit give expressions for the delay and
area in terms of delay and area of the component modules, for the following two

c a s e s :

(a) Radix 2, carry-save residual
(b) Radix 4, carry-save residual and digit set [- 2 , - 1 , 0, 1, 2}

[Retiming the recurrence] An alternative implementation of digit recurrence
division (for instance, radix 4 with carry-save adder) is to retime the recurrence so
that the quotient-digit selection is performed at the end of one cycle and the digit
used in the next. This retiming creates two slices in the implementation: a most-
significant slice, which includes the quotient-digit selection, and the rest. This
might reduce the critical path by eliminating the need of a buffer to distribute the
quotient digit to the most-significant slice. It also allows this slice to be optimized
for delay, and the other part optimized for area and/or for energy dissipation.

To illustrate the characteristics of this retiming, design a radix-4 implemen-
tation for 54 bits using, in addition to the components described in this chapter,
a faster variety with a delay that is 20% smaller. Also assume that the buffer
required for the most-significant slice has a delay of 40% of the one used without

Exercises 311

5 . 8

w

retiming. After you optimize for speed, use the standard modules in the noncritical

components to reduce area and energy (since these components have a smaller

area and consume less energy than the faster variety). Determine the delay of a
cycle and compare with the non-retimed version.

[Overlapped radix-2 stages] Consider a radix-2 division algorithm with the

quotient-digit set {-1, 0, 1} and redundant residuals in carry-save form. The

quotient-digit selection is performed using the selection constants as described in
the text. The cycle time is

tcyde = tqsel + tbuff q- tmux -+- tHA -+- treg = 4 + 1 + 1 + 1 + 2 = 9tg

To reduce the total time, we propose to obtain all three possible values ofqj+2, cor-

responding to qj+l = - 1 , O, 1, and select the correct one once qj+l is
known, all of this in the same cycle. The next residual is obtained as

w[j + 2] = 2(2w[j] - q j + l d) - qj+2d

In other words, two quotient bits are generated per cycle.

(a) Design the network for the selection ofqj+l and qj+2. Assume that the

selection function is already implemented; that is, you can use the module
that produces a quotient-digit based on the (4 + 4) MS bits of the

redundant residual. Show all details; in particular, show the details of the
conditional selection.

(b) Design the network to produce the next residual (assume 8 bits in the
fractional part). Show all details.

(c) Determine the cycle time of the new scheme and compare the total time to
obtain a quotient of 8 bits with the scheme described in the text. Discuss
your findings.

[Gate-level design] Design a radix-2 12-bit division unit at the gate level. You
may use full-adder, multiplexer, register modules, and individual gates. Provide
necessary design details to establish delays of critical paths. Use a carry-save adder

to form residuals in redundant form. Assume that the dividend and divisor are

positive fractions. Give an estimate of the overall delay in gate delay units (tg) and

cost in number of different modules. Assume that a full-adder has a delay of 4tg;

a 3-1 multiplexer, 2tg; and a register load, 3tg.

312 c: H ~ p Y ~: ~t~ ~!ii~ Divis ion by Dig i t R e c u r r e n c e

5 . 1 0

5 . 1 1

Integer Division

Perform the integer division ofx = 120 by d = 9 using a radix-4 algorithm with
residual in carry-save form.

Give an algorithm that combines fractional division and integer division. Show
the combined implementation, highlighting the modules that are required by the
inclusion of integer division.

5 . 1 2

5 . 1 3

5 . 1 4

5 . 1 5

5 . 1 6

Quotient-Digit Selection

[Using signed-digit adder] Determine a quotient-digit selection function for
a radix-2 algorithm using a signed-digit adder. Show the execution for x --
128 • 2 -8 and d - - 6 • 2 -3 (obtain a quotient of 8 bits).

[Radix 4 with p - 1] Determine a good quotient-digit selection function for
a radix-4 division algorithm with p - 1 and carry-save residual. Give only the
portion for selection ofqj+l - 2, but use a value of 8 and t suitable for the whole
selection function.

[Restricted divisor range] Determine a good quotient-digit selection function for
2 a radix-4 division algorithm with p - ~ and carry-save residual, if the divisor is

restricted to the range [63 1) Use a value of 6 and t suitable for this restricted ~-~, �9

range.

[Radix-8 selection] Using selection constants, determine the minimum number
of bits of the residual estimate to perform radix-8 division (p -- 1) with the

1 1) a n d (b) 3 5 divisor in the range (a) [2, [~, ~), for nonredundant residuals. Draw
the corresponding P-D diagrams (first quadrant only).

[Divisor range [1, 2)] Consider a radix-4 division algorithm with the quotient-
1 digit set {-2, . . . , 2 }, the divisor in the range [1,2) (instead of the usual [2, 1)), and

nonredundant residuals. The quotient-digit selection is performed using selection
constants.

(a) Determine the size (the number) of the divisor intervals.
(b) Determine the best selection constants m2(i). Show details of your

derivations. What is the total number of bits needed to select qj+l -- 2?

Further Readings 313

5 .17

5 . 1 8

1 How does it compare with the case ~ < d < 1 in which three bits ofd and
six bits of the shifted residual are required?

(c) Summarize the effect of using the divisor range [1, 2). Is it a good idea?

[Scaling and selection by rounding] Consider a high radix r digit recurrence
division method. Assume that residuals are in nonredundant form. The quotient
digit q j+l s { - a , . . . , a }, a < r - 1, is selected as the integer part of the rounded
shifted partial residual. That is,

qj+l -- integer(rw[j] + 0.5)

For convergence, such an algorithm requires that the divisor be in the range

l < d < l + ~ , f l~_0

(a) Determine the range of the divisor necessary for the convergence of the

method. That is, determine ft. Make sure that [qj+l[~_ a.
(b) Discuss a possible implementation and its cost/performance advantages

and disadvantages relative to a fast radix-2 division algorithm.
(c) Illustrate the method for r - 100, dividend x - 0.83703960, and divisor

d -- 1.00827040 by finding the first three radix r quotient digits.

Consider a radix-4 digit recurrence division algorithm with the residual
r e c u r r e n c e

w[j + 1] = 4 w [j] - qj+ld

and divisor range [1, 1).

(a) Show that it is possible to perform division using the quotient-digit set
{ - 3 , - 1 , 1,3}.

(b) Under what conditions is (a) true?
(c) How does the division algorithm in (a) compare with an algorithm using

the digit set {-2, - 1 , 0, 1, 2}? What are the trade-offs?

5~ Further Readings
Division methods for hardware implementation were considered in the early
literature as direct mappings of the paper-and-pencil method for long division in
radix 2. The two main algorithms used, restoring and nonrestoring division, are

314 <: ~{.~ ~'~{i~! ~ s Division by Digi t Recurrence

reviewed in Chapter 1. These algorithms are slow, and subsequent research led to
a variety of methods for the design of fast dividers. One of the earliest discussions
of digit recurrence division methods and implementation aspects appeared in
Robertson (1957, 1964). Early literature on division includes survey articles by
Reitwiesner (1960), Garner (1965), and Tung (1972). Parts of this chapter are
based on the monograph by Ercegovac and Lang (1994), which presents an in-
depth study of digit recurrence methods for division and square root.

SRT Division

The pioneering radix-2 division algorithm with the redundant quotient-digit set
1 {-1, 0, 1 } and comparison constants +3 was proposed independently by Cocke

and Sweeney (1957), Robertson (1957), and Tocher (1958) and named SRT division
after Sweeney, Robertson, and Tocher. A similar algorithm is also discussed in
Nadler (1956). Since the main objective in the early days was to reduce the number
of costly additions by maximizing the frequency of zero quotient digits, analysis
of the average number of consecutive zeros in the quotient was studied in great
detail (Freiman 1961; Shively 1963; Robertson 1970). Some improvements to
the SRT method leading to an increased number of zeros in the quotient are
presented in MacSorley (1961), Wilson and Ledley (1961), and Metze (1962). In

1 Robertson (1960), a variant of the SRT method with constants + a allows the use of
a truncated redundant shifted residual avoiding full-precision carry-propagation
in the adder. Although developed for radix 2, the term SRT is often used for
division with radices greater than 2.

Redundant Quotient-Digit Set and Residual

A method with a redundant quotient-digit set for higher-radix nonrestoring di-
vision is discussed in Robertson (1958). The method uses redundancy to simplify
the quotient-digit selection function and allow the use of estimates of the partial
remainders and the divisor. The problem of selecting quotient digits was stud-
ied in Robertson (1965) and later extended in Atkins (1968, 1970a) to a general
formulation of the quotient-digit selection based on short-precision estimates of
the scaled residual (shifted partial remainder) and of the divisor. The original
treatment of graphical representation of the division process and the selection
problem was introduced by Robertson (1958, 1964, 1965) and further developed

Further Readings 315

by Atkins (1968, 1970a). There are a number of studies of the derivation and
complexity of the quotient-digit tables (Atkins 1968, 1970a; Paal 1973; Tan 1978;
Bushard 1983; Ercegovac and Lang 1994; Burgess and Williams 1995; Oberman
and Flynn 1998). History of research in higher-radix nonrestoring division until
1975 is summarized in Atkins (1975).

Quotient Conversion

On-the-fly conversion of redundant into conventional representations was intro-
duced in Ercegovac and Lang (1987a) and its combinational alternatives described
in Ercegovac and Lang (1986, 1990a) and Ciminiera and Montuschi (1993b). A
reduced-area on-the-fly conversion scheme is reported in Takagi and Horiyama
(1999).

Divider with Stages

The idea of implementing higher-radix division as a composition of lower-radix
stages has been used in the design of the Illiac III arithmetic unit (Atkins 1970b),
where a radix-256 quotient digit is obtained from four radix-4 division steps.
Radix-16 implementation using overlapping of stages is developed in Taylor
(1985) and for radix 8 in Fandrianto (1989) and Prabhu and Zyner (1995). A
self-timed division scheme with overlapped stages is described in Williams and
Horowitz (1991a) and Williams (1991).

Radix-8 Divider

A direct radix-8 implementation is presented in Ware et al. (1982). To reduce
the step time, conditional residual generation is done for all eight possible values
of the quotient-digit. Nannarelli (1999) provides a set of selection constants for
radix-8 division. In Carter and Robertson (1990) a direct radix-16 implementation
is presented using a signed-digit adder array.

Design and Performance

Design and performance issues in dividers are discussed in Zurawski (1980),
Oberman (1996), and Oberman and Flynn (1997). The area and performance

316 c ~ • pT E ~ 5 Division by Digit Recurrence

of various types of division algorithms, including the digit recurrence type, are
discussed in a survey paper (Soderquist and Leeser 1996). Implementations of
radix-2 and radix-4 SRT dividers with carry-save adders are described frequently
in the literature. Many sequential and combinational (array) alternatives have
been investigated and implemented (for example, Taylor and Patterson 1981;
Zurawski and Gosling 1981; Ercegovac et al. 1987; Bose et al. 1987; Zurawski and
Gosling 1987; Peng et al. 1987; Montuschi and Ciminiera 1992; Harris et al. 1997).
Dividers with signed-digit adders are reported in Avi~ienis (1961), Tung (1968,
1970), Takagi (1987), Kuninobu et al. (1987), and Carter and Robertson (1990). A
systematic approach to design array dividers implementing the SRT method is
presented in McQuillan (1992) and McQuillan and McCanny (1994).

Overredundant Quotient-Digit Set

The use of overredundant quotient-digit sets in the design of digit recurrence
dividers is reported in Montuschi and Ciminiera (1994a) and applied in a radix-8
divider in Montuschi and Ciminiera (1994b). A radix-4 division scheme with
overredundant digit set and prescaling is discussed in Montuschi and Ciminiera

(1991a).

Combinational Divider

Combinational linear arrays for radix-2 division have been frequently considered.
Early schemes, often called cellular or iterative dividers, correspond to unfolded
nonrestoring division (Deegan 1971; Gardiner and Hont 1972; Agrawal 1979).
Cappa and Hamacher (1973), Gaviland and Hamacher (1973), and Williams and
Hamacher (1981) describe linear arrays of carry-save adders with short CLAs
producing estimates of the residual for the quotient-digit selection. A VLSI im-
plementation of such an array divider is reported in Tsunekava et al. (1998).
Two's complement multiplication-division arrays are analyzed in Kutsuwa et al.
(1987). Pipelined division arrays are discussed in Deverell (1975). Combinational
VLSI implementations of radix-2 division with residuals in carry-save form are
described in Zuras and McAllister (1986) and Vanmeulebroecke et al. (1990).
Linear array dividers using signed-digit adders are discussed in Tung (1970) and

Soceneantu and Toma (1972).

Further Readings 317

Division with Scaling of Operands

The idea of scaling operands to make the quotient-digit selection independent of
the divisor was proposed in Svoboda (1963) and Klir (1963) for a decimal computer.
The quotient digit is obtained as the most-significant digit of the partial remainder
and the maximum number of scaling multiplications is 3, with an average of about
1.8. A standard nonrestoring division recurrence with carry-propagate adder is
used. This scheme was extended in Tung (1968) to an arbitrary radix with signed-
digit adder and applied in signed-digit division algorithm. Svoboda's scaling is
one-sided; that is, the (positive) divisor is transformed into the range 1 + E. A
generalization of division via transformation of the operands' range is provided
in Krishnamurthy (1970). An alternative two-sided scaling approach is discussed
in Ercegovac (1977, 1983). A radix-2 SRT with simplified selection based on
Svoboda's approach is discussed in Burgess (1991), McQuillan and McCanny
(1992), and Montalvo et al. (1998). The scaling technique and the radix-4 division
are considered in Ercegovac et al. (1988), Ercegovac and Lang (1990b), Burgess
(1994), and Srinivas and Parhi (1995). A VLSI implementation of floating-point
radix-16 divider with prescaling appears in Inui et al. (1999).

Division with Prediction

Quotient-digit prediction with scaling suitable for division with redundant resid-
ual was presented in Ercegovac and Lang (1985), and implementations for radix-2
and radix-4 are described in Ercegovac and Lang (1987b, 1989) and Modiri and
Lang (1988). Quotient prediction without prescaling is discussed in Montuschi
and Ciminiera (1995).

Very High Radix Division

Very high radix methods with prescaling and selection by rounding are reported
in Ercegovac et al. (1993, 1994) and Montuschi and Lang (2001). Organizations of
higher-radix division are discussed in Montuschi (1992). In Matula (1991) a radix-
217 division unit is described, based on scaling the residual (multiplying it by a
short reciprocal of the divisor) so that digit selection can be done by truncation.
The unit uses an 18 x 69 rectangular multiplier.

318 r ~i~i A ~' ::~: r !iii:i~ ~i Division by Digit Recurrence

Miscellaneous Division Schemes

Algorithms with skipping over zero quotient bits are discussed in Ligomenides
(1977), Montuschi and C iminiera (1991 b, 1993), and Mandelbaum (1990). Division
methods and implementations with speculation of quotient digits are described
in Cortadella and Lang (1993, 1994), Cornetta and Cortadella (1999), Wey and
Wang (1999), and Wey (2000). Integer algorithms and implementations can be
found in Purdy and Purdy (1987), Magenheimer et al. (1988), and Wang et al.

(2ooo).

Implementation

Examples of implementation of dividers in VLSI are Ware et al. (1982), Bose
et al. (1987), Peng et al. (1987), Moes et al. (1993), Eisig et al. (1993), and Prabhu
and Zyner (1952). Design and implementation of division suitable for FPGA
technologies is developed in Louie and Ercegovac (1993, 1994). VLSI layout of
dividers is discussed in Guyot et al. (1995).

Variable-Time Divider

Self-timed and asynchronous dividers are discussed in Williams (1991), Williams
and Horowitz (1991a, 1991b), Renaudin et al. (1996), and Cornetta and Cortadella
(2001). Low-power self-timed dividers are reported in Lee and Choi (1996) and
Won and Choi (2000).

Online Division

Digit-serial division schemes (online division) and related literature are discussed
in Chapter 9.

Low-Power Dividers

Design and implementation of low-power dividers for radix 4 are given in
Nannarelli and Lang (1996,1999a) and for radix 8 in Nannarelli and Lang (1998a).
Comparison of radix-4, radix-8, and radix-16 low-power dividers is presented in
Nannarelli and Lang (1999b). Kuhlmann and Parhi (1998) discuss a low-power

Bibliography 319

design of an SRT divider. Nannarelli and Lang (1998b) present power-delay
trade-offs in the design of digit recurrence dividers. The low-power design of
division and square root is the subject of a doctoral dissertation (Nannarelli 1999).

Verification

Formal verification of implementations of the SRT division is considered in
Bryant (1996), Clarke et al. (1999), and Ruess et al. (1999).

Delay and Area Bounds

Theoretical aspects of time and size complexity of the division operation is
considered in Beame et al. (1986), where the bounds on the depth of circuits
are developed. Optimal size of integer division circuits is discussed in Reif
and "Fate (1989). The area-time optimality of division networks is studied in
Mehlhorn and Preparata (1987). No practical implementations based on this work
exist.

5~ Bibliography
Agrawal, D. R (1979). High-speed arithmetic arrays. IEEE Transactions on Com-

puters, C-28(3):215-24.
Atkins, D. E. (1968). Higher-radix division using estimates of the divisor and

partial remainders. IEEE Transactions on Computers, C-17(10):925-34.
Atkins, D. E. (1970a). A Study of methods for Selection of Quotient Digits during

Digital Division. PhD thesis, Department of Computer Science, University
of Illinois at Urbana-Champaign. Technical report UIUCDCS-R-397.

Atkins, D. E. (1970b). Design of the arithmetic units of ILLIAC III: Use of
redundancy and higher radix methods. IEEE Transactions on Computers,
C-19(8):720-33.

Atkins, D. E. (1975). Higher radix, non-restoring division: History and recent
developments. In Proceedings of the 3rd IEEE Symposium on Computer Arith-
metic, pages 158-60.

Avi~ienis, A. (1961). Signed digit number representations for fast parallel arith-
metic. IRE Transactions on Electronic Computers, EC-10(9):389-400.

320 r ;g?i :a ~..:~: :~162 {i!! i~ :. 5 Division by Digit Recurrence

Beame, R, S. Cook, and H. Hoover (1986). Log depth circuits for division and
related problems. SIAM Journal on Computing, 15:994-1003.

Bose, B. K., L. Pei, G. S. Taylor, and D. A. Paterson (1987). Fast multiply and divide
for a VLSI floating-point unit. In Proceedings of the 8th IEEE Symposium on
Computer Arithmetic, pages 87-94.

Bryant, R. (1996). Bit-level analysis of an SRT divider circuit. In Proceedings of
the 33rd Design Automation Conference, pages 661-65.

Burgess, N. (1991). Radix-2 SRT division with simple quotient digi t selection.
Electronics Letters, 27(21):1910-11.

Burgess, N. (1994). Prescaled maximally-redundant radix-4 SRT divider. Elec-
tronics Letters, 30(23):1926-28.

Burgess, N., and T. Williams (1995). Choices of operand truncation in the SRT
division algorithm. IEEE Transactions on Computers, 44(7):933-38.

Bushard, L. B. (1983). A minimum table size result for higher radix nonrestoring
division. IEEE Transactions on Computers, C-32(6):521-26.

Cappa, M., and V. C. Hamacher (1973). An augmented iterative array for
high-speed binary division. IEEE Transactions on Computers, C-22(2):172-
75.

Carter, T. M., and J. E. Robertson (1990). Radix-16 signed-digit division. IEEE
Transactions on Computers, C-39(12):1424-33.

Ciminiera, L., and P. Montuschi (1996). Carry-save multiplication schemes with-
out final addition. IEEE Transactions on Computers, 45(9):1050-55.

Clarke, E. M., S. M. German, and X. Zhao (1999). Verifying the SRT division al-
gorithm using theorem proving techniques. Formal Methods in System Design,
14(1):7-44.

Cocke, J., and D. W. Sweeney (1957). High speed arithmetic in a parallel device.
Technical report, IBM.

Cornetta, G., and J. Cortadella (1999). A radix-16 SRT division unit with specu-
lation of the quotient digits. In Proceedings of the 9th Great Lakes Symposium
on VLSI, pages 74-77.

Cornetta, G., and J. Cortadella (2001). A multi-radix approach to asynchronous
division. In ASYNC 2001, Proceedings of the 7th International Symposium on
Asynchronous Circuits and Systems, pages 25-34.

Cortadella, J., and T. Lang (1993). Division with speculation of quotient digits.
In Proceedings of the l lth IEEE Symposium on Computer Arithmetic, pages
87-94.

Bibliography 321

Cortadella, J., and T. Lang (1994). High-radix division and square-root with
speculation. IEEE Transactions on Computers, 43(8):919-31.

Deegan, I. (1971). Concise cellular array for multiplication and division. Electron-
ics Letters, 7(23):702-4.

Deverell, J. (1975). Pipeline iterative arithmetic arrays. IEEE Transactions on Com-
puters, C-24(3):317-22.

Eisig, D., J. Rotstain, and I. Koren (1993). The design of a 64-bit integer multi-
plier/divider unit. In Proceedings oft he 11th Symposium on Computer Arith-
metic, pages 171-78.

Ercegovac, M. D. (1977). A general hardware-oriented method for evaluation
of functions and computations in a digital computer. IEEE Transactions on
Computers, C-26(7):667-80.

Ercegovac, M. D. (1983). A higher radix division with simple selection of quotient
digits. In Proceedings of the 6th IEEE Symposium on Computer Arithmetic, pages
94-98.

Ercegovac, M. D., and T. Lang (1985). A division algorithm with prediction
of quotient digits. In Proceedings of the 7th IEEE Symposium on Computer
Arithmetic, pages 51-56.

Ercegovac, M. D., and T. Lang (1986). Alternative on-the-fly conversion of re-
dundant into conventional representations. Technical report CSD-860027,
Computer Science Department, University of California, Los Angeles.

Ercegovac, M. D., and T. Lang (1987a). On-the-fly conversion of redundant into
conventional representations. IEEE Transactions on Computers, C-36(7):895-
97.

Ercegovac, M. D., and T. Lang (1987b). Simple radix-4 division with divisor
scaling. Technical report CSD-870015, Computer Science Department, Uni-
versity of California, Los Angeles.

Ercegovac, M. D., and T. Lang (1989). Fast radix-2 division with quotient-digit
prediction.]ournal of VLSI Signal Processing, 2(1):169-80.

Ercegovac, M. D., and T. Lang (1990a). Fast multiplication without carry-
propagate addition. IEEE Transactions on Computers, C-39(11):1385-
90.

Ercegovac, M. D., and T. Lang (1990b). Simple radix-4 division with operands
scaling. IEEE Transactions on Computers, C-39(9):1204-7.

Ercegovac, M. D., and T. Lang (1994). Division and Square Root: Digit-Recurrence
Algorithms and Implementations. Kluwer Academic Publishers.

322 c H ~#~ ~:~ ~ {;~ii 5 Division by Digit Recurrence

Ercegovac, M. D., T. Lang, and R. Modiri (1988). Implementation of fast radix-4
division with operands scaling. In Proceedings of the ICCD '88 Conference,
pages 486-89, New York.

Ercegovac, M. D., T. Lang, and R Montuschi (1993). Very high radix division
with selection by rounding and prescaling. In Proceedings of the llth IEEE
Symposium on Computer Arithmetic, pages 112-19.

Ercegovac, M. D., T. Lang, and P. Montuschi (1994). Very-high radix division
with prescaling and rounding. IEEE Transactions on Computers, 43(8):909-
18.

Ercegovac, M. D., T. Lang, I. G. Nash, and L. P. Chow (1987). An area-time
efficient binary divider. In Proceedings of the ICCD '87 Conference, pages
645-48, New York.

Fandrianto, 1. (1989). Algorithm for high-speed shared radix-8 division and radix-
8 square root. In Proceedings of the 9th IEEE Symposium on Computer Arith-
metic, pages 68-75.

Freiman, C. V. (1961). Statistical analysis of certain binary division algorithms.
Proceedings of IRE, 49:91-103.

Gardiner, A. B., and I. Hont (1972). Cellular-array arithmetic unit with multi-
plication and division. Proceedings of the lEE, 119(6):559-60.

Garner, H. L. (1965). Number systems and arithmetic. Inadvances in Computers,
volume 6, pages 131-94. Academic Press, New York.

Gaviland, J., and V. C. Hamacher (1973). High-speed multiplier/divider iterative
arrays. In 1973 Sagamore Computer Conference on Parallel Processing, pages
91-100.

Guyot, A., L. Montalvo, A. Houelle, H. Mehrez, and N. Vaucher (1995). Com-
parison of the layout synthesis of radix-2 and pseudo-radix-4 dividers. In
Proceedings of the 8th International Conference on VLSI Design, pages 386-
91.

Harris, D., S. E Oberman, and M. H. Horowitz (1997). SRT division architec-
tures and implementations. In Proceeding of the 13th IEEE Symposium on
Computer Arithmetic, pages 18-25.

Inui, S., T. Uesugi, H. Saito, Y. Hagihara, A. Yoshikawa, M. Nishida, and
M. Yamashina (1999). A 250 MHz CMOS floating-point divider
with operand pre-scaling. In Symposium on VLSI Circuits, pages 17-
18.

Bibliography 323

Klir, J. (1963). A note on Svoboda's algorithm for division. Information Processing
Machines (Stroje na Zpracovani Informaci), (9):35-39.

Krishnamurthy, E. V. (1970). On range-transformation techniques for division.
IEEE Transactions on Computers, C-19(2):157-60.

Kuhlmann, M., and K. K. Parhi (1998). Power comparison of SRT and GST
dividers. In Proceedings of the SPIEmAdvanced Signal Processing Algorithms,
Architectures, and Implementations VIII, volume 3461, pages 584-94.

Kuninobu, S., T. Nishiyama, H. Edamatsu, T. Taniguchi, and N. Takagi (1987).
Design of high speed MOS multiplier and divider using redundant binary
representation. In Proceedings of the 8th IEEE Symposium on Computer Arith-
metic, pages 80-86.

Kutsuwa, T., M. Mun, and K. Ebata (1987). Configuration and evaluation of two's
complement multiplication-division arrays. IEEE Transactions Circuits and
Systems., CAS-34:304-8.

Lee, K., and K. Choi (1996). Self-timed divider based on RSD number system.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 4(2):292-
95.

Ligomenides, P. A. (1977). The skip-and-set fast division algorithm. IEEE Trans-
actions on Computers, C-26:1030-32.

Louie, M. E., and M. D. Ercegovac (1993). On digit-recurrence division imple-
mentation for field programmable gate arrays. In Proceedings ofthe 11th IEEE
Symposium on Computer Arithmetic, pages 202-9.

Louie, M. E., and M. D. Ercegovac (1994). Implementing division with field
programmable gate arrays. Journal of VLSI Signal Processing, 7(3):271-
85.

MacSorley, O. L. (1961). High-speed arithmetic in binary computers. IRE Pro-
ceedings, 49:67-91.

Magenheimer, D. J., L. Peters, K. W. Pettis, and D. Zuras (1988). Integer mul-
tiplication and division on the HP precision architecture. IEEE Transactions
on Computers, C-37:980-90.

Mandelbaum, D. M. (1990). A systematic method for division with high average
bit skipping. IEEE Transactions on Computers, C-39(1):127-30.

Matula, D. W. (1991). Design of a highly parallel IEEE Standard floating point
arithmetic unit. In Proceedings of the Symposium on Combinatorial Optimiza-
tion in Science and Technology at R UTCOR/DIMA CS.

324 C ~ A . P T E R 5 Division by Digit Recurrence

McQuillan, S., and J. V. McCanny (1994). Fast algorithms for division and square
root. Journal of VLSI Signal Processing, 8(2):151-68.

McQuillan, S. E. (1992). Algorithms and Architectures for High Performance Arith-
metic Processors. PhD thesis, The Queen's University of Belfast.

McQuillan, S. E., and J. V. McCanny (1992). VLSI module for high-performance
multiply, square root and divide. IEE Proceedings E: Computers and Digital
Techniques, 139(6):505-10.

Mehlhorn, K., and E P. Preparata (1987). Area-time optimal division for t =
co(log n)I+E. Information and Computation, 72(3):270-82.

Metze, G. (1962). A class of binary divisions yielding minimally represented
quotients. IRE Transactions Electronic Computers, EC-11 (6):761-64.

Modiri, R., and T. Lang (1988). Alternative implementations of a radix-4 divider
with scaling. Technical report CSD-880069, Computer Science Department,
University of California, Los Angeles.

Hoes, E. A. J., R. Nouta, and G. J. Hekstra (1993). Divider architectures for VLSI
implementation. International Journal of High Speed Electronics and Systems,
4(1):1-33.

Montalvo, L. A., K. K. Parhi, and A. Guyot (1998). New Svoboda-Tung division.
IEEE Transactions on Computers, 47(9): 1014-20.

Montuschi, P. (1992). Parallel architectures for higher-radix division. IEE Pro-
ceedings E: Computers and Digital Techniques, 139(2): 101-10.

Montuschi, P., and L. Ciminiera (1991a). Algorithm and architectures for radix-4
division with over-redundant digit set and simple digit selection hardware.
In Conference Record of the 25th Asilomar Conference on Signals, Systems and
Computers, pages 418-22.

Montuschi, P., and L. Ciminiera (1991b). Simple radix 2 division and square
root with skipping of some addition steps. In Proceedings of the 10th IEEE
Symposium on Computer Arithmetic, pages 202-9.

Montuschi, P., and L. Ciminiera (1992). Design of a radix 4 division unit with
simple selection table. IEEE Transactions on Computers, 41 (12):1606-11.

Montuschi, P., and L. Ciminiera (1993). Reducing iteration time when result digit
is zero for radix-2 SRT division and square root with redundant remainders.
IEEE Transactions on Computers, 42(2):239-46.

Montuschi, P., and L. Ciminiera (1994a). Over-redundant digit sets and the design
of digit-by-digit division units. IEEE Transactions on Computers, 43(3):269-77.

Bibliography 325

Montuschi, E, and L. Ciminiera (1994b). Radix-8 division with over-redundant
digit set. Journal of VLSI Signal Processing, 7(3):259-70.

Montuschi, E, and L. Ciminiera (1995). Quotient prediction without prescaling.
lEE Proceedings: Computers and Digital Techniques, 142(1):15-22.

Montuschi, E, and T. Lang (2001). Boosting very-high radix division with prescal-
ing and selection by rounding. IEEE Transactions on Computers, 50(1):13-
27.

Nadler, M. (1956). A high speed electronic arithmetic unit for automatic comput-
ing machines. Acta Technica (6):464-78.

Nannarelli, A. (1999). Low Power Division and Square Root. PhD thesis, University
of California, Irvine.

Nannarelli, A., and T. Lang (1996). Low-power radix-4 divider. In International
Symposium on Low Power Electronics and Design, pages 205-8.

Nannarelli, A., and T. Lang (1998a). Low-power radix-8 divider. In Proceedings
International Conference on Computer Design. VLSI in Computers and Proces-
sors, pages 420-26.

Nannarelli, A., and T. Lang (1998b). Power-delay tradeoffs for radix-4 and radix-
8 dividers. In 1998 International Symposium on Low Power Electronics and
Design, pages 109-11.

Nannarelli, A., and T. Lang (1999a). Low-power divider. IEEE Transactions on
Computers, 48(1):2-14.

Nannarelli, A., and T. Lang (1999b). Low-power division: Comparison among
implementations of radix 4, 8 and 16. In Proceedings of the 14th IEEE Sym-
posium on Computer Arithmetic, pages 60-67.

Oberman, S. E (1996). Design Issues in High Performance Floating Point Arithmetic
units. PhD thesis, Department of Electrical Engineering, Stanford University.

Oberman, S. E, and M. J. Flynn (1997). Design issues in division and
other floating-point operations. IEEE Transactions on Computers, 46(2):154-
61.

Oberman, S. E, and M. J. Flynn (1998). Minimizing the complexity of SRT tables.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 6(1):141-
49.

Paal, E (1973). Implementation of truncated comparison and quotient prediction
in the Q-P (quotient predictor) division algorithms. In Proceedings of the 7th
Asilomar Conference on Circuits, Systems and Computers, pages 734-36.

326 r H • p ~' ~ ~ ~ Division by Digit Recurrence

Peng, V., S. Samudrala, and M. Gavrielov (1987). On the implementation of
shifters, multipliers, and dividers in VLSI floating-point units. In Proceedings
of the 8th IEEE Symposium on Computer Arithmetic, pages 95-102.

Prabhu, J. A., and G. B. Zyner (1995). 167 MHz radix-8 divide and square root
using overlapped radix-2 stages. In Proceedings of the 12th IEEE Symposium
on Computer Arithmetic, pages 155-62.

Purdy, C. N., and G. B. Purdy (1987). Integer division in linear time with bounded
fan-in. IEEE Transactions on Computers, C-36:640-44.

Reif, J. H., and S. R. Tate (1989). Optimal size integer division circuits. In Pro-
ceedings of the 21st Annual ACM Symposium on Theory of Computing, pages
264-73.

Reitwiesner, G. W. (1960). Binary arithmetic. InAdvances in Computers, volume 1,
pages 232-308. Academic Press, New York.

Renaudin, M., B. E. Hassan, and A. Guyot (1996). A new asynchronous pipeline
scheme: application to the design of a self-timed ring divider. IEEE Journal
of Solid-State Circuits, 31 (7):1001-13.

Robertson, J. E. (1957). Arithmetic unit (chapter 8). In On the Design of Very High-
Speed Computers. Technical report no. 80, Computer Science Department,
University of Illinois at Urbana-Champaign.

Robertson, J. E. (1958). A new class of digital division methods. IRE Transactions
Electronic Computers, EC-7(3):88-92.

Robertson, J. E. (1960). Theory of Computer Arithmetic Employed in the Design of
the New Computer at the University of Illinois. File no. 319, Computer Science
Department, University of Illinois at Urbana-Champaign.

Robertson, J. E. (1964). Introduction to Digital Computer Arithmetic. File no.
599, Department of Computer Science, University of Illinois at Urbana-
Champaign.

Robertson, J. E. (1965). Methods of Selection of Quotient Digits during Digital Di-
vision. File no. 663, Computer Science Department, University of Illinois at
Urbana-Champaign.

Robertson, J. E. (1970). The correspondence between methods of digital divi-
sion and multiplier recoding procedures. IEEE Transactions on Computers,
C- 19(8):692-701.

Ruess, H., N. Shankar, and M. K. Srivas (1999). Modular verification of SRT
division. Formal Methods in System Design, 14(1):45-73.

Bibliography 327

Shively, R. R. (1963). Stationary Distributions of Partial Remainders in SRT Digital
Division. PhD thesis, University of Illinois.

Soceneantu, A., and C. I. Toma (1972). Cellular logic array for redundant binary
division. In Proceedings of the IEE, volume 119, pages 1452-56.

Soderquist, P., and M. Leeser (1996). Area and performance tradeoffs in floating-
point division and square root implementations. ACM Computing Surveys,
28(3):518-64.

Srinivas, H. R., and K. K. Parhi (1995). A fast radix-4 division algorithm and its
architecture. IEEE Transactions on Computers, 44(6):826-31.

Svoboda, A. (1963). An algorithm for division. Information Processing Machines
(Stroje na Zpracovani Informaci), 9:25-34.

Takagi, N. (1987). Studies on Hardware Algorithms for Arithmetic Operations with
a Redundant Binary Representation. PhD thesis, Department of Information
Science, Kyoto University.

Takagi, N., and T. Horiyama (1999). A high-speed reduced-size adder un-
der left-to-right input arrival. IEEE Transactions on Computers, 48(1):76-
80.

Tan, K. G. (1978). The theory and implementation of high-radix division. In
Proceedings of the 4th IEEE Symposium on Computer Arithmetic, pages 154-
63.

Taylor, G. S. (1985). Radix-16 SRT dividers with overlapped quotient-selection
stages. In Proceedings of the 7th IEEE Symposium on Computer Arithmetic,
pages 64-71.

Taylor, G. S., and D. A. Patterson (1981). VAX hardware for the proposed IEEE
Floating-Point Standard. In Proceedings of the 5th IEEE Symposium on Com-
puter Arithmetic, pages 190-96.

Tocher, K. D. (1958). Techniques of multiplication and division for automatic
binary computers. Quart. j. Mech. Appl. Math., XI(Pt. 3):364-84.

Tsunekava, Y., M. Hinosugi, and M. Miura (1998). Design and VLSI evaluation
of a high-speed cellular array divider with a selection function. Electrical
Engineering in Japan, 124(4):760-97.

Tung, C. (1968). A division algorithm for signed-digit arithmetic. IEEE Transac-
tions on Computers, C- 17(9):887-89.

Tung, C. (1970). Signed-digit division using combinational arithmetic nets. IEEE
Transactions on Computers, C- 19(8):746-48.

328 c H ~ pT E R ~ Division by Digit Recurrence

Tung, C. (1972). Arithmetic (Chapter 3). In Computer Science. Wiley-Interscience,
New York.

Vanmeulebroecke, A., E. Vanzieleghem, T. Denyer, and P. G. A. Jespers (1990). A
new carry-free division algorithm and its application to a single-chip 1024-b
RSA processor. IEEE Journal of Solid-State Circuits, SC-25(3):748-65.

Wang, C.-C., C.-J. Huang, and G.-C. Lin (2000). Cell-based implementation
of radix-4/2 64b dividend 32b divisor signed integer divider using the
COMPASS cell library. IEE Proceedings--Computers and Digital Techniques,
147(2):109-15.

Ware, F. A., W. McAllister, J. R. Carlson, D. K. Sun, and R. J. Vlach (1982). 64
bit monolithic floating-point processors. IEEE Journal of Solid-State Circuits,
SC-17(5):898-907.

Wey, C. L. (2000). Design of fast high-radix SRT dividers and their VLSI imple-
mentation. IEE ProceedingswComputers and Digital Techniques, 147(4):275-
81.

Wey, C. L., and C.-P. Wang (1999). Design of a fast radix-4 SRT divider and its
VLSI implementation. IEE Proceedings--Computers and Digital Techniques,
146(4):205-10.

Williams, J., and V. C. Hamacher (1981). A linear-time divider array. Canadian
Electr. Engineering Journal, 6:14-20.

Williams, T. E. (1991). Self-Timed Rings and Their Application to Division. PhD
thesis, Stanford University. Computer Systems Laboratory technical report
no. CSL-TR-91-482.

Williams, T. E., and M. Horowitz (1991a). A 160ns 54-bit CMOS division im-
plementation using self-timed and symmetrically overlapped SRT stages.
In Proceedings of the 10th IEEE Symposium on Computer Arithmetic, pages
210-17.

Williams, T. E., and M. A. Horowitz (1991b). A zero-overhead self-timed 160-ns
54-b CMOS divider. IEEE Journal of Solid-State Circuits, 26(11): 1651-61.

Wilson, J. B., and R. S. Ledley (1961). An algorithm for rapid binary division.
IRE Transactions Electronic Computers, EC-10(4):662-70.

Won, J.-H., and K. Choi (2000). Low power self-timed radix-2 division. In
ISLPED'00: Proceedings of the 2000 International Symposium on Low Power
Electronics and Design, pages 210-12.

Zuras, D., and W. H. McAllister (1986). Balanced delays trees and combinatorial
division in VLSI. IEEEJournal of Solid-State Circuits, SC-21:814-19.

Bibliography 329

Zurawski, J. H. P. (1980). High Performance Evaluation of Division and Other
Elementary Functions. PhD thesis, University of Manchester, England.

Zurawski, J. H. P., and J. B. Gosling (1981). Design of high-speed digital divider
units. IEEE Transactions on Computers, C-30(9):691-99.

Zurawski, J. H. P., and J. B. Gosling (1987). Design of a high-speed square root,
multiply and divide unit. IEEE Transactions on Computers, C-36(1):13-23.

C H :& F~: :g {g }r : G Square Root by Digit
Recurrence

This method of performing the square root operation is conceptually very similar

to the method for division discussed in the previous chapter. Consequently, we

develop the algorithm in a similar fashion, providing less detail since we assume

familiarity with the developments for division. Table 6.1 gives a summary of the

main definitions. Moreover, we concentrate on algorithms that use estimates for

the result-digit selection and redundant addition in the recurrence.

As in division, the algorithm is presented for fractional operand x and result

s. For floating-point representation and normalized operand, it is necessary to

scale the operand to have an even exponent to allow the computation of the result

exponent. Consequently,

1 1
s = x/x-, - < x < 1, - < s < 1 6.1

4 - 2 -

Recurrence and Step
Each iteration of the recurrence produces one digit of the result, most-significant

digit first. Let us call S[j] the value of the result after j iterations, that is,

J
S [j] -- ~ sir -i 6.2

i--0

The digit s0 should be 1 for p < 1 to represent a result value greater than p; it
can be either 1 or 0 for p = 1.

The final result is then

S - - S [n] - t S i r-i 6.3
i=0

331

332 cH A PTER 6 Square Root by Digit Recurrence

Operand

Result

Result after j iterations

Result-digit set

Redundancy factor

Selection interval for sj+l = k

Estimate of redundant shifted residual

Selection constants

Result estimate

1 ~ < x < l
1 ~ _ _ _ s < l

~ i = o S i T S [j '] = J - i

5i E { -a , . . . , - 1 , O, 1, . . . , a }
1 p - - a / (r - 1) ~ < p < 1

Lk [J] < rw[j] < U k [j]
~" with t fractional bits

m k (i) with c fractional bits

S[/'] with 8 fractional bits

T A B L E 6.1 Summary of definitions.

and the result has to be correct for n-digit precision; that is,

IX 1/2 __ ~'1 < r --n 6.4

The use of absolute value allows positive and negative remainders necessary

for efficient implementation. We define an error function ~ so that its value after

j steps (iterations)is

E[j] -- X 1/2 __ S[j] 6.5

As in division, since the min imum (maximum) digit value is - a (a) , we get 1

- p r - j < E.b"] < pr - j 6.6

Introducing (6.5) in (6.6) and transforming to eliminate the square root operation

(add S[j] and obtain the square), we get

p2r-2J - 2pr - j S[j] + S[j] 2 < x < p2r-2J + 2pr - j S[j] + S[j] 2 6.7

Subtracting S[j]2 we obtain

p 2 r - 2 J -- 2pr - j S[j] < x -- S[j] 2 < p 2 r - 2 J -[- 2pr - j S[j] 6.8

Tha t is, S[j] is computed such that x - S[j] 2 is bounded according to (6.8).

We now define a residual (or scaled partial remainder) w so that

w[j] - rJ(x - S[j'] 2) 6.9

1. As in division, can make < for p < 1.

Recurrence and Step 333

From (6.8) the bounds on the residual are

-2pS[j] + p2r-J < w[j] < 2pS[j] + p2r-J 6.10

and the initial condition is

w [0] - - x - S [0] 2 = x - s 0 f o r s 0 - - - 0 o r l 6.11

In terms of the residual we obtain the recurrence

2 - (j+ l) w[j -+- 1] -- rw[j] - 2S[j]sj+l - Sj+lr 6.12

Expression (6.12) is the basic recurrence on which the square root algorithms
are based. The result digit is chosen, in a way that satisfies the bounds (6.10) for
w[j + 1], by the function

A

s j+l -- SELsQR(y'~[j], S[j]) 6.13
A

where ~[./'] and S[j] are estimates ofrw[j] and S[j], respectively.
Each square root iteration consists of four subcomputations (Figure 6.1(a)):

1. An arithmetic left shift ofw[j] by one position to produce rw[j].

2. Determination of the result digit s j+l using the result-digit selection

function SELsQR.

3. Formation of the adder input

2 - (j+ l) F[j] -- - (2 S [j] s j+l -Jr- S j+lr) 6.14

4. Addi t ionofF[j] torw[j] toproducew[j + 1].Asindivision, tohaveafas t
iteration, a redundant adder is used for this addition. This adder can be of
the signed-digit or of the carry-save type. Since the digits of S[j] are
produced in signed-digit form, if a carry-save adder is used in the
recurrence, it is necessary to convert the signed-digit form to two's
complement form by means of a variant of the on-the-fly conversion.

The four subcomputations are executed in sequence as indicated in the timing
diagram of Figure 6.1(b). Note that no time has been allocated for the arithmetic
shift since it is performed by suitable wiring. Moreover, the relative magnitudes
of the delay of each of the components depend on the specific implementation.

As in division, different specific versions are possible, depending on the
radix, the redundancy factor, the type of representation of the residual, and the
result-digit selection function.

334 c~,~:~::~v~!i:~: 6 Square Root by Digit Recurrence

wU]
(present residual) ~_

! !

' ARITHMETIC LEFT SHIFT '
i i
i i

rwU]
(shifted residual)

rw[j]

ADDITION

w[j+l] 1
(next residual)

sU]

A

S[j]

SELsQR [

l ~j§

F GENERATION

I F[j]

I

I
sj+ 1 ', F[j] Redundant

i Selection, addition

I t Result update
(on-the-fly)

| . ~

Recurrence step time

(b)

RESULT CONVERSION I < sj+ 1

S[j + 11

(a)

F ! G U R E 6.1 (a) Components of square root step. (b) Timing.

C~ o 2 Generation of Adder Input F [j]
As part of the implementation of the recurrence (6.12), it is necessary to form the

adder input F with value

2 - (j + l) 6.15 F[j] -- - 2 S [j] s j+l - s j+lr

so that

w [j + 11 -- rw[j] + F [j]

Generation of Adder Input F [j] 335

Since the digit of the result is produced in a signed-digit form, the partial result
S[j] is also in this form. Depending on the type of adder, S[j] has to be converted
to adapt to the adder. In particular, for the case of a carry-save adder the input
F has to be in two's complement representation. The conversion is done on-the-
fly using a variation of the scheme presented in Chapter 5. It requires that two
conditional forms A[j] and B [j] are kept, such that

A[j] = S[j] 6.16

B[j] = S[j] - r - j 6.17

These forms are updated with each result digit as follows:

A[j] + S j + l r-(j+l)

A [j + 1] -- B[j]-Jr-(r - - [S j+ l l) r - (j+l)

if S j+l ~ 0

otherwise
6.18

A[j] + (Sj+l - 1)r -(j+l)

B [j + I] -- B[j] + (r - l - Jsj+l])r -Ij+l)

if Sj+l > 0

otherwise
6.19

In a sequential implementation this conversion requires two registers for A and B,
appending of one digit, and loading. For controlling this appending and loading,
a shift register K is used, containing a moving 1. This implementation is shown
in Figure 6.2.

In terms of these forms, the value of F is given by the following expressions.

F o r s j + l > 0:

2 - (j+l) F[j] = - 2 S [j] s j + l -- Sj+l r • - (2A[j] + Sj+lr- (J+l))s j+l 6.20

For s j + 1 < 0."

2 - (j+l) F[j] = 2S[j]lsj+l] - 6"J+ 17"2 -(j+l) ____ 2(B[j] +r-J) l s j+ l [-- Sj+lr

= (2B[j] + (2r - I S j + l l) r - (J + l)) l S j + l l

Note that these expressions are implemented by concatenation and multiplication
by one radix-r digit. The implementation is especially simple for radix 2 and radix
4 (with digit set {-2, . . . , 2}), as shown in the examples of Section 6.3.1.

336 c ~ A P~ ~i ~ ~5 Square Root by Digit Recurrence

K REGISTER I

LOAD/APPEND

F GENERATOR

F[j]

I

LOAD/APPEND

B REGISTER

F I G U R E 6 . 2 Network for generating F. (Adapted from (Ercegovac and Lang, 1990).)

Overall Algorithm, Implementation, and Timing
The overall algorithm is shown in Figure 6.3 and its implementation at the block-

diagram level in Figure 6.4. The cycle time is

Tcycle = tSEL + tF-CEX + tADD + tload 6.21

(5,,,$. 1 Examples of Implementa t ions

We now describe two example implementations, one radix-2 and one radix-4.

The corresponding selection functions are derived in Section 6.6.

Radix-2 Square Root with Carry-Save Adder

In this case the quotient-digit set is { -1 , 0, 1 } with p = 1. We choose to make

s 0 = 0, resulting in the initial condition

w[O] = x

Overall Algorithm, Implementation, and Timing 337

1. [Initialize] (all assignments in parallel)

w[0] + - - x - s 0 ; s 0 = 0 f o r l 3 = l a n d s 0 - - l fo r /3 < 1

A[0] +-- s0.000...000;

B[0] +-- (1 - s 0) .000...000; since B[0] = A[0] - 1

K[0] +- 0.100...000;

2. [Recurrence] (all assignments in parallel)

f o r j = 0 . . . n
A

sj+ - S E L E C T [j 1, S Ij]/

F[j] = f (A[j] , B[j], Sj+I)
w[j + 1] + - r w [j] + F I j];

A[j + 1] +--ga(A[j] , B[j], K[j], S j + l) ;

B[j + 1] + - g b (A [j] , B[j], K[j], Sj+l);

K[j + 1] +-- shif t-r ight(K[j])

end for

3. [Termination] Correct result (same as for div#ion)

F ! G U R E 8,S Square root a lgori thm.

(expressions (6.20)

(expressions (6.18))

(expressions (6.19))

Since sj E { - 1 0, 1 } we have s 2 _ Is j] and hence the recurrence is j

w[j + 1] -- 2 w [j] - 2S[j]sj+l -- 2-~J+l)[Sj+l] 6.22

resulting in

F[j] - -(2S[j]sj+l + 2-~J+l))lsj+ll 6.23

As discussed before, we use the conditional forms A and B for the conversion
of S[j] to two's complement representation and for the formation of F [j]. How-
ever, since in this case the only nonzero values ofs j+ l are 1 and - 1 , we define

338 c N ~.: PT E ~ 6 Square Root by Digit Recurrence

F [j] Value Bit-String

F~U]
F_][j]

-2S[1] - 2 -(j+ l)

2 S [1] - 2 -(j+ l)
= 2 S [j] - 2 - (j - l) -+- 3 x 2 -(j+ l)

{2S[j]}, 1, l j+l, 0, . . . , 0

{ 2 S [j] - 1}, 1, l j+l, 0, . . . , 0

T A B L E 6 .2 F1 and F-1 forms for radix 2.

j+I ~]
-I
sU]

A, B, K REGISTERS
AND

CONTROL

F[j]

x (argument) 1

I
A

su]

I lw j+ll

s (result)

w REGISTERS

rwU]

\

1
REDUNDANT ADDER I

w[j+ 1]

SELsQR

l
sj+1

FIGURE 0.4 Block diagram of digit recurrence square root scheme. (Adapted from
Ercegovac and Lang (1990).)

F1 and F-1 so that 2

F1L/'] if s j + l - 1

F [j] - - 0 if s j+ 1 -- 0

F - I [j] i f s j + l - - - 1

6.24

Table 6.2 describes the values and the corresponding bit-strings of the F1 and F-1

forms. In this table, {2S[j]} is the bit-string produced by the bit-complement of

2. In this case, A and B are used only for the conversion of S[j].

Overall Algorithm, Implementation, and Timing 339

1

0

- 1

Sj+l FI[/" + 1]

(X, 0, 1, l j+2, 0, . . . , 0)

(X, 1, 1, l j+2, 0, . . . , 0)

(Y, O, 1, l j+2, O, . . . , O)

F-I[j + 1]
m

(X, O, 1, l j+2, O, . . . , O)

(Y, 1, 1, l j+2, O, . . . , O)

(Y, 0, 1, l j+2, 0, . . . , 0)

TABLE 6.3 Updat ing ofF1 and F-1 forms for radix 2.

EXAMPLE 6.1

2S[j] in radix-2 conventional representation, and {2S[j] - 1} is the bit-string of

2(S[j] - 2-J) . The subscript of l j+] indicates that the corresponding 1 is in the

(j + 1) th position.

The bit-strings FI[j] = (X, 1, l j+l , 0 , . . . , 0) and F-I[j] -- (Y, 1, l j+l ,
0, . . . , 0) are updated according to Table 6.3. The initial conditions are FI[0] =
-2S[0] - 2 -1 = - 0 . 5 = 111.1 and F_I[0] = 2S[0] - 2 -1 = - 0 . 5 = 111.1. 3

The updating of the registers is controlled by the control register K with

contents

K F] = (1, 1, 1, . . . , 1, l j , 0, . . . , 0) 6.25

with the initial condition K[0] = 1111.0000...0.

The result-digit selection developed in Section 6.6 is

1 i f 0 < ~ ' < 3

s j + l - 0 i f ~ ' - - 1 6.26

- 1 i f - 5 < 7 < - 2

where ~" is an estimate of 2w[j] with t -- 0 fractional bits.

We show an example of execution of the radix-2 a lgor i thm for x =

0.10110111 in Figure 6.5. �9

Radix-4 with Carry-Save Adder

We develop the radix-4 case with carry-save adder and result-digit set { -2 , - 1 ,

0 ,1 ,2 / .

3. The three integer bits are needed since ~" requires four integer bits, so w[j + 1] requires
three integer bits.

340 r H A p T E ~ 6 Square Root by Digi t Recurrence

2w[0] § 0001.01101110

0000.00000000

F1 [0] 111.10000000

A

y - - 1 S l - - I

s[o] - o

s [1] - o . 1

w[1] 110.11101110

010.00000000

2w[1] + 1101.11011100

0100.00000000

F111] 110.11000000

A

y - - 1 s2 - -1 S[2]--0.11

w[2] 111.00011100

001.10000000

2w[2] + 1110.00111000

0011.00000000

F 1 [2] 110.01100000

A

y - - 1 s3 - -1 S[3] = 0.111

w[31 011.01011000

100.01000000

2w[3] + 0110.10110000

1000.10000000

F_113] 001.1011000

A

y - - 2 S 4 - - 1 S[4] = 0.1101

w[4] 111.10000000

001.01100000

2w[4] + 1111.00000000

0010.11000000

F114] 110.01011000

A

y - - 1 s5 - -1 S[5] -- 0.11011

w[5] 011.10011000

100.10000000

+ only three integer bits in the recurrence because of the range of w [j].

F I G U R !~ S,S Example of Radix-2 a lgor i thm execution.

Overall Algorithm, Implementation, and Timing 341

F[j]

$ j + l

0

1

2

- 1

- 2

Value

(in terms of S [j])

0

- 2 S [j] - 4 -(j+l)

-4S[j] - 4 • 4 -~j+l)

2S[j] - 4 -~j+~)

4 S [j] - 4 • 4 -(j+l)

Value (in terms of

A[j] and B[j]) Bit-string

0
-2A[j] - 4 -(j+l)

- 4A[j] - 4 • 4 - (j + l)

2B[j] + 7 • 4 - (j + l)

4B[j] + 12 • 4 - (j + l)

T A B I. E 0.4 Generation of F [j] for radix 4.

0 . . . 00000

h - . . . a a l l l

~- . . .Yl l00

b . . . b b l l l

b . . . b l l 0 0

The recurrence for this case is

w[j + 1] - 4 w [j] - (2S[j]sj+l +4-1J+l)s2 j+l) - 4w[j] + F [j] 6.27

The adder input F [j] is formed as discussed in Section 6.2. The resulting bit-

strings are given in Table 6.4, where a. . .aa and b. . .bb are the bit-strings

representing A[j] and B[j], respectively (shifted one position). As in the radix-2

case, the trailing location of the string is controlled by the moving 1 of register K.

The result dig~ is a function of ~', the carry-save rw[j] truncated to four
fractional bits, and S[j], the partial result also truncated to four fractiOnal bits. As

in division, the selection function is defined in terms of selection constants ink(i)
such that

Sj+l - - k if mk(i) < ~ < mk+l(i) and S'[j] = 2 -1 + i • 2 -4 6.28

A selection function is given in Table 6.5. Since the selection constants are all
multiples of 2 -3, only three fractional bits of~" are used for selection, as shown in
Figure 6.6. To use the same selection function for all values of j , the following

transformation is performed:

. . . . (1, 1, 0 , -) if (j -- 0)

(S1, 32, 33, $4) - - (1, 1, 1, 1) if(Ao -- 1) and (j :fi 0) 6.29

(1, A2, A3, A4) i f (A o - - 0) a n d (j :fi0)

where (Ao, A1, A2, A3, A4) are the most-significant bits of A, the conventional

representation of S[j]. Since for j = 0, A0 = 1 and A 2 - - A 3 ~ A4 - - 0, we

obtain the implementation of Figure 6.6.

342 r ~i J/3~: p ~: ~!i!i i;i!: 6 Square Root by Digit Recurrence

i 0 1 2 3 4 5 6 7
~" 8 9 10 11 12 13 14 15
S j 1-"6 1-'-6 1-"6 1-"6 1-'-6 1-'-6 1-'-6 1-'-6

m2(i) +

ml(i) +

too(i) +

re_l(/) +

12

4

- 4

--13

14

4

- 5

-14

16

4

--6

--16

+: real value is given value divided by eight.

16

4

- 6

- 1 7

18

6

- 6

-18

20

6

- 8

- 2 0

20

8

- 8

-22

22

8

- 8

-23

l A B L E 8 . s Selection function for radix-4 square root.

MS part of 4w[j]

I
SELsQR '

>...,

A 0

Step j > 0

A

A2 ^

A3 ^

A4 ~ $4

.

t 8

CPA

Y

_1

~1 COMBINATIONAL
NETWORK

f 3

~j+l

F I G U R E 8.0 Selection function for r = 4. (Adapted from Ercegovac and Lang (1990).)

The overall algorithm follows directly the algorithm given earlier in this

chapter with r -- 4, and it is not repeated here. The cycle time is

Tcycle - - tSEL +

tF-GEN -Jr-

tHA+

tload

(8-bit CPA + 10-input q-sel)

(4-to-1 multiplexer)

(HA part of [3:2] carry-save adder)

(register loading)

This is comparable to the cycle time of a radix-4 division with carry-save adder.

Combination of Division and Square Root 343

w [0] = x - 1--1.10110111

S [0] - 1

4w[0] + 1110.11011100 S = . l l 0 1

0000.00000000 ~ " - - 1 1 1 0 . 1 1 0 - - - 1 0 / 8 S l - - - 1 S[1]--0.11

F_~[0] + 001.11000000

w[1]

4w[1] +

F2[1] +

11.00011100

01.10000000

1100.01110000 S - - . l l O 0

0110.00000000 ~ ' - -0010 .011- -19 /8 s 2 - - 2

100.11000000

S [2] - 0.1110

w[21

4w[2] +

F_212] +

10.10110000

00.10000000

1010.11000000 S - - . l l l O

0010.00000000 "~ ' - -1100 .110- - -26 /8 s 3 = - 2 S[3]--0.110110

011.01110000

w[3] 11.10110000

00.10000000
+ only two integer bits used in recurrence, because the range of [w[j][< 2.

F I G U R E 6.7 Example of radix-4 algorithm execution.

E X A M P L E 6 . 9 We give an example of execution of the radix-4 algorithm for x =
0.10110111 in Figure 6.7. �9

6~ Combination of Division and Square Root
Since the recurrences of the square root and division operations have many simi-
larities, it is possible to implement a combined unit that performs both operations.
We now describe such a unit for radix 2; a generalization to higher radices is pos-
sible. Table 6.6 shows the operand and result ranges.

344 c N ,,,,,~ p T ~i ~e ~i~ Square Root by Digit Recurrence

Operation Operand 1 Operand 2 Result

Division

Square root

Dividend
1 1 . ~ < x < ~

] 1 t ~ < x <

Divisor
1 g_<d < 1

Quotient
]
~ < q < l

1 2 < s < l

* Because of initial condition.
t To accommodate odd exponents.

TA B L E 6 . 6 0 p e r a n d s and results ranges for combined unit.

Division Square Root

Recurrence

wU +1]=

Estimate

fraction bits t

Selection

m l

m0

m 1

2w[j] dqj+]
Iw[j]l < 1

w[0] = x/2

2w[j] s 2 2-(J+2) S[j]sj+] j+l
Iw[j]l < 1

w[0] = x/2

T A B L E 6.7 Algorithms.

Since the bound of the residual for square root is about twice that of division,
to combine both recurrences it is convenient to modify the residual for square

root so that

W [j](new) -- 2 - l w [j](old) 6.30

After making this modification (and calling w[j](new) just w[j]), we get the

algorithms described in Table 6.7. From this table we see that we can implement

a generic recurrence of the form

w[j + 11 = 2w[j] + F[j] 6.31

Integer Square Root 345

Division Square Root

U j + l

FI[j]

F_x[j]

q j + l

- d

d

S j + l

- S [j] - 2 -/j+2)

S [j] - 2 -(j+2)

T A B L E 6 .8 Correspondence.

where

FI[j] if u j+l = 1

F[j] -- 0 if u j+ 1 - - 0 6.32

F - I [j] if u j+l - - - - 1

and F1 [j], F-1 [j], and u j +1 are related to the operations by the correspondence of

Table 6.8. Moreover, the result-digit selection function is u j+ 1 - - S e l (~) , where

~" is an estimate of 2w[j] obtained by assimilating the carry-save representation

up to one fractional bit. From Table 6.7 we see that the selection function can be

made to be the same for both operations (and corresponds to that described for
division in Chapter 5).

The generation of the inputs to the adder is performed as described in this
chapter for square root, 4 whereas for division the registers have to be loaded as

indicated by the correspondence of Table 6.8. Conversion of the result is per-

formed as described in Chapter 5. Figure 6.8 shows a block diagram and the cycle

time of the combined implementation.

Integer Square Root
Integer square root (for unsigned operands) has an integer operand 0 < x < 2 n - 1
and produces an integer result s such that

s -- [x 1/2] 6.33

To use the staircase selection functions discussed in this chapter, it is necessary
1 that the result be in the range [5, 1). This is achieved by shifting the operand m

4. Because of the modification of the residual for square root, now the values of F [j] are one
half of those reported in Table 6.2.

346 r ~ & >~':~ ~ 6 Square Root by Digit Recurrence

D W

U j + I

U S '

U m
I

Result digit in SM form: [

uj+ 1 = (u s, urn)

d
(divisor)

I -
El[j] or d F_I[j] or d

-11 MUX 0 .-, enable

F[j]

CONVERTER I~

Quotient
or square root

"j+l

x/2
(dividend/argument)

~ w[j +11
MUX

l l
I wo I

SEL

~uj+,
1 ~ (uJ +1=1)

CSA I_
DIV

w[j+ 1] ~_

In division C/n = 1 if uj+ 1 = 1"

in square root C in = 0

FIGURE 6.8 Overall implementation of the radix-2 combined unit. (Adapted from

Ercegovac and Lang (1991).)

bits (and placing the binary point on the left) so that

x * - - 2 r e x (2 - n) - - 2 - (n - m) x 6.34

p roduc ing

s* - - 2 - (n - m) / 2 S 6.35

l * w i t h 2 < s < 1. T h e n

s - - 2 (n - m) / 2 s * 6.36

To obtain s f rom s * by shifting, it is necessary that n - m be even. Consequent ly ,
1 < X < 1 .
4 --

Result-Digit Selection 347

EXAMPLE 6 . 3

The number of bits of the integer square root is (n - m) /2 . Consequently,
the number of iterations required to obtain these bits is

N I = [(n - m) / 2 k] 6.37

where r = 2k is the radix of the result digit.

The result has to be aligned to the integer position. This can be done by

placing the digits in the correct final position or placing the digits aligned to the

left (to combine with fractional square root) and then performing a right shift of

(n - m) / 2 bits.

2 We now show an example of integer square root, radix 4 with p - g and 8-bit

operand. Consider the case x = 27 with binary representation x -- 00011011.

Since n = 8 is even, we shift m = 2 bits and produce x* --.01101100.

The number of bits of the integer result is (8 - 2)/2 = 3. Consequently, two

radix-4 iterations are necessary.

The radix-4 square root algorithm uses S[0] = 1 and w[0] = x* - 1 =

1.01101100 (two's complement). As selection function we use Table 6.5 for

carry-save representation of the residual.
The iterations are as follows (for simplicity we show the residual in con-

ventional representation):

w[0] = 11.01101100

4w[0] = 1101.10110000

+ F = 011.00000000

w [1] = 00.10110000

4w[1] -- 0010.11000000

(w[2] not needed)

S[O]-- 1

~ " - 1101.1011 S l - - - 2 S[1] -- 0.10(0.5)

~" - - 0 0 1 0 . 1 1 0 0 s2 - - 2 S [2] - - 0 . 1 0 1 0

So, s -- 23(0.101) ---- 101 = (5)10.

6~ Result-Digit Selection
We now develop the details of the selection function design. We give examples

for radix 2 and radix 4.

348 c H A P T E R 6 Square Root by Digit Recurrence

6 , 6 , 1 Selection Intervals

As in division, two fundamental conditions must be satisfied by a result-digit
selection: containment and continuity. These conditions determine the selection
intervals and the selection constants. We now develop expressions for these selec-
tion intervals. The bounds of the residual w[j] (called min(w [j]) and max(w[/"])
below) are defined by (6.10). Note that these bounds depend on j , whereas in
division they are constants. From recurrence (6.12), the interval ofrw[j] where
s j+l = k can be selected is

Uk[j] -- max(w[j + 1]) + 2S[j] k + k2r -(j+l)

= 2pS[j + 1] + p2r-(J+l) + 2S[l]k + k2r -(j+l)
6.38

Lk[j] -- min(w[j + 1])+ 2S[j] k + k2r -(j+l)

-- - 2 p S [j -J- 1] q- p2r-(J+l) -Jr- 2S[j] k + k2r -(j+l)

Since S[j + 1] = S[j] + k r-(j+l), we get

Uk[j] = 2S[j](k + P) + (k + p) 2r-(j+l)
6.39

Lk[j] = 2s[j](k - p) + (k - p) 2r-(j+l)

As in division, variations of Robertson's diagram and P-D plot can be used to
represent the selection interval bounds.

The continuity condition

results in

Uk_ 1 ~_~ L k 6.40

(2p - 1)(2S[j] + (2 k - 1)r -(j+l)) > 0

The overlap between consecutive selection intervals is given by

Uk_l - L k = (2p - 1)(2S[j] + (2 k - 1)r -(j+l))

6.41

6.42

As in division, this overlap is used to simplify the selection function.
Note that the bounds, selection intervals, and the overlap depend on j . This is

in contrast to division, in which they are independent of j . Since now the selection
intervals depend on three parameters, namely, S [/"], j , and k, the notation becomes
more complicated. In general, we use parentheses for S[j], square brackets for
j , and subscripts for k; however, we skip any one of these if it is unnecessary

Result-Digit Selection 349

6o6o2

in a particular context. The dependence on j makes the implementation more
complicated than in division, as discussed later.

Staircase Selection Using Redundant Adder

The basic relations that allow the use of estimates of the residual in the result-digit
selection are identical to those we developed for division in the previous chapter.
Since in square root the result-digit selection depends on the partial result S[j]
instead of on the divisor, the corresponding expressions are obtained by replacing
d by S[j]. Instead of repeating the development of these relations, we ask the
reader to refer to Chapter 5. On the other hand, some relations are different since
they depend on the specific form of the recurrence; we develop these relations
he re .

Since the use of a redundant adder increases the speed of the implementation
with a small increase in complexity, we concentrate on this type of implementation.

We now determine a staircase result-digit selection function using an estimate
of the partial result and an estimate of the shifted residual obtained by truncating
the redundant form.

Estimate of S [j]

The estimate of the result used in the result-digit selection divides the range of
the result S[j] into intervals, as illustrated in Figure 6.9. Specifically, if 8 is the

A

number of fractional bits of estimate S[j], then the value

S'[./'] - 2 -1 + i x 2 - 8 0 < i < 2 's-1 - 1 6 .43

defines the interval Ii. Note that the value of S'[j] for i = 0 is 2 -1, since the
result is normalized.

Since the result is being produced one digit per iteration in signed-digit
form, several alternatives can be used to form the estimate. This is in contrast to

2-1

I 0 �9 �9 �9 I i Ii+l , �9 �9 IL_ 1

I I

2 -1+ i x 2 -8 2 -1+ (i+ 1) x 2 -~

(L = 2 ~-1)

~ S [j]

1

F I G U R E 6.9 Generic intervals.

350 " ,C }.:~!~ ~i!~.:~i~,: ~:~'~::~: ~ ~;:~i~ 6 Square Root by Digit Recurrence

rw[j] li Ii+1

m2(i)

ml(i)
o o o

2-1+ ix 2-~ __~

i

i
!

!

!

!

i

r-J

m2(i + 1)

m](i)
i

I
000

2 -1+ (i+ 1) x2 -8

=- S[j]

F I G U R E 6.10 Selection intervals obtained by truncating conventional form.

division, where the estimate is always obtained by truncating the conventional

representation of the divisor. The alternative considered here uses the truncated

conventional representation of S[j], which is obtained by the on-the-fly conver-

sion. This is similar to the case of division, in which the divisor is in conventional

representation. Therefore, if S[j] is obtained by truncating S[j] to B fractional

bits, then as shown in Figure 6.10, the i th interval Ii is defined by

S'[j] -- 2 -1 + i • 2 -8 < S[j] < 2 -1 + (i + 1) • 2 -8 6.44

However, since S[j] has j fractional radix-r digits, the upper bound of the interval

is restricted so that Ii corresponds to

S'[j] -- 2 -1 + i • 2 -8 < S[j] < 2 -1 + (i + 1) • 2 -8 - r - j 6.45

This restriction of the upper limit of the interval is significant for small j .

Determination o f the Selection Constants m k (i)

We now summarize the condition required for the result-digit selection, which

is the same as for division. We then apply it to the square root case.

Using the estimate of the result, the result-digit selection is described by the

set of selection constants

(mk(i) 1 0 < i < 2 8 - 1 - 1 , k E { - a , . . . , - 1 , 0 , 1 , . . . , a l } 6.46

Result-Dig# Selection 351

That is, there is one selection constant per interval and per value of the result
digit. Using these selection constants, the result-digit selection is defined by

Sj+I - - k i f m k (i) < ~ < mk+l(i) and S'[j] -- 2 -1 + i • 2 -~ 6.47

where ~ is an estimate of the shifted residual rw[j] obtained by truncating the

redundant form to t fractional bits.

As discussed in Chapter 5, the use of the estimate by truncation of the re-

dundant form of y = rw[j] results in the following condition for the selection

constants:

A

m a x (L k (I i)) < mk(i) < m i n (U k _ l (I i)) 6.48

Moreover, for the carry-save representation case 5

A

u~_~ - [u ~ _ i - 2 - , j ,
6.49

L ~ - = [Lkl,

From these expressions, a feasible result-digit selection requires that

m i n ([U k _ l (I i)] t) - m a x ([L k (I i)] t) > 2 - t 6.50

Since L k and Uk_l depend on j , the iteration index, the selection constants can,
in general, be different for different j .

We now apply expressions (6.48) to the square root case. For this, we use the

expressions (6.39) for the selection interval and expression (6.45) for the definition

of the interval Ii. Consequently, for k > o, the minimum U is produced at the
lower end of the interval Ii and the maximum L at the upper end of the interval.
Therefore,

m i n (U k _ l (I i)) -- 2(2 -1 + i • 2-'S)(k - 1 + p)

+ (k - 1 + p)2r-(J+l)
6.51

m a x (L k (I i)) -- 2(2 -1 + (i + 1) x 2-a)(k - p)

+ (k - p) (k - p - 2r)r -{j+a)

5. For the expressions that hold for signed-digit representation, see Chapter 5 and
Exercise 6.12.

352 c i~.~ ~?i~,~ p:"ili" !ii~!i ~;~ 6 Square Root by Digit Recurrence

For k < 0, the m i n i m u m U is produced at the upper end of the interval Ii and

the m a x i m u m L at the lower end of the interval. Substi tuting we get

m i n (U k _ l (I i)) - - 2(2 -1 + (i + 1) • 2-~)(k - 1 + p)

+ (1 - p - k)(2r + 1 - p - k) r - (j + l)

6.52
max(Lk(/ i)) -- 2(2 -1 + i • 2-~)(k - p) + (k - P) 2 r - (j + l)

These expressions are used in expression (6.48) to determine the result-digit

selection. However , since they depend on j , a different selection function might

result for different j . To have a single selection function for all j we develop

bounds that are independent of j .

For k > o, in the expression for min(Uk_l (I i)) the term depending on j is

always positive and approaching zero for large j . Therefore , in a bound this term

can be neglected. Similarly, for m a x (L k (Ii)) the term depending on j is negative

(k - p - 2r < 0) so it can also be neglected.

For k < o, the same situation occurs for m i n (U k _ l (k)) , but now for

m a x (L k (I i)) j is positive, so it cannot be neglected, and for a bound we have

to use its m a x i m u m value (for j - 0).

T h e corresponding expressions independent of j are as follows. For k > 0:

m i n (U k _ l (I i)) - - 2(2 -1 + i • 2-~)(k - 1 + p)
6.53

m a x (L k (k)) -- 2(2 -1 + (i + 1) • 2-S)(k - p)

For k < O"

m i n (U k _ l (k)) - - 2 (2 - 1 + (i + 1) x 2 - ~) (k - 1 + p)
6.54

m a x (L k (k)) -- 2(2 -1 + i x 2-~)(~ - p) + (k -- P) 2 r - 1

To determine if a single selection function is possible, we use (6.50). 6 The

worst case is i -- 0 and/~ - - a + 1, resulting in

2(2 -~ + 2 - ~) (- a + p) - 2 (2 - 1) (- a + 1 - p) - (- a + 1 - p)2r -1 > 2 -t

6.55

6. To simplify the analysis we consider the best case, which occurs when both min(Uk_l) and
max(L k) are multiples of 2 -t .

Result-Digit Selection 353

This simplifies to

(2 p - 1) - (, o r - 1)2r -1 > 2 -t + 2 x 2-*(a - p) 6.56

For r -- 2 (p -- 1), this results in 2 -1 > 2 - t , so that a single selection function is

possible. On the other hand, there is no solution for r > 4 (because the term in

the left-hand side becomes negative), so that no single selection function for all j

exists. A possible alternative is to find a value J so that a single selection can be

used for j > J and then consider separately the cases for j < J .

For the case j > J , the same considerations given before produce the fol-

lowing. For k > 0 (same as (6.53)):

m i n (U k _ l (I i)) - - 2(2 -1 + i • 2-~)(k - 1 + p)
6.57

m a x (L k (I i)) - - 2(2 -1 + (i + 1) 3< 2-~)(k - p)

For k < 0 (expression (6.54) replacing --1 by - (J + 1) in the last term)"

m i n (U k _ l (I i)) - - 2(2 -1 + (i + 1) • 2 - a) (k - 1 + p)
6.58

m a x (L k (I i)) - 2(2 -1 + i • 2-~)(k - p) + (k - p) 2r-(1+1)

Introducing these expressions in (6.50) (for the worst case i - 0, k = - a + 1),

we get (similar to (6.56))

(2 p - 1) - - (p r -- 1)2r -(1+1) > 2 -t + 2 • 2-~(a - - p) 6.59

For specific values of r and p we can determine the values of J , t, and 8. These

are then used to determine a selection function for j > J . For example, for r = 4

possible solutions are (a = 2, 8 -- 4, t = 3, J = 3) and (a - 3, 8 = 4, t = 3, and

J - 1) .
The case j < J has to be treated separately. A possible solution is to have a

table lookup to produce S [J] directly from x; that is, obtain the first J digits of

the result from the table. 7 As we see later in the example for r -- 4, a detailed

analysis of the cases for j < J eliminates the need for this initial table lookup.

Finally, the range of ~" for carry-save residual is given by

[r min(w [j]) - 2 -t It < ~" < [r max(w [j]) It 6.60

where min(w[j]) and max(w[j]) are the bounds o fw[j] .

7. In this case, it is possible to obtain an algorithm in which J is not an integer.

354 <; ~i ~ p ti ~i ~ii:: s Square Root by Digit Recurrence

Selection Function for Radix 2 with Carry-Save Adder

To obtain the result-digit selection, we begin by obtaining the values of L k and
U k from expressions (6.39). That is,

U I [j] ~" 43[.]']--I- 2 - j + l

U0[j] = 2S[j] + 2 -j-1

U - l [j] - ~ 0

L I [j] - - 0

L0[j] = -2S[j] + 2 - j-1

L-I [j] = -4S[j] + 2 -j+l

6 . 6 1

We first determine the intervals of S[j] for the staircase function and the value of
1 t. As shown in (6.56), a single interval over the whole range 2 < S[j] < 1 exists

so that the result-digit selection is independent of the result. Since p = 1, it is
possible to make s 0 = 0, resulting in S[0] = 0. To obtain the selection constants
according to (6.48), the extreme values are

((~)) { 2-~
min Uo Uo(1) >

' - 1

max(El (~) , E l (l)) -- 0

min(U_l (~) , U_I(1)) -- 0

m a x (L 0 (~) , L0(1)) -- - 1

This last value is obtained as follows. We have

for j = 0 (since S [0] -- 0)
1 for j > 0 (since S[j] > 3)

6.62

max(L0) = - min(2S[j]) + 2 -j-1 6 . 6 3

1 the selection This value is only important when we selectsj+l - - - 1 . Sinces > 3,
_ _ 1 2 - j (SO that S 1] 2-J-1 1 S j+l -1 implies that S[j] > -~ + [j + -- S [j] - > 3)"

Consequently,

(1)
max(Lo) -- - 2 ~ + 2 - j + 2- j-1 ~ __1 6 . 6 4

Result-Digit Selection 355

The selection constants and the value of t are now obtained so that they satisfy

(6.48) and (6.49). A possible choice is

t - O m l - O t o o - - - 1 6.65

The only case in which (6.48) is not satisfied for this choice is for j -- 0 because

for this value of j , rain(U0) < max(L1). However, for j -- 0 the residual is not in

carry-save form, but in conventional form, so that it is sufficient to have U0 > L0.
1 Moreover, since in the result s > 3, the first bit ofs is always 1 (which is obtained

by the selection function, since x > 0).

The range of the shifted residual is given by (6.60). Since 12w[/]l < 4S < 4,

the range of the estimate is - 5 < ~ < 3. That is, 4 bits of the carry-save residual

are needed for selection.

Consequently, the result-digit selection is

1 ifo_<?' 3
Sj+l - - 0 if ~ - - - 1 6.66

- 1 if - 5 _<~'_< - 2

Selection Function for Radix 4 with Carry-Save Adder

We develop the radix-4 case with carry-save adder and result-digit set { -2 , - 1 ,

0,1,2}.

As indicated by expression (6.56) it is not possible to have a single selection

function for all values o f j . Consequently, we obtain a value o f] so that a single
selection function is possible for j > J (and uses small t and 8). From (6.59)

we get

8
1 254- / > 2 - t -Jr- 2 -a 6.67
3 36 -- 3

A possible solution is J = 3, t = 3, 8 = 4. However, the corresponding
selection function is not feasible (Exercise 6.13); this can occur because expression

(6.59) has been obtained for the best case in which the limits of the interval are

multiples of 2 -t (Exercise 6.13). Therefore, we now develop a result-digit selection

with t = 4. It has to satisfy expression (6.48), that is,

m a x ([L k (I i)] 4) < ink(i) < m in (LUk_ l (I i) - 2-4]4) 6.68

356 c H A p'~ E l~ 6 Square Root by Digit Recurrence

Moreover, the maximum and minimum in the interval are described by expres-
sions (6.57) and (6.58) with J = 3 and ~ = 4. That is, for k > o:

(1)
min(Uk_l(Ii)) = 2(2 -1 + i x 2 .4) k - ~

6.69

max(Lk(Ii)) = 2 (2 - 1 + (i + 1)X 2 - 4) (k - ~)

For k < 0: (1)
min(Uk_l(Ii)) = 2(2 -1 + (i + 1) x 2 .4) k - ~

6.7O
(2) (k 2) 2

_ 4-4 max(Lk(Ii)) -- 2(2 -1 + i • 2 -4) k - ~ +

Table 6.9 shows the limits of the intervals and possible selection constants. The
following notation is used:

m U k _ l (i) = min ([Uk_ l (I i) - 2-414)
6.71

MLk(i) = max([Lk(Ii)]4)

Now we have to consider the case j < 3. One possible approach is to have a
module to determine from a truncated x directly the value of S[3] and to use it
to perform the first iterations to determine w[3]. Another possibility is to analyze
the case j < 3 and try to match the corresponding selection functions with that
for j > 3. The particular choice of selection constants in Table 6.9 was made so
that the same constants hold for all j.8 The resulting selection function and its
implementation are shown in Section 6.3.1.

The range of ~" is obtained from (6.60). Since in this case we initialize to
4 1 13 and S[0] - 1, from (6.10) we obtain max(w[j]) - max(w[1]) < ~ + 7 - -ff

4 min(w[j] > -5" Conequently,

88 92
< y < m 6.72

1 6 - - 16

Consequently, ~" has four integer bits.

8. This is developed in Ercegovac and Lang (1990).

Exercises 357

i
 'LjI"

2

10

3

11

ML2(i) mUl(i)
m 2 (i) *

A

MLI(i) mUo(i)
ml(i)

A

MLo(i) mU_l(i)
mo(i)

A

ML_l(i) mU_2(i)
m 1(i)

24 25

24

6 9

8

-10 7

8

-26 -25

�9 - 2 6 .

27 29

28

711

8

-12 - 8

10

-30 -28

28

30 32

32

8 12

8

-13 - 9

12

33 -31

32

32 35

32

8 13

8

14 - 9

12

"36 -33

-34

i
A

su]
4

12

5

13

6

14

7

15, 16
A

ML2(i) mUl(i)
m2(i)

MLI(i) mUo(i)
ml(i)

MLo(i) mU_l(i)
mo(i)

ML_l(i) mU_2(i)
m 1(i)

35 39

36

9 15

12

16 10

12

-40 -36

-36

38 42

40

10 16

12

-17 11

-16

-43 -39

40

40 45

40

10 17

16

-18 -11

-16

-46 -41

44

43 49

44

11 19

16

-20 12

-16

-50 -44

-46

6og

6 , 1

Real value is indicated value divided by 16.

T A B L E 6 . 9 Selection function fo r r = 4 with carry-save adder (j > 3).

Exercises
Examples of Execution

Obtain the 8-bit square root of 144 • 2 -8 using the following algorithms:

(a) Radix 2, sj E { - 1, 0, 1 }, conventional (nonredundant) residual

(b) Radix 2, sj E {-1, 0, 1}, carry-save residual

(c) Radix 4, sj E {-2 , - 1, 0, 1, 2}, carry-save residual

358 r N r ~:~ ~ ~7 .~3 Square Root by Digit Recurrence

6.2

6.3

6.4

6.5

6.6

C h a r a c t e r i s t i c s o f the I m p l e m e n t a t i o n

Design a 12-bit radix-2 square root unit at the gate level. You may use full-adders,
multiplexers, registers, and gates. Provide the necessary design details to establish
delays of critical paths. Use a carry-save adder to form residuals in redundant form.
Give an estimate of the overall delay in gate delay units (tg) and cost. Assume that
a full-adder has a delay of 4tg, a 3-1 multiplexer 2tg, and a register load 3tg.

Develop the following two ways of generating the adder input F when a signed-

digit adder is used:

(a) Use S[j] in its original signed-digit form.
(b) Convert 8[j] to two's complement representation.

Discuss the design trade-offs in these alternatives.

[Retiming of the recurrence]. As Exercise 5.7, but for square root.

[Overlapped radix-2 stages]. Consider a radix-2 square root algorithm with the
result-digit set { - 1, 0, 1 } and redundant residuals in carry-save form. The result-
digit selection is performed using the selection constants as described in the text.

The cycle time is

tcycl e --tSELsoRT-~-tbu f f -~-tmu x -~-tHA ~ - t r e g - 4 + 1 + 1 + 1 + 2 - lOt s

To reduce the total time, we propose to obtain all three possible values o f s j+2,

corresponding to s j + l m __ 1, 0 , 1, and select the correct one once s j + l is known,
all of this in the same cycle. In other words, two result bits are generated per cycle.

(a) Design the network for the selection of s j+l and s j + 2 . Assume that the
selection function is already implemented. Show all details; in particular,

show the details of the conditional selection.
(b) Design the network to produce the next residual (assume 8 bits in the

fractional part). Show all details.
(c) Determine the cycle time of the new scheme and compare the total time to

obtain a result of 8 bits with the scheme described in the text. Discuss your

findings.

C o m b i n a t i o n o f D i v i s i o n a n d S q u a r e R o o t

Using the combined radix-2 algorithm described in the chapter, perform the

following operations:

Exercises 359

6 . 7

6 . 8

6 . 9

6 . 1 0

6 .11

6 . 1 2

6 . 1 3

(a)
(b)

Division ofx -- 0.10110011 by d -- 0.10001111

Square root of x -- 0.01110111

Compare the cycle time and the cost of the combined radix-2 implementation

with an implementation only for square root.

I n t e g e r S q u a r e Root

Perform the integer division algorithm for radix 4 with residual in carry-save

representation for x = 53 and d = 9. Consider that operands and result are

represented by 8-bit vectors.

Give an algorithm that combines fractional square root with integer square root.

Show the combined implementation, highlighting the modules required to in-

clude integer square root.

Result-Digit Selection

Determine a result-digit selection function for a radix-2 algorithm in which a

signed-digit adder is used in the recurrence.

Develop a bit-level implementation for the radix-2 selection function for a digit

s j represented in sign-and-magnitude by (Ss, s m) and the residual is in carry-save

representation.

For the selection function, consider using the truncated signed-digit representa-

tion or (equivalently) the fixed value of S[[8/log(r)]] (that is, the value of S[j]

immediately after at least 8 fractional bits are produced). Show that in this case

(for simplicity we consider the case in which exactly 8 fractional bits are produced)

the i th interval corresponds to the following range of S[j]:

2 -1 + i x 2 -8 - p • 2 -8 < S[j] < 2 -1 + i x 2 -8 + p • 2 -8

and give a figure illustrating this method.

Following the derivation in Section 6.6.4, develop a radix-4 selection function for

J - 3, t - 3, and 8 - 4. Determine the selection constants. How many fractional

bits are required?

360 c H r p T E P ~ Square Root by Digit Recurrence

6 . 1 4

6~

Determine a result-digit selection function for a radix-4 square root algorithm
with p - -1 and carry-save residual. Give only the portion for selection of

Sj+ 1 = 2 .

Further Readings
A survey of square-root algorithms is presented in Montuschi and Mezzalama
(1990). Parts of this chapter are based on the monograph Ercegovac and Lang
(1994) which presents an in-depth study of digit-recurrence methods for division

and square root.
Early work in square rooting algorithms with redundancy in the result-digit

set to maximize the number of zero digits is developed in Metze (1967).

Radix 2

Radix-2 algorithms and implementations are discussed in Taylor (1981) and

Majerski (1985).

Radix 4 and Radix 8

Specific radix-4 implementations are presented in Fandrianto (1987) and
Ercegovac and Lang (1989, 1991) and a radix-8 alternative in Fandrianto (1989).
The radix-4 algorithm described in this chapter which uses a single selection
function for all iterations, is developed in Ercegovac and Lang (1990).

Higher Radix

Higher radix algorithms and implementations are considered in Ciminiera and
Montuschi (1990). A very-high-radix implementation, with prescaling and selec-
tion by rounding, is described in Lang and Montuschi (1992, 1999).

Combined Division and Square Root

Combined division/square root implementations are presented in a number
of places (Taylor 1981; Zurawski and Gosling 1987; Fandrianto 1987, 1989;
Ercegovac and Lang 1991; McQuillan and McCanny 1994; Prabhu and Zyner
1995). In Srinivas and Parhi (1999) the residuals are kept in signed-digit

Further Readings 361

representation and the result digit is overredundant, which simplifies the se-
lection function. Self-timed designs are presented in Matsubara et al. (1995) and
Guyot et al. (1996).

Reciprocal Square Root

Digit recurrence algorithms and implementations for reciprocal square root have
recently been presented in Lang and Antelo (2001) and Takagi (2001). A very-
high-radix version is presented in Antelo et al. (1998).

Low-Power Design
Radix-4 combined division/square root low-power units are described in
Kuhlmann and Parhi (1998) and Nannarelli and Lang (1999). A self-timed low-
power design for combined division/square-root is presented in Matsubara and
Ide (1997).

Combinational Implementation

Combinational implementations of square root as linear arrays are reported in
Majithia and Kitai (1971), Majithia (1972), Agrawal (1979), Cappuccino et al.
(1998, 1999), and Corsonello et al. (2000). Combinational implementations of
combined division/square root schemes are described in McQuillan et al. (1991,
1993).

Miscellaneous

A square root scheme for integers is presented in Hashemian (1990). A radix-2
square root implementation for field-programmable gate arrays is developed
in Louie and Ercegovac (1993). Skipping of zero result digits is considered in
Montuschi and Ciminiera (1993).

Area/Delay Analysis
Area/performance of square root units is discussed in Soderquist and Leeser
(1996).

362 c H A P:'I ~ ~! ~ e:ii Square Root by Digit Recurrence

Verification

Verification of square root implementations is presented in Leeser and O'Leary
(1995) and of combined multiplication, division, and square root implementations
in Walter (1995).

6oe Bibliography
Agrawal, D. R (1979). High-speed arithmetic arrays. IEEE Transactions on Com-

puters, C-28(3):215-24.
Antelo, E., T. Lang, and J. D. Bruguera (1998). Computation of x/~/d in a very

high radix combined division/square-root unit with scaling. IEEE Transac-
tions on Computers, 47(2):152-61.

Cappuccino, G., G. Cocorullo, P. Corsonello, and S. Perri (1999). High speed
self-timed pipelined datapath for square rooting, lEE Proceedings--Circuits,
Devices and Systems, 146(1): 16-22.

Cappuccino, G., R Corsonello, and G. Cocorullo (1998). High performance
VLSI modules for division and square root. Microprocessors and Microsys-
terns, 22(5):239-46.

Ciminiera, L., and P. Montuschi (1990). Higher radix square rooting. IEEE
Transactions on Computers, 39(10): 1220-31.

Corsonello, R, S. Perri, and G. Cocorullo (2000). Performance comparison
between static and dynamic CMOS logic implementations of a pipelined
square-rooting circuit, lEE ProceedingsmCircuits, Devices and Systems,
147(6):347-55.

Ercegovac, M. D., and T. Lang (1989). Radix-4 square root without initial PLA.
In Proceedings of the 9th IEEE Symposium on Computer Arithmetic, pages 162-
68.

Ercegovac, M. D., and T. Lang (1990). Radix-4 square root without initial PLA.
IEEE Transactions on Computers, C-39(8): 1016-24.

Ercegovac, M. D., and T. Lang (1991). Module to perform multiplication,
division and square root in systolic arrays for matrix computations.]our-
nal of Parallel and Dbtributed Computing, 11 (3):212-21.

Ercegovac, M. D., and T. Lang (1994). Division and Square Root: Digit-
Recurrence Algorithms and Implementations. Kluwer Academic Publishers.

Bibliography 363

Fandrianto, J. (1987). Algorithm for high-speed shared radix-4 division and
radix-4 square-root. In Proceedings of the 8th IEEE Symposium on Computer
Arithmetic, pages 73-79.

Fandrianto, J. (1989). Algorithm for high-speed shared radix-8 division and
radix-8 square root. In Proceedings of the 9th IEEE Symposium on Computer
Arithmetic, pages 68-75.

Guyot, A., M. Renaudin, B. E1 Hassan, and V. Levering (1996). Self timed
division and square-root extraction. In Ninth International Conference on
VLSI Design, pages 376-81.

Hashemian, R. (1990). Square rooting algorithms for integer and floating-point
numbers. IEEE Transactions on Computers, C-39(8): 1025-29.

Kuhlmann, M., and K. Parhi (1998). Power comparison of SRT and GST
dividers. In Proceedings of SPIE Advanced Signal Processing Algorithms,
Architectures, and Implementations VIII, volume 3461, pages 584-94.

Lang, T., and E. Antelo (2001). Correctly rounded reciprocal square root by
digit recurrence and radix-4 implementation. In Proceedings ofthe 15th IEEE
Symposium on Computer Arithmetic, pages 94-100.

Lang, T., and P. Montuschi (1992). Higher radix square root with prescaling.
IEEE Transactions on Computers, 41 (8):996-1009.

Lang, T., and P. Montuschi (1999). Very high radix square root with prescaling
and rounding and a combined division/square root unit. IEEE Transactions
on Computers, 48(8):827-41.

Leeser, M., and J. O'Leary (1995). Verification of a subtractive radix-2 square
root algorithm and implementation. In International Conference on Computer
Design: VLSI in Computers and Processors, pages 526-31.

Louie, M. E., and M. D. Ercegovac (1993). A digit-recurrence square root imple-
mentation for field programmable gate arrays. In IEEE Worksho p on FPGAs

for Custom Computing Machines.
Majerski, S. (1985). Square-root algorithms for high-speed digital circuits. IEEE

Transactions on Computers, C-34(8):724-33.
Majithia, J. C. (1972). Cellular array for extraction of squares and square roots of

binary numbers. IEEE Transactions on Computers, C-21 (9): 1023-24.
Majithia, J. C., and R. Kitai (1971). A cellular array for the nonrestoring ex-

traction of square roots. IEEE Transactions on Computers, C-20(12):1617-
18.

364 CH A PTE• 6 Square Root by Digit Recurrence

Matsubara, G., and N. I de (1997). A low power zero-overhead self-timed division
and square root unit combining a single-rail static circuit with a dual-rail
dynamic circuit. In Third International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pages 198-209.

Matsubara, G., N. Ide, H. Tago, S. Suzuki, and N. Goto (1995). 30-ns 55-b shared
radix-2 division and square root using a self-timed circuit. In Proceedings of
the 12th IEEE Symposium on Computer Arithmetic, pages 98-105.

McQuillan, S., and J. V. McCanny (1994). Fast algorithms for division and square
root. Journal of VLSI Signal Processing, 8(2):151-68.

McQuillan, S. E., J. V. McCanny, and R. Hamill (1993). New algorithms and
VLSI architectures for SRT division and square root. In Proceedings of the
1 lth IEEE Symposium on Computer Arithmetic, pages 80-86.

McQuillan, S. E., J. V. McCanny, and R. F. Woods (1991). High performance
VLSI architecture for division and square root. Electronics Letters,
V27(1):19-21.

Metze, G. (1967). Minimal square rooting. IEEE Transactions on Computers, EC-
14(2):181-85.

Montuschi, P., and L. Ciminiera (1993). Reducing iteration time when result digit
is zero for radix-2 SRT division and square root with redundant remainders.
IEEE Transactions on Computers, 42(2):239-46.

Montuschi, P., and M. Mezzalama (1990). Survey of square rooting algo-
rithms, lEE Proceedings E: Computers and Digital Techniques, 137(1):31-
40.

Nannarelli, A., and T. Lang (1999). Low-power radix-4 combined division and
square root. In Proceedings of the IEEE International Conference on Computer
Design: VLSI in Computers and Processors (ICCD'99), pages 236-42.

Prabhu, J. A., and G. B. Zyner (1995). 167 MHz radix-8 divide and square root
using overlapped radix-2 stages. In Proceedings of the 12th IEEE Symposium
on Computer Arithmetic, pages 155-62.

Soderquist, P., and M. Leeser (1996). Area and performance tradeoffs in floating-
point division and square root implementations. A CM Computing Surveys,
28(3):518-64.

Srinivas, H. R., and K. K. Parhi (1999). A radix 2 shared division/square root
algorithm and its VLSI architecture.Journal of VLSI Signal Processing Systems

for Signal, Image, and Video Technology, 21 (1):37-60.

Bibliography 365

Takagi, N. (2001). A hardware algorithm for computing reciprocal square root.
In Proceedings of the 15th IEEE Symposium on Computer Arithmetic, pages
94-100.

Taylor, G. S. (1981). Compatible hardware for division and square root. In Pro-
ceedings of the 5th IEEE Symposium on Computer Arithmetic, pages 127-34.

Walter, C. D. (1995). Verification of hardware combining multiplication, division
and square root. Microprocessors and Microsystems, 19(5):243-45.

Zurawski, J. H. P., and J. B. Gosling (1987). Design of a high-speed square root,
multiply, and divide unit. IEEE Transactions on Computers, C-36(9):13-23.

r H A'~TE ~ 7 Reciprocal, Division,
Reciprocal Square Root,
and Square Root by
Iterative Approximation

The methods of this chapter compute a function by iteratively improving an initial
approximation. For the operations considered here, the most complex operation
involved in the iteration is multiplication; because of this the methods are also
called multiplicative methods. This contrasts with the digit recurrence method of
Chapter 5, in which the recurrence involves a digit selection, a digit multiplication,
and an addition. Other methods for these functions are presented in Chapters 10
and 11.

The methods presented here have a quadratic convergence rate, which loosely
means that the number of bits of accuracy of the approximation doubles after
each iteration. In contrast, the digit recurrence method has a linear convergence.
As a consequence of this quadratic convergence, the number of iterations for
a desired accuracy is smaller than for linear convergence. However, since full-
precision multiplications are involved, the time of an iteration is larger and a
detailed analysis has to be performed to compare the total execution time.

One application in which these methods might be attractive is in the floating-
point unit of a processor (see Chapter 8) because they essentially use the already
existing floating-point multiplier and do not require additional hardware. How-
ever, to perform the operations efficiently, it is necessary to do some modifications
to the multiplier, and these modifications might increase the area and affect the
performance. Moreover, the rounding of the floating-point results is simpler to
perform with the digit recurrence method, as discussed in Chapter 8.

367

368 ~:: H ~#a~ P ~ E ~ 7 Iterative Approximation

We consider first the computation of the reciprocal function. This function is

important in itself and is the basis for the methods for division. A similar situation

occurs for reciprocal square root and square root.

We consider the case of operands and result in sign-and-magnitude repre-

sentation. Moreover, since the determination of the sign is straightforward and

independent of the operation on magnitudes, we concentrate on the latter.

Reciprocal
For the reciprocal function, we describe two related methods: the application of

the general Newton-Raphson method to obtain the zero of a function and the

multiplicative normalization method.

N e w t o n - R a p h s o n M e t h o d for R e c i p r o c a l A p p r o x i m a t i o n

This is based on a general method to obtain the zero of a function, that is, the

value ofx for which f (x) = 0. I f x [j] is an approximation of the zero, then a

better approximation is

f (x[j])
x[j + 1] = x[j] - 7.1

f ' (x[j])

where f ' (x[j]) is the derivative o f f (x) with respect to x, evaluated at x[j] . A
graphical interpretation of this method for the reciprocal function is shown in
Figure 7.1.

This general method is applied to the reciprocal function as follows.1 Calling

R[j] the approximation of reciprocal, we apply (7.1) to the function f (R) =
1/R - d (whose zero is 1/d). Since f ' (R) =- - 1 / R 2 we obtain the recurrence

R[j + 1] = R [j] (2 - R[j]d) 7.2

The recurrence is initiated with an initial approximation R[0]. Each iteration

requires two multiplications and one subtraction from the value 2.

1. For an alternative development of the recurrence, see Exercise 7.1.

-d

) "0 ~ " R[j]
R[0] R[1] R[2] R[3]

(Initial approximation)

f(R[j])

Reciprocal 369

F I G U R E 7.1 Newton-Raphson iteration for finding reciprocal.

The convergence of this method is quadratic; that is, if the error at step j is

E[j], then the error at step j + 1 is ~[j]2. This can be shown as follows. Since

R[j] is an approximat ion of 1/d, the relative error is

E[j] -- 1 - d R [j] 7.3

Then from (7.2),

1 - ~ [J]) (2 - (1 - E[j]))
R [j + 1] - - d

1 - E[j] 2
7.4

370 c H ~g:~ ~:~ ~ ~ 7 Iterative Approximation

j R [j l dR[jl 2 - d R [j]

1

11 • -3

803 • 2 -9

E X A M P L E 7.1

R [j + 1]

6 [j + l] =

1 - d R [j + 1]

5 • -3

55 x 2 -6

4015 • 2 -12

11 x 2 -3

73 • 2 -6

4177 • 2 -12

11 x 2 -3

803 • 2 -9 -- 1.5683594

3354131 • 2 -21 -- 1.5993743...

0.14

0.020

0.00039

T A a L E 7'. 1 Steps in Newton-Raphson approximation of reciprocal.

so that 2

~[j + 1] - 1 - d R [j + 1] - E[j] 2 7.5

The a lgor i thm converges for]6[0]i < 1. Moreover, the convergence is f rom

below, since the error is always positive. The number of iterations required to

achieve a desired precision depends on the initial approximation. Specifically, if

the relative error of the initial approximat ion is

then to get a relative error

the number of iterations is

6[01 < 2 -k 7.6

6[m] ~ 2 -n 7.7

m I'og2()]
Consequently, the choice of the initial approximat ion is critical for the speed of

the algori thm.

Cons ide r the calculat ion of an a p p r o x i m a t i o n of the reciprocal of d -- 5_ 8"
W e need an appropr i a t e initial approx imat ion . We consider the issue

of ob ta in ing this a p p r o x i m a t i o n later; for n o w let us take R[0] = 1 (which

assures convergence for R[m] < 2). T h e n the p rocedure is i l lustrated by
8 Table 7.1. T h e exact resul t is 1 /d -- ~ -- 1.6. �9

2. This analysis implies that all operations are performed with full precision, that is, there is
no roundoff error; these additional errors are considered in Section 7.1.4.

Reciprocal 371

Multiplicative Normalization Method

This technique (presented more generally in Chapter 10), consists of two multi-

plicative recurrences, one of which converges to one while the other converges to

the desired function. Specifically, for reciprocal we can write

1 1 P[O] P[1] P [m] R[m]
R = 7.9

d d P[O] P[1] P[m] d[m]

so that R -- R[m] i fd [m] -- 1. Consequently, we define an approximation

J
R[j] --] [P[i] 7.10

i=0

and the variable that tends to one

d[j] - dP[j] 7.11

The approximation is refined by the two recurrences

R[j + 1] - R[j]P[j + 1] 7.12

d[j + 1] - d[j]P[j + 1] 7.13

and the sequence P[j] is selected so that d[j] tends to the value 1. The initial

conditions are R[O] = P [0], d [0] = dP[O], and P [0] an (initial) approximation of

1/d.
The method is illustrated in Figure 7.2.

Determination of P[j]

We now determine the factors P[j] for quadratic convergence. Since R[j] is the

approximation of 1 /d , the relative error is

E[j] = 1 - - R [j] d = 1 - d [j] 7.14

Therefore, for quadratic convergence (E[j + 1] = E[j] 2)

(1 - d [j + 1]) - - (1 - d [j]) 2 7.15

Consequently, s i nced [j + 1] = d[j]P[j + 1] we get

P[j + 1] = 2 - d [j] 7.16

372 CHAPTER 7 Iterative Approximation

1/d-

R[j], d[j]

P[O]

dP[O] I

I
I

I I I I I
1 2 3 4 5

Iteration j

F ! G U Ii E 7'.2 Illustration of iterations in the multiplicative normalization method.

T h e a lgor i thm is the following 3"

1. Obtain approximat ion P [0] to 1/d

2. d [0] - dP[0]; R[0] - P [0]

3. F o r j - - 0 , 1 , 2 , 3 , . . . , m - 2 d o

P[j + 1] - 2 - d [j]

d[j + l] - -d[j]P[j + l]; R[j + I]-- R[j]P[j + I]

P [m] - - 2 - d [m -1]; R[m]-- R[m -1]P[m]

Implementation

As in the Newton -Raphson method, an iteration of the recurrence requires two

multiplications and a two's complement operation. However , in this case the two

multiplications are independent ; consequently, it is possible to use more efficiently

a pipelined multiplier.

3. This algorithm for reciprocal has also been called "by series expansion" since it also can be
obtained by using the MacLaurin series for 1/(1 + x).

Reciprocal 373

An implementation using a two-stage pipelined multiplier is shown in

Figure 7.3.

Yot ~3 Initial Approximation

Both methods described require an initial approximation of 1/d. As stated, the

accuracy of this approximation determines the number of iterations. However, it is

necessary to consider also the delay of the module to produce this approximation,

as well as its area.

A variety of methods have been used to obtain the initial approximation. The

selection of the most appropriate method depends on the accuracy, delay, and area

requirements. Some of the alternatives are the following (many variations have

been developed) 4"

�9 Use a constant value, independent of the operand d. The minimum relative

error is obtained by using the middle point in the range of 1/d.

�9 A linear interpolation in the whole range. That is, the initial approximation

is

R[0] - - a - bd 7.17

where a and b are constants. The implementation is specially simple ifb is a

power of two. A good solution for 1/2 < d < 1 is a -- 2.928 and b - 2.

Since the maximum relative error is about 0.1, the error is not increased

much if R[0] is truncated, say, to 5 bits. This truncation reduces the size of

the initial multiplications.
�9 A set of constants, one per interval ofd. This is called a table looku p because

the constants are usually stored in a table. The input to the module that

produces the initial value is the number of the interval, that is, the truncated
d. The constants are selected to produce the smallest maximum error in each

interval. It can be shown that using k bits ofd produces an approximation
ofk + 1 bits and a maximum error of 2-k (Exercises 7.5 and 7.6).

�9 If the size of the table is too large for the required initial error, a piecewise

linear approximation can be used. Let

d - - dt 2 - k + dp2 -p + dr 2-n k < P < n 7.18

4. These alternatives are discussed further in Chapter 10.

374 c ~il ~i!i~ p:~'~i ~ ~i!ii: i:i!:::i::: ::ii ,~' Iterative Approximat ion

d [j]
R[j]

1 ~1 t,a',,.

I ~OX I moOo,e

~ux II ~ux I

(Ini t ial
approximat ion)

P[j + 11

Multiplier
stage 1

(PP reduction)

+ + �9

Multiplier
stage 2
(CPA) ITwo,s complement]

d[j + 11 or R[j + l] m
/

(Latched every
second clock)

(a)

(b)

F I G U R E 7.3 Multiplicative normalizat ion for reciprocal: (a) Implementa t ion with a two-

stage multiplier. (b) T iming diagram.

Reciprocal 375

The most-significant k bits ofd are used to access the table and produce
coefficients a and b. Then

R[0] = a + bdp2 -p 7.19

Again, the constants are selected for smallest maximum error. This method

requires a table lookup, a small multiplication, and an addition. The
approximation can be truncated without significantly increasing the error.

Typically, for an error of 2-g the number of input bits of the table is about

g/2.
Instead of performing a multiplication, the bipartite method obtains two
values from tables and performs an addition. On the other hand, the

number of input bits of the tables is about 2g/3, for an error of 2 -g (see
Exercise 7.7 and Chapter 10).

7,, *~i , 4 Implementation and Additional Errors

We now consider the implementation of the reciprocal approximation algorithms

and the effect of the additional error introduced by a practical implementation.
In both methods the implementation consists of the following components

(see Figure 7.3):

~ A module to compute the initial approximation. The area requirements and

delay depend on the precision of this approximation and on the method

used.

~ A multiplier. To achieve the error expressions derived before, the
multiplications have to be performed with full precision. This means that
the number of bits of the products increases in each iteration. For instance

for the Newton-Raphson method, if a and n are the number of bits of R[0]
and d, respectively, then the width of the products is as follows:

R[j] R[j]d R[j + 1]-- R [j] (2 - R[j]d)

j - - 0 a a + n 2a + n

j - - 1 2a + n 2a + 2 n 4a + 3 n

j = 2 4a + 3 n 4a + 4 n 8a + 7 n

376 c ~ ~ ~ ~ ~ ~ 7 Iterative Approximation

As can be seen, the widths of the resulting products are very large and

would make the implementat ion impractical. Consequently, the products

are truncated or rounded in a way that has a small effect on the final error.

We consider two alternatives after discussing the additional errors.

�9 A complementer (two's complement representation). A ones' complement

(bit complement) can be used instead, but the error introduced has to be

taken into account to determine the error of the approximation.

We now consider the total relative error 6T[j] , which includes the effects men-

tioned above. We saw that both algorithms considered converge quadratically;

that is, the algorithmic (relative) error 6A[j + 1] is

s -3r- 1] = ET[j] 2 7.20

We call the additional relative errors, introduced by the implementat ion of the

iteration, generated errors and denote them by Ea[j] , for iteration j . The total

relative error is then

ET[j] = ~A[j] + ~a[j]

We now consider separately each method.

7.21

Newton-Raphson Method

Including the generated error, from (7.20) and (7.21) we obtain the total error in

iteration j

ET[j] = ~T[j -- 1] 2 + Ea[j] 7.22

The generated error includes the following components5:

�9 Roundoff of y [j - 1] = dR[j - 1]
�9 Error i n z [j - 1] = 2 - y [j - 1]

�9 Roundoff of R [j - 1]z[j - 1]

F rom (7.22) we conclude that the final error is positive (approximation from

below 6) if the last EG is not negative. Specifically, a final error that is positive and

5. Usually these errors are considered as absolute errors; the corresponding relative errors are
obtained by dividing the absolute errors by (1/d).
6. This is important in some methods to produce the correctly rounded result (see Chapter 8).

Reciprocal 377

Errors

(not to scale)

cA[j]

CT[j]

Ca[j]

.

j + l

Iteration

F I G u R E 7.4 Error reduction in NR iterations.

cr[j + 1]

~a[j + 11= or[j] 2
, v

less than 2 -s is obtained if

Eo [m] > 0 7.23

eT[m] = ET[m -- 1] 2 + ~G [m] < 2 -s 7.24

Moreover , since

E T [j] - ET[j -- 1] 2 - + - 6 G [j] - (ET[j --2] 2 + EG[j -- 1]) 2 + EG[j] 7.25

an error in an i teration is reduced quadrat ical ly by the iterations that follow. 7

F igure 7.4 illustrates this error behavior.

Multipl icat ive Normal iza t ion Method

In this m e t h o d we need to dis t inguish be tween the error in d[j] and the error in

R[j].

7. Because of this, this algorithm is said to have the self-correcting property. Moreover, the
total error is larger than the generated error in the last iteration; consequently, the multiplier
needs to be of higher precision than the precision required for the result.

378 r H ~ {a'~ E ~ 7: Iterative Approximation

1. Error in d[j] :

edT[j] -- edT[j -- 1]2 _~_ edG [j] 7.26

where eds[j] includes the error in the two's complement operation and the

roundoff error in the multiplication. As in the NR method, the final error

edr[m] is positive as long as the generated error in the last iteration is not

negative. Also generated errors are reduced quadratically.

Error in R[j]" If the multiplications R[i]d are performed in full precision,

then the error is the same as that o f d [j] (including there the errors in

roundoff and two's complement). To that error it is necessary to add the

generated errors for all R[i] with i < j . This error corresponds to the

roundoff of the multiplication R[i]P [i]. That is,

J
e RT[j] -- edr[j] + ~_~eRG[i] 7.27

i = 0

Note that here e Rc [i] is not reduced by the iterations that follow.

Consequently, the error in R[j] is two sided (from below or from above), as

illustrated in Figure 7.5.

Using Reduced Multipliers

As mentioned, full-precision multiplications are very wide. In practice, the fol-
lowing two alternatives have been found attractive:

�9 Using a floating-point multiplier that produces a rounded product. In this
case, all multiplications produce products of the same number of bits. This
alternative is used when the algorithm is implemented in a floating-point
unit that has this type of multiplier.
The width of the rounded product is selected so as to achieve the required

final error. In the Newton-Raphson method, because of the quadratic

reduction of errors, this width is determined by the multiplications in the

last iteration. On the other hand, in the multiplicative normalization

method, the errors in the R[j] recurrence accumulate so that the width has

to take into account the rounding errors in all iterations.

�9 Using an n • k rectangular multiplier. In this case, as the precision

increases, the multiplications are performed by a sequence of several

rectangular multiplications. This might have the advantage that the

Reciprocal 379

Errors (not to scale)

edA[j]

edT[j]

Iteration

eda[j]

I

}eaSt7+ r~-

j + l

edT[j + 1]

edA[j + 1] = edT[j] 2
y

Errors (not to scale)

edT[j]

Iteration

a

J

j-1

d

_el

eRr[j]

eRr[j + 1]

edr[j + 1]

j + l

J
a = Z e R c [i] b = e R 6 [j] c = Z e R o [i] d = e R c [j + l]

o o

F I G U R E 7.5 Errors in the multiplicative method.

rectangular multiplier is smaller and faster than the square multiplier.

However, a rounding error might occur for each rectangular multiplication.

We now compare the number of cycles in both approaches for the Newton-
Raphson method.

380 eNAPTE~ 7 Iterative Approximation

EXAMPLE 7,2 For the Newton-Raphson method, we compare the number of cycles used in
Scheme A (full multiplier) and Scheme B (rectangular multiplier) to obtain
a reciprocal of d (53 bits) with an error of no more than 2 -54. The initial
approximation R[0] has an error of no more than 2 -8 and has a width of
9 bits.

The multiplier in Scheme A is a standard floating-point multiplier, while
the multiplier in Scheme B is a dedicated multiplier. To achieve the final
error, the operation requires at least three iterations. In order not to increase
the delay, the additional errors should not increase the number of iterations
(see Exercise 7.9). We neglect the delay of obtaining 2 - R[i]d.

Scheme A: Full multiplier 55 • 55 --+ 55 (rounded); assuming 1 cycle for
obtaining R[0] and 3 cycles per multiplication results in a total of 1 + 3 • 2 •
3 = 19 cycles.

Scheme B: Rectangular multiplier 55 • 16 --+ 55; assuming 1 cycle per
multiplication, the algorithm is performed as follows:

�9 R[1] = R[0](2 - dR[0]). Since R[0] has 9 bits, the multiplications are
performed by one 55 • 16 multiplication each (2 cycles). The result R[1]
is rounded to 16 bits (15 fractional bits).

~ R[2] = R[1](2 - dR[l]). Since RIll has 16 bits, each multiplication is
performed as one 55 • 16 multiplication (2 cycles). The result R[2] is
rounded to 32 bits.

�9 R[3] = R[2](2 - dR[2]). Since R[2] has 32 bits, the multiplications are
done by two 55 • 16 multiplications each (4 cycles).

This results in a total of 1 + 2 + 2 + 4 = 9 cycles. �9

A similar analysis is done for the multiplicative normalization method (see
Exercise 7.10).

7 . 2 Division

The reciprocal of the divisor can be used to obtain the quotient by performing a
multiplication by the dividend x. That is,

Q = R[m]x 7.28

Square Root 381

In the multiplicative normalization method, instead of performing this multi-
plication at the end, it is possible to initialize q [0] = x and obtain Q instead

of R.
In floating-point units, the quotient has to be correctly rounded. The most

prevalent method to do this rounding (see Chapter 8) computes the remainder
produced by the approximation and performs a correction step. However, unlike

in digit recurrence methods, in these iterative methods, the remainder is not

obtained directly. Instead, at the end of operation, the product of the computed

quotient and the divisor is formed and subtracted from the dividend.

7 ~ Square Root
We now present two iterative methods for square root, which follow the same

strategies as those discussed for division.

7 o3~ t Newton-Raphson Method
According to expression (7.1) the Newton-Raphson method for square root is
obtained by making f (S) - S 2 - x , which has a root at S - x 1/2. Since

f ' (S) = 2S, we get the following iteration

S [j + 11 -- 2 -1 S [j] + 7.29

Each iteration requires one division, one addition, and one shift.
Because of the division involved, it might be better to use an alternative

with only multiplication and addition. This alternative is to compute instead
the reciprocal square root of x and then multiply by x. The function to use is
f (R) = 1 / R 2 - x, resulting in f ' (R) = - 2 / R 3 and

R [j + 11 -- 2 -1R[j](3 - x R[j] 2) 7.30

An iteration requires three multiplications and one addition. Similar consid-

erations as for reciprocal apply, with respect to the effect of limited-precision

multiplications. Also, the subtraction from 3 can be approximated by bit inver-
sion since 3 - x R[j] 2 = 1 + (2 - x R[j] 2) and the term 2 - x R[j] 2 corresponds

to a two's complement, which can be approximated by a bit inversion.

3 82 ,r ~i~.ii .~,~;~ ~::;:~ ~]iI ~ i~ii!iil iiii:r ~. 7 Iterative Approximation

M u l t i p l i c a t i v e N o r m a l i z a t i o n M e t h o d

Similar to the multiplicative method for reciprocal, this method consists in the

determination of a sequence P [j] such that

m

x H p [j]2 ~ 1 7.31
j=o

then

and

m

~ H P [j]
~%- j=0

7.32

x[j] -- 1 - ~[j]

Then for quadratic convergence we want

x [j + 1] - 1 - O(~[j]2)

To achieve this make

resulting in

3 12 1 x[j + l] -- (1-- ~[j])(14- 2-1~[j]) 2 - 1 - - ~ [j -- [j]3
4 4

p [j] 2 - - (1 + 2-1~[j]) 2

7.36

7.37

7.38

7.39

m

47 �9 H eljl 7.33
j=0

The algori thm consists o fm iterations to perform the recurrences

x[j + 1] = x[j]P[j]: 7.34

S[j + 1] = S[j]P [j] 7.35

The variable x[j] tends to 1 and R[j] tends to ~/~-. The initial conditions are

x [0] = S[0] = x. Note that reciprocal square root can be computed by making
S[0] -- 1. P[0] is an (initial) approximation of l/q%-.

N o w for the determination of P[j]. Since x [j] is close to 1, define ~[j] such

that

Example of Implementation of Div#ion and Square Root 383

7 oSo3

7 ~

From (7.38) we get

P[j] = 1 + 2-16[j] = 1 + 2 - 1 (1 - x[j]) 7.40

That is, P[j] is obtained by complementing x[j] and shifting the fractional part

one bit to the right.
The iteration consists then of

1. p[j]2 = p[j]p[j]

2. x[j + l] = x [j] P [j] 2 S[j + I]=S[j]P[j]

3. P[j + 1] = 1 + 2 - 1 (1 - x[j + 1])

Each iteration has three multiplications, but two of them can be performed con-

currently, or in pipelined fashion.

Implementation and Error Issues

The implementation of the square root algorithms and the error analysis are

similar to that for the reciprocal operation.

Example of Implementation of Division
and Square Root
We describe an implementation ofa multiplicative method for division and square

root used in a floating-point unit. 8 The division and square root algorithms shown

are for operands/results of 53 bits (double precision). The internal precision of the
implementation is 76 bits to support extended precision of 64 bits and rounding
requirements. The details of rounding are covered in Chapter 8 and will not be
explained here.

The main part of the implementation, shown in Figure 7.6, is a pipelined
multiplier with a latency of four cycles. The operands have 76 bits, producing a
152-bit internal product rounded to 76 bits. A radix-8 multiplier recoding with
the digit set {-4, - 3 , . . . , 3, 4} produces 26 multiples, which are reduced to the

sum and carry vectors by a tree of[4:2] adders. The 3 x multiple is produced by a

8. This example is based on the AMD-K7 Floating-Point Unit implementation (Oberman
1999).

384 c ~ ~ F ~r ~ ~ 7 Iterative Approximation

Stage
1

Rounding
constant

(no overflow)
Stage or dividend

t2x152

1
Stage

3

Stage
4

Operand Operand
Localbypassing ~ ~ ~ ~ Localbypassing

-1 1

MULTIPLE I_.
GENERATORS F

TREE OF
[4:2] ADDERS

(4 levels)
2x152

2x152

Rounding
constant

(overflow)
or dividend

t2x152

152-b'tCPA [ISB.OG,C l 2"bittCPA h
I ROUNDING I

To local bypassing To local bypassing

Final result

FIGURE 7.6 Block diagram of a division/square root unit (adapted from Oberman 1999).

separate 78-bit adder in parallel with the multiplier recoding. The multiplication

unit consists of four pipelined stages:

�9 S tage 1: Performs recoding, generation of 3 • multiple, and generation of 26

radix-8 multiples.
�9 Stage 2: Produces the product of 152 bits in a carry-save form. Rounding

constants are also added using additional [3:2] adders for the cases of

Concluding Remarks 385

overflow and no overflow in the product (see Chapter 8, Section 8.5).
Moreover, these [3:2] adders are used to subtract the dividend in producing
the remainder that is needed in rounding.

�9 Stages 3 and 4" Preparation for rounding and rounding operations are

performed.

The initial approximations for the divisor reciprocal and the square root reciprocal
are obtained by a bipartite method, using several tables with a total size of 69K
bits and one adder.

The initial approximation of the divisor reciprocal is obtained from a pair
of tables T1 and T2, each of 1K entries and of width 16 bits and 7 bits, respec-
tively. The values obtained from the tables are added to produce the reciprocal
approximation, accurate to at least 14.94 bits. A separate pair of tables T3 and
T4, each having 2K entries, is used to obtain an approximation of the reciprocal
square root. The width ofT3 is 16 bits and ofT4 is 7 bits, and the approximation,
accurate to at least 15.84 bits, is obtained by adding the two words.

The division operation is shown in Figure 7.7. It is based on the multiplicative
method described in Section 7.2. The latency of the operation is 20 cycles, and a
new instance of the operation can begin after 17 cycles.

The square root operation is shown in Figure 7.8. It is based on the mul-
tiplicative method described in Section 7.3.2. The latency of the operation is 27
cycles, and a new instance of the operation can begin after 24 cycles.

7 ~ Concluding Remarks
The methods described in this chapter provide an alternative to the digit recur-
rence methods presented in Chapters 5 and 6. Other methods are discussed in
Chapters 10 and 11. The choice of method and of specific parameters depends on
many considerations, such as latency, throughput, area, and energy requirements,
as well as the sharing of components with other operations. In Chapter 8 (floating-
point operations), we perform a comparison between methods; this is appropriate
to do there since the methods of this chapter are mostly used in floating-point units
and therefore the comparison should include the effect of using a floating-point
multiplier and of the implementation of the corresponding roundoff modes. Let
us comment here only that, as illustrated in the previous section, although the

386 c ~,~ ~ r :~ ~iii ~' ii~!i ~ 7 Iterative Approximation

where

1. [Initialize]

P [01 <--- RECIP(~I)

d [0] +-- d ; q [0] +-- x

2. [Iterate]

for j = 0 , 1

d[j + 1] ~ d[j] • p [j] ; q[j + 1] +--q[j] x p[j]

p[j + 1] - - C M P L (d [j + 1])

end for

3. [Terminate]

q[3] +--q[2] x p[2]

REM +-- d x q [3] - x

q +-- ROUND(q [3], REM, mode)

RECIP produces the initial approximation of 1/d in three cycles.
CMPL(a) performs bit complementation ofa.

REM is a negated remainder (see Exercise 7.18).

ROUND produces a quotient rounded according to the specified mode
(rounding modes are discussed in Chapter 8). The sign and zero conditions
of the remainder are also used.

F I G U R E 7.9' Multiplicative division algorithm (double precision).

multiplicative method has quadratic convergence and therefore results in a small
number of iterations, the total number of cycles can be large.

We have discussed two related methods: Newton-Raphson and multiplica-

tive normalization. Both have a quadratic convergence rate and have multiplica-
tion and addition as the primitive operations. In most instances the multiplicative

normalization method would be preferred because the two multiplications per

iteration are independent and can use more effectively a pipelined multiplier. On

the other hand, the Newton-Raphson method has the self-correcting property,

which limits the effect of generated errors and provides the possibility of having
a one-sided approximation.

Exercises 387

1. [Initialize]

P [0] +- RECSQR(;)

T[0] +- P[0] 2

x [0] +- x; R[0] <-- x

2. [Iterate]

f o r j = 0 , 1

x[j + 1] <-- x[j] x T[j] ; R[j + 1] +- R[j] x P[j]

P[j + 1] = CMPL3(x[j + 1])

T[j + 1] = P[j + 1] 2

end for

3. [Terminate]

R[3] +-- R[2] x P[2]

REM +-- R[3] • R [3] - x

s +-- ROUND(R[3], REM, mode)

where

�9 RECSQR produces the initial approximation of the reciprocal square root of

x in three cycles.

�9 CMPL3(a) produces 2-1(3 - a).

�9 REM is a negated remainder.

�9 ROUND produces a result rounded according to the specified mode
(rounding modes are discussed in Chapter 8). The sign and zero conditions

of the remainder are also used.

F ! G U R S 7.8 Multiplicative square root algorithm (double precision).

7 ~

7 . 1

Exercises
N e w t o n - R a p h s o n M e t h o d for Rec ip roca l

Obtain the recurrence for the Newton-Raphson method of reciprocal approxi-

mation directly from the definition of the relative error (~[j] = 1 - dR[j]) and

the requirement of quadratic convergence.

388 CSAPT~R 7 Iterative Approximation

7 . 2

7 . 3

7 . 4

7 . 5

7 . 6

Perform the steps in the calculation of the reciprocal of d = 29/256 by the

Newton-Raphson method. Use R[0] -- 2 - d truncated to four fractional bits.
1 Perform sufficient iterations so that the maximum error in the range ~ < d < 1

is less than 2 -lz.

Show that the rate of convergence of the reciprocal approximation can be im-

proved by including additional power terms in the recurrence (Ferrari 1967).

Specifically, show that the approximation using the recurrence

R [j + 1] ---- R[j] (1 + (1 - dR[j]) + (1 - dR[j]) 2 + . . . + (1 - dR[j]) k)

has a convergence rate such that

E[j + 1] - •[jlk+l

Describe the implementation for k - 2 and determine the latency in multi-

plication times. Compare with the case k = 1.

Multiplicative Normalization for Reciprocal

Obtain a reciprocal approximation ofd = 2~6 by the multiplicative normalization

method. Use P [0] - 2 - d truncated to four fractional bits. Do sufficient iterations
1 so that the maximum error in the range ~ < d < 1 is less than 2 -12

Initial Approximations

In a faithful reciprocal table 2 a • b (i.e., with a-bi t input and b-bit output), the

table outputs differ from 1/x by less than 1 ulp, 1 < x < 2 (Das Sarma and

Matula 1995).

(a) Show that a table with a -- b, b > 3 has a max imum error greater than

1 ulp. That is, the table is not faithful. Hint: Analyze the second smallest

input interval.

(b) Show that ifa > b + 1, b > 1, a max imum error for any output is strictly

less than 1 ulp.

Generate a reciprocal approximation table using the midpoint reciprocal method

(Ferrari 1967; Das Sarma and Matula 1995) for a -- 5 and b -- 4:

for i = 2 a to 2 a +1 _ 1 step 1"
2a+b+l

T(i) = [i+0.5 -{- 0.5]

Exercises 389

9 ' , 7

9'.8

The table entries are the reciprocals of midpoints of the input intervals
rounded to the nearest value. The values should be divided by 2 a to correspond
to the input range 1 < x < 2.

A bipartite table function approximation (Das Sarma and Matula 1995; Schulte

and Stine 1997) can be formulated as follows. Partition the bit-vector of the argu-

ment1 < x < 2 into three parts: x - (X1, X2, X3)whereX1 - (1 .Xl , . . . ,Xk) ,

X2 -- (Xk+l, . . . , X2k), and X3 - (X2k+l, . . . , Xsk). (n -- 3k). Define two func-
tions f A (X 1 , X2) and f g (X 1 , X3) such that fA + f g approximates the reci-

procal 1/x to the desired accuracy. The functions fA and fg can be derived using

Taylor series expansion and stored in separate tables. The result is obtained by

adding the outputs of the two tables.

(a) Obtain a bipartite approximation for 1/x assuming the truncated input

1 .Xl . . .x5 and output (0.1Zl . . .z4) .
(b) Compare the size of the tables for fA and fg with that of a single table

reciprocal approximation.

This exercise deals with a reciprocal approximation method based on MacLauren's

series expansion. This approximation can be used as an initial approximation for

the iterative methods.
1 L e t R -- 1/d where 1 < d < 2 a n d g < R < 1. The corresponding

bit-vectors are

D -- (1, dl, d2, . . . , d k, dk+l, . . . , dn)

R = (O , l , r 2 , . . . , r n)

Decompose d into d -- dA + 2-kdg, where 1 < d A < 2 -- 2 -k and 0 < de <
1 - - 2 - (n - k) . Then

{a)

(b)

DA = (1, dl, d2, . . . , d k)

D8 -- (0, dk+l, . . . , dn)

Let r A -- 1/dA. Show that

R --rA[1 -- 2 -kdsrA + 2-2k(d~rA) 2 - 2-3k(d~rA) 3 + . . .]

Consider computing the approximation/~ by

1~ - - {;A - - 2-k;228 }t

390 c H A ~'~" ~ ~: 7 Iterative Approximation

7 . 9

7 . 1 0

7 .11

7 . 1 2

7 . 1 3

where {x }t denotes x truncated to t fractional bits and ?A - - {rA }u , ~2 A = {r~ }s,

and d/~ - {dB }v. Use a table, a multiplier, and an adder. Determine relations

between k, u, v, s, and t to obtain an economical implementation in terms of table

and multiplier size.

Use of Truncated Multipliers and Error Calculation

Determine a bound on the maximum final error for the implementations of

Example 7.2. Consider rounding errors and the error introduced by performing

ones' complement instead of two's complement.

Repeat Example 7.2 for implementations using the multiplicative normalization

approach. Consider that the 55 • 55 multiplier is implemented by a three-stage

pipeline.

Consider computing

R[1] -- R[01(2 - d . R[0])

using (i) d truncated to t bits, (ii) the product d �9 R[0] rounded to t bits, and (iii)

the final product rounded to t bits. Consider rounding to nearest mode in both

CaSeS.

Let the error of the initial approximation be in the range - 2 -16 < eR[0] <
2 -16. Determine the range of the error in R[1] for t -- 32.

Repeat the error analysis of Exercise 7.11 if ones' complement is used instead of

two's complement.

Division

Perform the division operation for the following operands:

x -- (0.010100011110)2

d -- (0.101101000011)2

Consider two cases:

(a) Use the Newton-Raphson approximation of the reciprocal.

(b) Use the multiplicative normalization with initial condition R[0] = x.

Use as initial approximation 2.98 - 2d. Perform sufficient iterations to get a
1 maximum error less than 2 -12 for the entire range ~ < x, d < 1.

Further Readings 391

7 . 1 4

7 . 1 5

7 . 1 6

7 . 1 7

7 . 1 8

a < Q~:

Design a double-precision division unit (53-bit quotient) based on the Newton-
Raphson reciprocal approximation method using 56 x 12 rectangular multipli-
ers (Wong and Goto 1994). The initial approximation has an error of 2 -1~ and 10
fractional bits. Determine the number of cycles and show a timing diagram.

Square Root

Obtain the square root of x = 0.125 using the Newton-Raphson method for
reciprocal square root. Perform sufficient iterations so that the maximum error

1 is less than 2 -12 in the range ~ < x < 1.

Repeat Exercise 7.15 using the direct multiplicative method.

Repeat Example 7.2 for square root using the direct multiplicative method. Con-
sider a three-stage pipeline 55 • 55 multiplier.

Explain why a negated remainder is computed in the algorithms shown in Figures
7.7 and 7.8. Consider the organization of the corresponding implementation in
Figure 7.6.

Further Readings
General treatments of iterative methods for division, reciprocal, square root,
and reciprocal square root are presented in Flynn (1970), Krishnamurthy (1970),
Ramamoorthy et al. (1972), and Markstein (2000).

Multiplicative Method

A multiplicative division method is reported in Goldschmidt (1964). Anderson
et al. (1967) describe an implementation of multiplicative methods for division
and square root, also known as the Goldschmidt method.

Initial Approximation

The problem of initial approximations has been frequently considered in the
literature (Shaham and Riesel 1972; Parhami 1987; Das Sarma 1995; Schwarz and
Flynn 1996; Ito et al. 1997). Table methods for initial approximations have been
the subject of many studies (Parker and Hamblen 1992; Das Sarma and Matula
1994, 1995; Schulte and Swartzlander 1994; Schulte and Stine 1997; Matula 2001).

392 CHAPTER 7 Iterative Approximation

Area/Delay Analysis
Area/performance comparisons of digit recurrence and multiplicative division
and square root implementations are provided in Soderquist and Leeser (1996).

Implementation

An overview of implementation issues is presented in Oberman and Flynn (1997).
Specific implementations have been presented in many papers (Anderson et al.
1967; Markstein 1990; Kabuo et al. 1994; Oberman 1999; Naini et al. 2001).
Acceleration of the multiplicative method is proposed in Ercegovac et al. (2000).

Miscellaneous

Alternative convergence methods for division based on Taylor-series approxima-
tions of the reciprocal are presented in Wong and Flynn (1992) and Agarwal et al.
(1999). A hybrid scheme with Newton-Raphson and digit recurrence methods is
described in Montuschi et al. (1994). Use of rectangular multipliers is discussed
in Briggs and Matula (1993) and Wong and Goto (1994). Error analysis of the
Newton-Raphson method for reciprocals is considered in Fowler and Smith
(1989).

Verification

Correctness proofs are considered in Rusinoff (1998) and Cornea-Hasegan et al.
(1999). Iterative methods are often used in software routines to implement high-
precision floating-point division and square root using limited-precision hard-
ware (Karp and Markstein 1997).

7.8 Bibliography
Agarwal, R. C., E G. Gustavson, and M. S. Schmookler (1999). Series approx-

imation methods for divide and square root in the power3 microproces-
sor. In Proceedings of the 14th IEEE Symposium on Computer Arithmetic,
pages 116-23.

Bibliography 393

Anderson, S. E, J. G. Earle, R. E. Goldschmidt, and D. M. Powers (1967). The IBM
360/370 model 91: floating-point execution unit. IBM]ournal of Research and
Development, pages 34-53.

Briggs, W. S., and D. W. Matula (1993). A 17 x 69 bit multiply and add unit with
redundant binary feedback and single cycle latency. In Proceedings ofthe 1 lth
IEEE Symposium on Computer Arithmetic, pages 163-71.

Cornea-Hasegan, M. A., R. A. Golliver, and R Markstein (1999). Correctness
proofs outline for Newton-Raphson based floating-point divide and square
root algorithms. In Proceedings of the 14th IEEE Symposium on Computer
Arithmetic, pages 96-105.

Das Sarma, D. (1995). Highly Accurate Initial Reciprocal Approximations for High
Performance Division Algorithms. PhD thesis, Southern Methodist University.

Das Sarma, D., and D. W. Matula (1994). Measuring the accuracy of ROM recip-
rocal tables. IEEE Transactions on Computers, 43(8):932-40.

Das Sarma, D., and D. W. Matula (1995). Faithful bipartite ROM reciprocal
tables. In Proceedings of the 12th IEEE Symposium on Computer Arithmetic,
pages 17-28.

Ercegovac, M. D., L. Imbert, D. W. Matula, J.-M. Muller, and G. Wei (2000).
Improving Goldschmidt division, square root and square root reciprocal.
IEEE Transactions on Computers, 49(7):759-63.

Ferrari, D. (1967). A division method using a parallel multiplier. IEEE Transac-
tions Electronic Computers, EC-16(4):224-26.

Flynn, M. J. (1970). On division by functional iteration. IEEE Transactions on
Computers, C- 19(8):702-6.

Fowler, D. L., and J. E. Smith (1989). An accurate, high speed implementation
of division by reciprocal approximation. In Proceedings of the 9th IEEE Sym-
posium on Computer Arithmetic, pages 60-67.

Goldschmidt, R. E. (1964). Applications of Division by Convergence. Master's
thesis, Massachusetts Institute of Technology.

Ito, M., N. Takagi, and S. Yajima (1997). Efficient initial approximation for
multiplicative division and square root by a multiplication with operand
modification. IEEE Transactions on Computers, 46(4):495-98.

Kabuo, H., T. Taniguchi, A. Miyoshi, H. Yamashita, M. Urano, H. Edamatsu,
and S. Kuninobu (1994). Accurate rounding scheme for the Newton-Raphson
method using redundant binary representation. IEEE Transactions on Com-
puters, 43(1):43-51.

394 c ~ ~ p ~~ E ~: 7 Iterative Approximation

Karp, A. H., and R Markstein (1997). High-precision division and square root.
ACM Transactions on Mathematical Software, 23(4):561-89.

Krishnamurthy, E. V. (1970). On optimal iterative schemes for high-speed divi-
sion. IEEE Transactions on Computers, C-19(3):227-31.

Markstein, R (2000). IA-64 and Elementary Functions: Speed and Precision. Hewlett-
Packard Professional Books. Prentice Hall.

Markstein, R W. (1990). Computation of elementary functions on IBM RISC
System/6000 processor. IBM Journal Research and Development, pages 111-
19.

Matula, D. W. (2001). Improved table lookup algorithms for postscaled division.
In Proceedings of the 15th IEEE Symposium on Computer Arithmetic, pages
101-8.

Montuschi, R, L. Ciminiera, and A. Giustina (1994). Division unit with Newton-
Raphson approximation and digit-by-digit refinement of the quotient. IEE
Proceedings--Computers and Digital Techniques, 141 (6):317-24.

Naini, A., A. Dhablania, W. James, and D. Das Sarma (2001). 1 GHz HAL
SPARC64 ~ dual floating point unit with RAS features. In Proceedings of the
15th IEEE Symposium on Computer Arithmetic, pages 173-83.

Oberman, S. F. (1999). Floating-point division and square root algorithms and
implementation in the AMD-K7 microprocessor. In Proceedings of the 14th
IEEE Symposium on Computer Arithmetic, pages 106-15.

Oberman, S. F., and M. J. Flynn (1997). Design issues in division and
other floating-point operations. IEEE Transactions on Computers, 46(2):154-
61.

Parhami, B. (1987). On the complexity of table-lookup for iterative division. IEEE
Transactions on Computers, C-36:1233-36.

Parker, A., and J. O. Hamblen (1992). Optimal value for the Newton-Raphson
division algorithm. Information Processing Letters, 42(3):141-44.

Ramamoorthy, C. V., J. R. Goodman, and K. H. Kim (1972). Some properties
of iterative square-rooting methods using high-speed multiplication. IEEE
Transactions on Computers, C-21 (8):837-47.

Rusinoff, D. (1998). A mechanically checked proof of IEEE compliance of a
register-transfer-level specification of the AMD-k7 floating-point multipli-
cation, division, and square root instructions. LMS Journal of Computation
and Mathematics, 1:148-200.

Bibliography 395

Schulte, M. J., J. Omar, and E. Swartzlander, Jr. (1994). Optimal initial approxi-
mations for the Newton-Raphson division algorithm. Computing, 53(3-4):
233-42.

Schulte, M. J., and J. E. Stine (1997). Symmetric bipartite tables for accurate func-
tion approximation. In Proceedings of the 13th IEEE Symposium on Computer
Arithmetic, pages 175-83.

Schwarz, E. M., and M. J. Flynn (1996). Hardware starting approximation method
and its application to the square root operation. IEEE Transactions on Com-
puters, 45(12):1356-69.

Shaham, Z., and Z. Riesel (1972). A note on division algorithms based on multi-
plication. IEEE Transcations on Computers, C-21 (5):513-14.

Soderquist, P., and M. Leeser (1996). Area and performance tradeoffs in floating-
point division and square root implementations. ACM Computing Surveys,
28(3):518-64.

Wong, D., and M. J. Flynn (1992). Fast division using accurate quotient approxi-
mations to reduce the number of iterations. IEEE Transactions on Computers,
41(8):981-95.

Wong, W. F., and E. Goto (1994). Fast hardware-based algorithms for elementary
function computations using rectangular multipliers. IEEE Transactions on
Computers, 43(3):278-94.

Ce~PTE~ 8 Floating-Point
Representation,
Algorithms, and
Implementations

Many scientific and engineering applications require computations with real
numbers. To represent these numbers, fixed-point representations can be used.
However, in many cases the range of this representation does not correspond to the
range required by the applications, producing frequent overflows and underflows.
A standard solution is the use of floating-point representations. In this chapter
we present this representation, consider its properties, and discuss the algorithms
and implementations for the basic arithmetic operations.

8ot Floating-Point Representation
As indicated, a floating-point representation is used to represent real numbers.
Since, as in a fixed-point representation, the floating-point representation is
encoded in a finite number of bits, it is possible to represent only a finite subset of
the infinite set of real numbers. For a specific floating-point system, a real number
that is (exactly) represented in the system is called a floating-point number. The
rest of the real numbers either fall outside the range of the representation (over-
flow and underflow) or are represented by floating-point numbers that have a
value that approximates the real number. The process of approximation is called
roundoffand produces a roundoff error.

397

398 C ~!i ~ P~~ ~ ~ ~i~ Floating-Point Representation, Algorithms, and Implementations

8,~I ,,,! S i g n i f i c a n d , E x p o n e n t , a n d Base

The representation of the floating-point number x consists of two components,

the significand M x (also called the mantissa) 1 and the exponent Ex , such that

x -- M x x b Ex 8.1

where b is a constant called the base. The sign of the number is determined by

the sign of the significand. The exponent is a signed integer.

The signed significand can be represented using any representation system,

such as sign-and-magnitude or two's complement. Today the most used repre-

sentation is sign-and-magnitude. In such a case, a floating-point number x is

represented by a triple (Sx, M x , E x) , that is,

x = (- 1) sx • • Ex 8.2

where Sx ~ {0, 1 } is the sign and Mx denotes the magnitude of the significand.

We assume this representation in the rest of the chapter. Moreover, we refer to

the magnitude of the significand as "the significand" and use the term "signed

significand" when we include the sign. 2 The representation of the exponent is

discussed later.

A d v a n t a g e : D y n a m i c R a n g e

The objective of using floating-point representation is to increase the dynamic
range, with respect to a fixed-point representation. This dynamic range is defined
as the ratio between the largest and the smallest (nonzero and positive) number
that can be represented.

For a fixed-point representation using n radix-r digits for the magnitude,
the dynamic range is

DRfxpt : r n - 1 8.3

1. We include the superscript * to indicate a signed significand and distinguish it from the
magnitude, which we denote Mx.
2. Although our presentation is limited to the sign-and-magnitude representation, the
modifications for other representations are straightforward.

Floating-Point Representation 399

In contrast, for the floating-point representation,

Mmax b Emax

D R f l p t - MminbEmi n
8.4

For instance, if the n digits are partitioned so that m digits are used for the
significand and n - m digits for the exponent, and b = r we get

DRflpt - - (r m - 1)r (r 1) 8.5

As an example, ifn = 32, m = 24, r = 2

DRfxt, t - 232- 1 ~ 4.3 x 109

D R at,, - - (224 - 1)22s-1 ~ 9.7 x 1083

As mentioned before, a large dynamic range is required in many applications
to avoid overflows and underflows. If the dynamic range of the fixed-point rep-
resentation is not sufficient, complicated scaling operations have to be included
in the program. Thus, a floating-point system is preferable in such applications.

8,1 o3 Disadvantages: Less Precision, Roundoff Error,
and Complex Implementation

The precision of a representation corresponds to the number of digits of the
significand. Since in the floating-point representation the total number of digits is
partitioned between the significand and the exponent, for the same total number
of digits, the floating-point representation has a smaller precision than the fixed-
point representation. In the example given for the illustration of the dynamic
range, the precision of the fixed-point representation is 32 bits, whereas that of
the floating-point representation is 24 bits.

Moreover, floating-point arithmetic introduces roundoff errors and makes
analysis of accuracy of the results more difficult.

Another disadvantage of using a floating-point representation is the more
complex implementation of floating-point operations, which leads to a larger area
and a slower execution.

400 ,,~:;::. iiii~:~i~! .,~':~,~ ii ::::~,~ 'iii :'~ ~i!!!il ~:::;iil ~:.ii~. F l o a t i n g - P o i n t R e p r e s e n t a t i o n , A l g o r i t h m s , a n d I m p l e m e n t a t i o n s

~ m ~

XXXX.XXXXXXXX

~ f ~

ulp

F I G U R E 8 .1 R e p r e s e n t a t i o n o f s i gn i f i c and .

Range of Significand and Unit in the Last Position (ulp)

For a fixed-radix representation of the significand, its range is mainly determined

by the position of the radix point. In general, the m digits are divided into integer

digits and fractional digits (see Figure 8.1). We denote by f the number of

fractional digits, so that the number of integer digits is m - f . Then, for magnitude
representation

m - f -]

M - E diri 8.6
i = - f

The corresponding range of the (nonzero) significand is

r - f < M < r m - f - r - f 8.7
m m

One of the representations used is to have only fractional digits (f = m).
That is,

m

M -- y ~ dir-i 8.8
i=1

Notice the change in the indexing convention. In this case, the range of the
(nonzero) significand is

r-m < M < l m r - m 8.9

Another common choice is to have one integer digit (f -- m - 1) so that

m--1

M -- ~ dir-i 8.10
i=0

resulting in a range

r-(m-1) < M < r - r--(m-l) 8.11

Floating-Point Representation 401

The difference between two consecutive values of the significand is called an ulp
(unit in the last place). In terms of the representation described (see Figure 8.1)

ulp -- r - f 8.12

The error introduced by representing a real number with a floating-point

number is typically given in ulps. For example, if the floating-point result is
1.374 x 10 -4 (with an ulp of 10 -3) and the exact result obtained using infinite

precision is 0.00013755, the error is 1.5 ulps.

Normalized, Unnormalized, and Denormalized Representation

The floating-point representation is redundant; that is, a floating-point number

can have several representations. For example the number 1 can be represented
as M = 1, E = 0 or M = 0.5, E = 1, with b = 2. This redundancy is not

convenient, for instance, for the comparison of values. Consequently, a unique

representation is used. Moreover, to improve the potential "accuracy" of the com-

putations it is convenient to eliminate nonsignificant leading zeros. For this,
the normalized representation is defined so that the most-significant digit of the
significand is always different from zero (except for the zero value).

On the other hand, using a normalized representation reduces the range of

floating-point numbers since now the smallest significand is

m

r ~" ~ _ - f - 1 1 0 . . . 0 . 0 . . . 0 r ~

f

so that the smallest floating-point number is

8.13

m- f -1 Emin r • b 8 .14

To avoid this reduction in range, unnormalized representation is also included
for the values that cannot be represented in normalized form. That is, in this

case unnormalized significands are only allowed with the minimum exponent.

These unnormalized numbers are called denormalized numbers (denormals). With

the use of denormals, as numbers decrease in magnitude they gradually include

more most-significant zeros in their significand; this is called gradual underflow.

402 c H A ~.~,T E ~~ ~8 Floating-Point Representation, Algorithms, and Implementat ions

Significand

0.100
0.101

0.110 I
0.111

Denormals

I , , , I , , , I
I ' ' ' 1 ' ' ' 1

1 1
0 "g a"

1 1 1

[A, B] - - negative floating-point numbers (normalized)
[D, E] - - positive floating-point numbers (normalized)
(B, b] & [d, D) - - denormals
C - - zero
> E - - positive overflow
< A - - negative overflow
(B, C) - negative underflow (normalized)
(C, D) - - positive underflow (normalized)

(a)

I I I I I I I "- "-

1
1 2

Exponent -2 -1 0 1

(b)

F ! G U R E S.2 (a) Regions in floating-point representation. (b) Example for m -- f = 3, r -- 2,

a n d - 2 < E < 1 (only positive region).

For the value zero also a unique representation is used. The usual convention
is to represent zero by M -- 0 and the minimum exponent.

8o l ~,6 Values Represented and Their Distribution

The set of floating-point numbers (values represented by a floating-point system)
depends on the range of the significand and of the exponent. Figure 8.2(a) shows
the different regions in which a floating-point system divides the real numbers.
The points A, B, and so on in the figure are defined in the following table:

Floating-Point Representation 403

A

B

C

D

E

Floating-Point System

Normalized Unnormalized

(r m - f r - f) • b Em~x

- r m - f - 1 x bEmin --r - f X b Emin

+0

r m - f - 1 • b Emin r - f x b Emin

(r m - f r - f) X b Emax

The overflow regions correspond to values that have a larger magnitude than
what can be represented. Similarly, the underflow regions correspond to small

values that cannot be represented.
As an example, Figure 8.2(b) shows the values represented for a floating-

point system with a normalized fractional significand of f - 3 radix-2 digits,
and an exponent in the range - 2 < E < 1. For simplicity, only positive values

are shown.
As indicated in Figure 8.2, the floating-point numbers are not uniformly

distributed along the real number line. They are more dense close to 0. Density
depends on the exponent base and the partitioning of bits among significand and
exponent. The difference between two consecutive values is (for same exponents

E and r - b)

A - - r - f r E - - r E - f 8.15

Tables 8.1, 8.2, and 8.3 and Figure 8.3 illustrate the distributions of floating-
point numbers for three representations with n -- 6 bits, a normalized fractional
significand ofm - f bits, and an integer exponent of e bits (for positive signifi-
cand and exponent).

Choice of b

As illustrated by Tables 8.1 and 8.3, the choice of the base b affects the range and
number of values represented as well as the distribution of these values. Moreover,
it has an impact in the implementation of floating-point addition, where variable

shifters are required (see Section 8.4).
In summary, larger b results in a larger range and more values but in less den-

sity. Moreover, larger b simplifies the shifter required for floating-point addition.

404 r • • pT E R ~ Floating-Point Representation, Algorithms, and Implementations

8 . 1 . 8

Significand

0.1000

0.1001

0.1010

0.1011

0.1100

0.1101

0.1110

0.1111

2 E

2 4 8

1 2
9 9
8 4

10 10
8 4

11 11
8 4

]2 3
8

13 13
8 4

14 14
8 4

15 15
8 4

T A B L �9 8.1 Distribution for b = 2, m = f = 4, and e = 2.

Significand

0.100

0.101

0.110

0.111

1 2 4 8

2 E

16

8

10

12

14

32

16

20

24

28

64

32

40

48

56

128

64

80

96

112

TABLE S.i Distribution for b = 2, m = f = 3, and e = 3.

Many studies have been made to quantify these trade-offs, and the present con-

clusion is that best is b = 2.

Representation of Significand
As mentioned in the introduction, the significand is a signed number, so that a

representation system for signed numbers is required. The most used are sign-

and-magnitude and two's complement. Today sign-and-magnitude is preferred

because it is considered a more natural representation, and it simplifies some-

what the implementation of multiplication and most aspects of floating-point

addition. Although two's complement representation simplifies the addition of

significands, this is a relatively small portion of overall floating-point addition.

In the rest of the chapter we assume a sign-and-magnitude representation.

Floating-Point Representation 405

Significand

0.0100

0.0101

0.0110

0.0111

0.1000

0.1001

0.1010

0.1011

0.1100

0.1101

0.1110

0.1111

1
1
4

5
16

6
16

7
16

1

9
16

10
16

11
16

12
16

13
16

14
16

15
16

4 ~

16

4

5

6

7

8

9

10

11

12

13

14

15

64
16

20

24

28

32

36

40

44

48

52

56

60

T ABLE 8.S Distribution for b = 4, m = f = 4 (r = 2), and e = 2.

For r - - 2 and normalized format, the most-significant bit of the significand

is always 1. Consequently, it does not have to be included in the representation.

This is called the hidden bit.

8ol os Representation of Exponent

The exponent E is a signed integer, which can be represented by any of several

systems, such as sign-and-magnitude, true-and-complement, and biased. The
biased representation is preferred in this case because

�9 it simplifies the comparison of floating-point numbers, making it the same
as fixed-point comparison

�9 the min imum exponent is represented by 0, so that the representation of the

floating-point value 0 is all zeros (0 sign, 0 exponent, 0 significand)

In a biased representation with bias B, the signed integer E is represented by the

positive integer denoted by E8 such that

E s = E + B 8.16

406 c ~ii:::~ .g:~ iil::~,:i~i : iE ~::~i~:. g Float ing-Point Representat ion, Algor i thms, and Implementa t ions

b=2 , f = 4 , e = 2

E: 1 2

I I I I
I I ' ' ' " " 1 ' ' " ' " 1

1 0 ~ 1 2

b = 2 , f = 3 , e = 3

E: 1 2

I I , , , I , , , I
I I ' ' ' 1 ' ' ' 1

1 0 ~ l 2

4 8

, I , I I I
' ' 1 ' I I I

4 5 6 7

(a)

4 8

I , I I I
I ' i I I

3 4 5 6

(b)

16, 32, 64, 128

o e e
I I
I I

7 8, 10, 12, 14, 16, 20, 24, 28,
32, 40, 48, 56, 64, 80, 96, 112

b = 4 , f = 4 , e = 2

E: 1

I I , I I , , I
I I " ' l ~ ' ' " ' | ' ' ' I

1 1 1 2 O ~ g

4

, I , , I
' I ' ' I

3 4

(e)

16, 64

c o o
I I I I I
I I I I I

5 6 7 8, 9 16, 20, 24 60

F I G U R E 8.3 Examples of distr ibutions of f loat ing-point numbers .

To represent the minimum exponent by E/3 -- 0, we obtain

B - - - Emin

Moreover, for a symmetric exponent range

- B < E < B

resulting in

O < _ E B < _ 2 B

Ife is the number of bits of the binary representation of Et3, then

8.17

8.18

8.19

2B < 2 e - 1 8 . 2 0 m

Roundoff Modes and Error Analysis 407

8o~!~ 10

Consequently, for B integer we obtain

1
B < - (2 e - 2) - 2 e - l - 1 8.21

- 2

For instance, for e -- 8 we can make B -- 127 and

E/3 -- E + 127 8.22

for a symmetric exponent range o f - 127 < E < 127. Note that the maximum

value of Et3 is 255, so that this value can be used to represent E -- 128 (nonsym-

metric range) or as a singularity condition.

Special Values
These are values that are not representable in the floating-point system, but are

useful. Two examples, which are included in the IEEE Standard presented later,

are N A N (not a number) and infinity (positive and negative). For instance, the

result of the square root of a negative number is set to NAN. Moreover, an

operation that has a N A N as an operand produces a N A N result. These features

allow computations to continue in the presence of NANs, without special checks.

The availability of infinities allows the use of arithmetic on infinities.

Exceptions
There are cases in which a floating-point operation produces a value that is not

representable in the floating-point number system. In such cases, a flag is set. The

computation can continue or a trap to an exception handler performed (depending

whether the exception handler is enabled). The most important exceptions are

the following:

�9 Overflow (exponent). Occurs when the magnitude of the result is larger

than the largest floating-point number.
�9 Underflow. Occurs when the (nonzero) magnitude of the result is smaller

than the magnitude of the smallest floating-point number.

Roundoff Modes and Error Analysis
The result of a floating-point operation is a real number that, to be represented

exactly, might require a significand with an infinite number of digits. Since the

representation of the significand has only f fractional digits, it is necessary to

408 ,r i!i~:.~r j::~i~,: iiiii::::::~:: ~.:-:iii-:- ii!i:.i!!i i~ii;:~ill :~i!!i: Floating-Point Representation, Algorithms, and Implementations

F1 F2
x

F I G O R S 8.4 Relation between x, Rmode(x), and floating-point numbers F 1 and F 2.

obtain a representation that is close to the exact result. This is achieved by per-

forming a roundoffoperation (also called rounding). We use the following notation:

�9 The exact (infinite precision) results are denoted by x, y, and so on.

�9 The floating-point number that represents x by applying the roundoff

mode Rmode is denoted by Rmode(x).

For a satisfactory roundoff scheme the following relations have to be satisfied:

1. Order ing. I fx < y, then Rmode(x) < Rmode(y).

2. Representability. I fx is representable in the floating-point system (x is a

floating-point number) , then Rmode(x) -- x.

3. Conta inment . If F 1 and F2 are two consecutive floating-point numbers

such that F 1 < x < F 2, then Rmode(x) should be either F 1 or F 2, as

illustrated in Figure 8.4. Observe that F 1 and F 2 have the sign o fx .

Several roundoff modes are used. We now give the definition of the modes used

in the I E E E Standard and then discuss them in more detail. Other modes are

described in the references.

Consider the real number x and the consecutive floating-point numbers F 1

and F2 such that F 1 < x < F 2, as shown in Figure 8.4. Then:

�9 Round to nearest (tie to even). Rnear(x) is the floating-point number that is

closest to x. If there is a tie, the significand of Rnear(x) should be even

(least-significant bit equal to 0). 3 Tha t is,

F1 if I x - E l l < I x - F 2]

Rnear(x)-- F2 if I x - E l l > I x - F 2 [8.23

even(E1, F2) if Ix - E l l - Ix - F2l

3. It is also possible to define a round to nearest mode with tie to odd; we use the convention
of the IEEE Standard.

Roundoff Modes and Error Analysis 409

�9 Round toward zero. For this mode, Rzero(x) is the closest to 0 among F 1

and F2. Tha t is,

F1 ifx > 0 8.24
Rzero(x)- - F2 ifx < 0

�9 Round toward plus infinity. For this mode, Rpinf(x) is the largest among

F 1 and F 2, so

Rpinf(x) -- F 2 8.25

�9 Round toward minus infinity. For this mode, Rninf(x) is the smallest

among F 1 and F 2, so

Rninf(x) = F 1 8.26

The roundoff modes are characterized by numerical and implementat ion

characteristics. The numerical characteristics can be described by the following

set of errors:

1. The (maximum) absolute representation error ABRE (MABRE). The

absolute representation error is defined as the difference between the

represented value and the exact value. Tha t is,

ABRE = Rmode(x) - x 8.27

so that

.

MABRE = maxx (IABREI) 8.28

The bias (RB). This is defined as the average absolute error considering

an unsigned significand 4 and measures the tendency toward errors of a

particular sign. To compute this average, it is necessary to consider a

frequency distribution of the values of the unsigned significand. The usual

assumption is a uniform frequency distribution, 5 in which case

RB lim ~-]M~{Mm+tl(Rm~ -- M)
- - 8.29

t~oo #M

4. If the signed significand is used, the bias would be zero for most rounding modes.
5. Although this uniform distribution might not occur in typical applications.

410 r {-{ .:a, ~ T ~{ i~ S Floating-Point Representation, Algorithms, and Implementations

where {Mm+t } is the set of all unsigned significands with m + t bits, and

M is the number of significands in the set.

3. The relative representat ion error (RRE), defined as

Rmode(x) - x
RRE - - 8.30

x

We now discuss fur ther the errors and implementa t ion characteristics of the previ-

ously defined modes. We consider the case of s ign-and-magni tude representation

of the significands. 6 For this, we describe x exactly by the triple (Sx, Ex, Mx),

with Mx normal ized but having infinite precision. 7 Moreover, we decompose Mx

into two components M f and Ma such that

Mx -- M f + Md • r - f 8.31

with 0 < Ma < 1. Namely, M f has the precision of the significand in the

f loating-point system and Ma represents the rest.

8os Round to Nearest (Unbiased, Tie to Even)

Since in this mode the value represented is the closest possible to the exact value,

it produces the smallest absolute error. Because of this, it is the default mode of

the I E E E Standard.

In terms of the operat ion on the infinite precision significand, 8 round to

nearest can be described as follows:

M f -+-r - f if Ma > !
R n e a r (x) - - 2

1 M f if Ma <
8.32

6. From this discussion, the determination for other representations, such as two's comple-
ment, is straightforward.
7. Because of this infinite precision x might not be a floating-point number. On the other
hand, note that x is inside the range of the floating-point numbers.
8. The definitions of the roundoff modes refer to the "infinite precision significand" (exact
value). However, in the implementation of the floating-point operations, this exact value
might not be obtained; consequently, it is necessary to implement the operations so that the
approximation to the exact value obtained is suitable for the rounding. We discuss this
further for each operation.

Roundoff Modes and Error Analysis 411

Equivalently, the round to nearest consists of adding (r - f) ~ 2 to the infinite

precision significand and keeping the resulting f fractional digits. That is,

r - f f) r - f R n e a r (x) - - ([(M x + - - f f -) r] 8.33

For Md ~ 1, the addition of r - f can produce a significand that cannot be

represented (significand overflow). In such a case, the resulting significand is

multiplied by/)-1 and the exponent incremented by 1.

E X A M P L E 8 .1 The exact value 1.100100011101 is rounded to nearest with 8-bit precision as
follows:

1.100100011101

+ 1

1.10010010 �9

The absolute error is

ABRE[Rnear] -- [- M d r - f x b E

I (1 - M d) r - f • b E

1 if Ma < -~

1 ifMd > 3
8.34

1 The maximum absolute error occurs when Ma -- 3, resulting in

r - f
MABRE[Rnear] = • b Emax 8.35

2

We now consider the bias. As indicated above, the absolute errors for Ma = a
1 and for Ma -- 1 - a (for a < 3) have the same magnitude but different sign.

Consequently, with respect to the bias, these errors cancel each other. The only
1 remaining case is for a -- 3, which produces a positive error. To have a bias

equal to 0, this case is treated in a special manner. As indicated before, the IEEE

Standard specifies that in this case the rounding is done to even. 9 That is, the

9. Rounding to odd in the tie case also has a bias of zero. However, round to even is preferable
because it leads to less error when the result is divided by 2ma common computation.

412 C H A P T E R 8 Floating-Point Representation, Algorithms, and Implementations

8 . 2 . 2

unbiased round to nearest is
1 ifMd < 2

1 ifMd > g

1 if Md -- g and M f -- even

1 if Md -- g and M f -- odd

Ms
M f + r - f

Rnear(x) = 8.36
Ms
M f -{-r - f

Consequently, for this mode

RB[Rnear] = 0 8.37

This roundoff mode is illustrated in Figure 8.5(a) for f = 2.

In summary, round to nearest (unbiased) produces the smallest possible
absolute error 1~ and has a zero bias. However, the implementation of this mode

requires an addition, so it is slow. We will see ways of reducing the delay for
specific operations.

Round Toward Zero (Truncation)

In terms of the operation on the infinite precision significand, the rounded sig-
nificand is obtained by discarding Md. That is,

Rzero(x) = (Lm x r f j) r - f - - m f 8.38

The absolute error is

ABRE[Rzero] = - M a r - f x bE 8.39

Since Ma < 1 the maximum absolute error is

MABRE[Rzero] ,~ r - f • b Emax 8.40

This absolute error is larger than for round to nearest. Moreover, since for un-

signed significand the absolute error is always negative, the bias is significant. Its
value is

1
RB[Rzero] , ~ - - r - f 8.41

2
This roundoff mode is illustrated in Figure 8.5(b) for f = 2. The imple-

mentation of this mode is simple.

10. Since it selects the nearest floating-point number.

1 Ax
11.1 01'1 I 0 1 001 00'1- 101- 01.1- 11'1-

I"[01" LO" 00'1 m.1- 10"- 01"- "'I-

I I I I I . 14
111.1 ' 101'1 ' I 1 0 1 ' 100'1 -I

11'1 01'1 10'1 00'1

414 C ~ii A iF ~: s: {::i!i: iilqi: s Floating-Point Representation, Algorithms, and Implementations

Round Toward Plus and Minus Infinity

These two directed modes are useful for interval arithmetic, in which the op-

erands and the result of an operation are intervals. This permits the monitoring

of the accuracy of the result.

In terms of the infinite precision significand and the sign,

M f + r - f i fMa > 0 and S -- 0 8.42
Rpinf(x) -- MU i f M a - - 0 o r S - - 1

M f -+- r - f if Ma > 0 and S - 1 8.43
Rninf(x) -- M f i f M a - - 0 o r S - - 0

As in the round to nearest, the addition of r - f c a n produce a significand

overflow.

These roundoff modes are illustrated in Figure 8.5(c) and (d) for f = 2.

Note that in an implementat ion using sign-and-magnitude, these modes require

the use of the sign. The determination of errors and bias are left as an exercise.

IEEE Standard 754
As we have seen, there are many parameters that define a floating-point rep-

resentation system. This resulted in a variety of floating-point processors with

different representations, producing different results to the execution of the same

program. In some cases, because of anomalies, the results might be very different.

To avoid this, the IEEE Floating-point Standard 754 was developed. It is claimed

that this standard

�9 minimizes anomalies

�9 enhances portability

�9 enhances numerical quality

�9 allows different implementations

We now describe the main components of the IEEE Standard 754, which is used
11 today by most floating-point processors.

11. The reasons for the choices, as well as additional details, are presented in several of the
references at the end of this chapter.

IEEE Standard 754 415

8~176 1 Representation and Formats

The two parts of the representation are as follows:

First, the significand is in sign-and-magnitude representation. Consequently,

it is represented by two components:

�9 Sign S. One bit. S = 1 if negative.

�9 Magnitude (also called the significand). Represented in radix 2 with one

integer bit. That is, the normalized significand is represented by

1 .F 8.44

where F of f bits (depending on the format) is called the fraction and the

most-significant 1 is the hidden bit. The range of the (normalized)

significand is

1 < 1 .F < 2 - 2 - f 8.45
m

Second, the exponent is base 2 and in biased representation. The number of

bits of the exponent field is e, depending on the format. The representation is

biased with bias B = 2 e-1 - 1.

The three components are packed into one word, in which the order of the

fields is S, E, F.12 This order makes comparisons simpler.

The value zero, denormals, and the special values N A N and infinities are

represented as follows:

�9 The representation of floating-point zero is E = 0 and F = 0. The sign S

differentiates between positive and negative zero. Because of this

representation and the hidden bit, the value 1.0 • 2 -8 is not represented.
�9 The representation E = 0 and F :fi 0 is used for denormals; in this case 13

the floating-point value represented is v = (-1) s2 - (/3 -1 / (0 .F) .

�9 The max imum exponent representation (E = 2 e - 1 = 2B + 1) is used to

represent not-a-number (NAN) for F ~ 0 and plus and minus infinity for

F = 0 .

The system has two formats: basic and extended. Moreover, the basic format al-

lows representation in single and double precision. We now describe these formats.

12. To simplify the notation we use here E (instead of E/3) to denote the biased representation
of the exponent.
13. Note that in this case the hidden bit is not used.

416 r i~i~ii :a~ ~:::~ s == ~iiii::; ~i:~i~i: s Floating-Point Representation, Algorithms, and Implementations

In each case we give the three components with the number of bits in parentheses.

We call v the value represented.

1. Basic: single (32 bits) and double (64 bits)

�9 Single: S(1), E(8), F(23)

(a) If 1 < E < 254, then v - (--1)S2E-127(1.F) (normalized fp

number).

(b) If E -- 255 and F --J: 0, then v - - N A N (not a number).

(c) If E -- 255 and F -- 0, then v - (- 1) s oo (plus and minus

infinity).
(d) If E -- 0 and F =/: 0, then v - (- 1) s 2-126(0.F) (denormal,

gradual underflow).
(e) If E -- 0 and F -- 0, then v -- (- 1) s 0 (positive and negative

zero).

�9 Double: S(1), E(11), F(52)

- Similar representation to single, replacing 255 by 2047, and so on.

2. Extended: single (at least 43 bits - S (1), E (11), F (31)) and double (at least

79 bits - S(1), E(15), F (63)).

Rounding
Rounding modes are:

�9 Default: Round to nearest, to even when tie

�9 Directed" Round toward plus infinity; Round toward minus infinity; and

Round toward 0 (truncate)

Operations
Operations include:

�9 Numerical : Add, Sub, Mult, Div, Square root, Rem

�9 Conversions: Floating to integer; Binary to decimal (integer); Binary to

decimal (floating)

�9 Miscellaneous: Change formats; Compare and set condition code

Floating-Point Addition 417

E x c e p t i o n s

The IEEE standard defines the following five exceptions. By default these excep-
tions set a flag and the computation continues. The implementation can include

a trap handler for each exception that, when enabled, is called when an exception

O c c u r s .

�9 Overflow (when rounded value is too large to be represented). Result is set

to +infinity.

�9 Underflow (when rounded value is too small to be represented).

�9 Division by zero.

�9 Inexact result (result is not an exact floating-point number). Infinite
precision result different from floating-point number.

�9 Invalid. This flag is set when a N A N result is produced.

Floating-Point Addition
We now consider the algorithm and implementations for floating-point addition.

The algorithm is given in generic terms, whereas the implementations are tuned

to the IEEE standard.

Let x and y be the operands represented by (Sx, Mx, Ex) and (Sy, My, Ey),
respectively. The significands are normalized. We consider addition or subtrac-

tion, so that the result

z - x + y

is represented by (Sz, Mz, Ez),whereMz is also normalized. Let M x -- (-1)SxMx
and define similarly My and M z . The high-level description of this operation is
composed of the following four steps:

1. Add/subtract significand and set exponent:

M] -- (M] -4-(My • N(Ey-Ex))). X b Ex

((M x x b (Ex-Ey)) Jr- My) • b Ey

Ez -- max(Ex, Ey)

ifEx > E y

ifEx < E y
8.46

That is, the significand of the number with the smallest exponent has to be

multiplied by b to the power of the difference between the exponents

8.47

418 <:: k~ii! j~ F ~ ~~ ~!~i~: ~i!: s Floating-Point Representation, Algorithms, and Implementations

(this operation is called alignment) and then added/subtracted to the other
significand. This is illustrated as follows:

Ex - Ey = 4

Mx 1 .xxxxxxxxxxx

My (2 (Ey-Ex)) 0.000 lyyyyyyyyyyy

Z . Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z

The exponent of the result is equal to the largest of the exponents of the
operands.

2. Normalize significand and update exponent. The result of Step 1 might be
unnormalized (as described later). Consequently, it has to be normalized
and the exponent has to be updated accordingly.

3. Round, normalize, and adjust exponent.

4. Set flags for special cases.

We now give the basic algorithm corresponding to this description.

Basic Algorithm

The above high-level description results in the following basic algorithm:

1. Subtract exponents (d = Ex - Ey).

2. Align significands. This consists of the following:

�9 Shift right d positions the significand of the operand with the smallest
exponent.

�9 Select as the exponent of the result the largest exponent.

3. Add (subtract) significands and produce sign of result. This is a signed
addition. The effective operation (add or subtract) is determined by the
floating-point operation (ADD or SUBTRACT) and the signs of the
operands, as follows:

Floating-Point Addition 419

Floating-Point Signs of Effective Operation

Operation Operands (EO P)

ADD equal add
ADD different subtract

SUBTRACT equal subtract
SUBTRACT different add

From now on we refer to the effective operation.
The sign of the result depends on the signs of the operands, the

operation, and the relative magnitude of the operands (see exercise 8.15).

Normalization of result. Three situations can occur:

(a) The result is already normalized: no action is needed.

1.10011111

0.00101011
ADD

1.11001010

(b) When the effective operation is an addition, there might be an
overflow of the significand. The normalization consists of the
following:

�9 Shift right the significand one position.

�9 Increment by one the exponent.

1.1001111

0.0110110
ADD

10.0000101

NORM 1.00000101

(c) When the effective operation is subtraction, the result might have
leading zeros. The normalization consists of the following:

�9 Shift left the significand by a number of positions corresponding
to the number of leading zeros.

�9 Decrement the exponent by the number of leading zeros.

420 c H A P T E • 8 Floating-Point Representation, Algorithms, and Implementations

1.1001111

1.1001010

SUB

0.0000101

NORM 1.0100000

Round. Perform the rounding according to the specified mode. This

might require an addition. If an overflow occurs because of this

addition, it is necessary to normalize by a right shift and increment the

exponent.

Determine exception flags and special values. Exponent overflow (special
value 4- infinity), exponent underflow (special value gradual underflow),

inexact, and the special value zero.

8 . 4 , 2 Basic Implementation

The previous algorithm is implemented by the block diagram of Figure 8.6. To

make the description more specific, we consider a representation of the type of

the IEEE standard. Namely:

�9 The significand is normalized and represented in sign-and-magnitude. The
magnitude is M -- 1.F, where the 1 corresponds to the hidden bit and is
appended to the fraction at the beginning of the operation.

�9 The base of the exponent is 2. This results in the use of radix-2 shifters. 14

Note the following:

1. To have only one alignment shifter, it is convenient to swap the significands
of the operands, according to the sign of the exponent difference.

2. The adder is a sign-and-magnitude adder. Since direct implementation of

sign-and-magnitude addition is complicated, several options using two's

complement addition are presented in Section 8.4.7.

14. Although the IEEE standard uses a bised representation for the exponents, in all
operations we give the descriptions using the unbiased value. When using biased
representations we include the subscript B.

Floating-Point Addition 421

0
sgn(d)

EOP

Sy

I SIGN

Sz

MUX

UPDATE

Ez

I EXPONENT
DIFFERENCE I

d

Ss

I SM-ADD/SUB I~'EOP
ovf

"1 L/R1-SHIFTER

ovf_rnd I ROUND I

l

Mx= I.F x My= I.Fy

I SWAP }.---. sgn(d)

1
I R-SH,FTER t - - - d

LOD I

(fraction only)

I SPECIAL
CASES I

Exponent overflow/underflow,
zero, inexact, NAN

EOP: effective operation
R-shifter: variable right shifter
IERl-shifter: variable left/one position right shifter
LOD: Leading one detector

F i G U R E S . 6 Basic implementation of floating-point addition.

3. The normalization step requires

�9 the detection of the position of the leading 1, done with the block
labeled LOD (Leading-One-Detector)

�9 a shift performed by the shifter (no shift, right shift of one position, or
left shift of up to m positions)

�9 the appropriate updating of the exponent

4. The rounding step uses several guard bits as discussed in the next section.
The overflow due to rounding results in the significand of the form
1 0 . 0 0 0 . . . 0 . A right shift to produce the correct significand 1.000..0 leaves the
fraction part unchanged and requires no implementation since the integer
bit (hidden bit) is implicit. Of course, the exponent is incremented in the
case of rounding overflow.

422 c N A ~ ~t ~!i ~;z 8: Floating-Point Representation, Algorithms, and Implementations

8o4,~3 Guard Bits and Rounding

Because of the right shift of one of the operands during the alignment step, the

result of the addition/subtraction may have more fractional bits than the operands.
Moreover, during the normalization a left shift of the result might be performed.
Finally, during the rounding step these additional bits are disposed of and the

result has a significand of f fractional bits.
To get the correct final result after the normalization and rounding, a possi-

bility is to obtain all the fractional bits of the addition. However, we now show

that this is not necessary, and a few additional fractional bits are sufficient. These

additional bits are called guard bits.
To determine the number of guard bits, we first review the requirements for

the normalized result of the addition for the different rounding modes:

�9 For rounding toward zero (truncation), only the f fractional bits are

required.
�9 For rounding to nearest, one additional bit is required (f + 1 fractional

bits). Moreover, for unbiased rounding to even, it is necessary to know

when the rest of the bits are all zero.

�9 For rounding toward infinity, it is necessary to know when all the bits to be

discarded are zero.

In summary, to be able to perform any of the rounding modes, f + 1 fractional
bits of the normalized result are required, plus the indication of whether the rest
of the fractional bits of the normalized result are all zero.

So the question we consider now is how many bits have to be produced by
the effective addition/subtraction before normalization. We consider two cases:
effective addition and effective subtraction.

In effective addition, the result of the addition is either normalized or pro-
duces one additional integer bit. Consequently, the normalization might require

a 1-bit right shift and no left shift is required.

Therefore, f + 1 fractional bits of the result are required. Moreover, it

is necessary to determine whether all the discarded bits are zero. Since these

discarded bits are produced by the alignment and are obtained by adding 0 to the

bits shifted out by the alignment, it is sufficient to determine whether all the bits

shifted out by the alignment are O. This situation is represented by the sticky bit
T, which corresponds to the OR of the discarded bits.

Floating-Point Addition 423

EXAMPLE 8.2

EXAMPLE 8 .3

ADD

1.0101110

0.00010101010

1.01110001 T = OR(010) = 1 �9

The second case is effective subtraction. Here we consider two subcases:

The difference of exponents d is larger than 1. Then, as shown in the

following example, the smallest operand is aligned so that there are more
than one leading zeros. As a consequence, the result of the subtraction is
either normalized or, if not normalized, has only one leading zero. Since,
for this last case, the normalization is performed by a left shift of one

position, in addition to the bit for rounding to nearest, another bit is

required in the result of the addition. Consequently, f + 2 fractional bits of
result are required.

Moreover, during the subtraction, a borrow into position f + 2 is

produced if any of the shifted-out bits is different from zero. This borrow
is determined by the sticky bit, defined in the previous situation, which
also serves for the unbiased rounding to nearest and for rounding toward
infinity.

Therefore, the width of the subtraction has to be of f + 3 fractional
bits, the last bit being the sticky bit.

After alignment:

1.0000011

0.000011011001

SUB

During al ignmentcompute T = O R (0 0 1) = I resulting in

1.0000011

0.0000110111

SUB

N O R M

0.1111100001

1.1111000010

424 c N,~ p T E N: ~ Floating-Point Representation, Algorithms, and Implementations

. The difference of exponents is either 0 or 1. Only in this case, the result

might have more than one leading zeros (up to m). Consequently, a left

shift of up to rn positions is required. However, as shown in the example,

since the alignment shift was only of zero or one position, at most one

nonzero bit is shifted in during the normalization. Consequently, only one

additional bit is required in the result of the subtraction.

EXAMPLE 8 . 4

SUB

1.0000011

0.11111001

0.00001101

N O R M 1.10100000 �9

In summary, in all cases it is sufficient to perform the addition with three addi-

tional bits. These are called guard (G), round (R), and sticky (T).

We now consider the use of these bits to perform the different rounding

modes. First the normalization is performed and the bits after normalization are
labeled as follows: 15

L G R T

1 .XXXXXXXXXXXX

Note that during the shift right of normalization the sticky bit has to be

recomputed as the OR of the previous value of T and the previous value of R.

Round to Nearest (Tie to Even)

As indicated by (8.36) in rounding to nearest mode we round up (add 1 to position

L) if G = 1 and R and T are not both 0, and round to even if G = 1 and

15. Actually, after normalization only two bits are needed if the sticky bit is recomputed as
R+T.

Floating-Point Addition 425

8~,,..~4o4

R = T = 0. Consequently, calling rnd the value to be added to bit L, we get

�9 If G = 1 and R and T are not both zero, rnd = G (R + T) .

�9 If G - - l a n d R = T = 0 t h e n r n d = G (R + T) ' L .

Combining both cases,

rnd = G (R + T) + G (R + T) ' L = G (L + R + T) 8.48

Note that in this implementation, we need to determine first the bits L, G, R, T

to compute rnd and perform the increment. In some implementations it might
be preferable to do as follows:

1. Always add 1 in position G (which produces the rounding to nearest).

2. Correct the bit in position L if there is a tie. Namely, make L -- 0 if
G (R + T) ' = I .

R o u n d t o w a r d Zero

In this case the result after normalization is truncated at bit L.

Round toward Infinity

For round toward positive infinity, add one to L when the sign is positive and G,
R, and T are not all zero. That is,

rnd = sgn'(G + R + T) 8.49

where sgn is the sign of the result.

Similarly for round toward negative infinity:

r n d - sgn(G + R + T) 8.50

Exceptions and Special Values

We now discuss the exceptions and special values that may occur in floating-point
addition and subtraction.

Overflow: This situation can occur when the exponent is incremented

during normalization (because of overflow of addition requiring a right

shift of significand) and because of overflow of significand during the

rounding step. It is detected by an exponent E > 255. The overflow flag is
set, and the result is set to -+-infinity.

426 c,~-4 A ~>~=~ ~,~: ~ ~!{ Floating-Point Representation, Algorithms, and Implementations

�9 Underflow: This situation can occur when the exponent is decremented

during normalization (left shift of significand). The underflow flag is set,

and the result exponent is set to E = 0. The fraction is left unnormalized

(denormal, gradual underflow).

�9 Zero: This situation occurs when the significand of the result of addition is
0. The result is E -- 0 and F = 0.

�9 Inexact: This situation is detected before the rounding; the result is inexact

if G + R + T = 1. The inexact flag is set.

�9 NAN: If one operand (or both) is a NAN, then the result is set to NAN.

8,~4o5 Denormal and Zero Operands

When an operand is a denormal number (E = 0 and F ~ 0), then there is no

hidden 1. Consequently, the operand of addition should be set to E = 1 and 0.F.

The rest of the algorithm remains unchanged.

The zero operand (E = 0 and F = 0) is treated in the same way as a

denormal number.

8o4~,6 Delay and Pipelining

The delay, or latency, of the floating-point addition corresponds to the critical
path, obtained from the delay graph shown in Figure 8.7. As in any combina-
tional network, the critical path might not be the sum of the critical paths of the
individual modules. However, if networks with logarithmic delay are used for
the adders and the LOD, a reasonable first approximation is to add the critical

path delays. Since the delay is large and floating-point additions are frequent, the

unit is usually pipelined. The number of stages depends on the clock cycle.

8~.4~ Alternative Implementations

There are several modifications that have been developed for the implementation

of floating-point addition. The main objective of these modifications is to reduce

the latency, and the approach is to combine mutually exclusive steps and/or to

perform in parallel independent steps. Since a variety of possibilities exist, we

illustrate the approaches by two designs, one single-path implementation and

Floating-Point Addition 427

C, Exponent difference)

C Swap)

C)

(Add significands)

C .oo)

C)

C Special cases)

F I G U R E 8.7 Dependence graph for basic implementation of floating-point addition.

one double-path implementation. Other variations are described in the references
listed at the end of the chapter.

Single-Path Implementation 16

This implementation is shown in Figure 8.8. It results from the following changes
to the basic implementation considered before:

1. The sign-and-magnitude addition is performed using a two's complement
adder. When an effective subtraction is performed, one of the operands is
complemented (bit-inversion put carry-in to the adder) and the result is
complemented if negative. To avoid the complementation of the result,
which would require a bit-inversion and the addition of one ulp, the

16. Although this implementation has two partial paths, it is called a "single-path"
implementation to distinguish it from the next one, which has two completely distinct
significand datapaths.

428 c M A P T E R S Floating-Point Representation, Algorithms, and Implementations

I - .

I EXPONENT
DIFFERENCE I

a ~ I
sgn(d)

EOP
Sy

sgn(d)
zero(d) crop

MUX I

f ,
UPDATE

EOP: effective operation
R-shifter: variable right shifter
L-shifter: variable left shifter
L1/Rl-shifter: one position left/right shifter

SWAP i s~'('~

I ,
I R-SH~ER h--

I I

CONDITIONAL BIT-INVERT I CONDITIONAL BIT-INVERT I
I

LZA I OV~ Two's COMPLEMENT L
ADDER / sub

3 ms bits of
L-SHIFTER I I LI/RI"SHIFTER ~ adder output

ovf_rnd I" ~ (ovf, A[O], a[l])

I COMPARE I I ~ c~p

zero(d) control

I MUX

Mz

ROUND I
I

] (ovf, A[O], A[1]) = 000

(handling of special cases not shown)

F I G U e E S . S Improved single-path floating-point addition.

smallest operand is complemented so that the result is always positive. To
determine the smallest operand, two cases are considered:

�9 The exponents of the two operands are different. In this case, during
alignment, the significand corresponding to the operand with smallest
exponent is shifted right. Consequently, this corresponds to the
smallest operand to the adder and is complemented.

�9 The exponents of both operands are the same. In this case, it is
necessary to compare the significands. This comparison is performed
in parallel with the alignment module, so it does not increase the delay.

Floating-Point Addition 429

EXAMPLE 8.S

.

.

Leading-zeros anticipation (LZA). 17 This module determines the position

of the leading one in the result, concurrently with the actual addition. In

this way, it eliminates the delay of the leading-one detector from the critical
path.

Performing the rounding in parallel with the massive left shift. The
massive left shift (more than one position) is required only when the output

of the adder has at least two leading zeros (actually, three including the
carry-out). As discussed before, this can only occur when there is an
(effective) subtraction and the difference in exponents is 0 or 1. Therefore,
the shift left of at least two positions introduces a 0 into bits G, R, and T,
and no roundup is required.

SUB

1.0000101

0.11111101

0.00001101

N O R M 1.11010000 = Round down in all modes �9

Consequently, two concurrent paths can be designed, as follows:

�9 Path 1, including a 1-bit left/right shift (to incorporate also normaliza-
tion in effective addition) and the rounding

�9 Path 2, massive left shift (2 or more positions)

After these paths a selection is performed so that the left path in the figure is
chosen when the three most-significant bits of the output of the adder (including
the carry-out) are 0.

Note that in this implementation we have included the comparator and the
bit inverters, required by the scheme that uses a two's complement adder with an
output that is always positive.

17. This has also been called leading-one prediction (LOP). For algorithms and implemen-
tations, see the references at the end of the chapter.

430 c ~ . ~ il;~:~! ~:~ ~!i!!:. ~ii~ 8 F l o a t i n g - P o i n t R e p r e s e n t a t i o n , A l g o r i t h m s , a n d I m p l e m e n t a t i o n s

I swAP I

l
I l-

LZA I

CLOSE PATH

sub AND (Id[= 0 or 1)

[RI-sHIFTER]
t

INVERT, ADD,
ROUNDAND

INVERT
MODULE

FAR PATH

add OR (sub AND Id[> 1)

1
I R-sHIFTER I

CONDITIONAL BIT-INVERT I

l
ADD,

ROUND AND
NORMALIZE

MODULE
.~1 L-SHIFTER] "-I

I Control signals, / 1
handling of exponent, sign, 1 ~ 0 ~

special values not shown I MUX , ~-- sub AND (Idl = 0 or 1)
!

R1-SHIFTER: one-position right shifter
R-SHIFTER: variable right shifter

u

L-SHIFTER: variable left shifter Mz

F ! G U R �9 8 . 9 D o u b l e - p a t h i m p l e m e n t a t i o n o f f l o a t i n g - p o i n t a d d i t i o n .

Double-Datapath Implementation
In the single-datapath implementation the critical path includes two variable

shifters: one for alignment of the operands and the other for normalization of

the result. However, as indicated before, the normalization of the result requires

a shift of more than one position only when the operation is subtraction and the

exponent difference is zero or one; moreover, for this case the alignment is at most

of one position. Consequently, as shown in Figure 8.9, it is possible to define two

disjoint paths:

Floating-Point Addition 431

Swap
r

(LZA)

(Rl-s.,.)

I Invert, add, round, 1 and invert

"-(L-shi~]
-L

C Conditional bit-invert)

1

(Mux)

Add, round, 1 and normalize
I

F ! G U R t O. 10 Dependence graph for double-path scheme.

CLOSE, for subtraction and exponent difference of zero or one

FAR, for addition and for subtraction with exponent difference larger than
one

In the CLOSE path, there is a simple shifter for alignment of at most one

position, the adder, the variable left shifter for normalization, and the module for
rounding. 18 In contrast, the FAR path has a variable right shifter for alignment,

the adder, a one-position left-right shifter for normalization, and the module for
rounding.

The dependence graph of the double-path scheme (significand part only) is
shown in Figure 8.10.

To balance the delay of both paths, the following has to be considered:

1. To achieve a higher throughput, the floating-point adder is pipelined, as
shown in Figure 8.11. As can be seen, to pipeline the double-datapath
implementation it is necessary to have two adders, one per path, because the
addition occurs in different stages of the pipeline: in the CLOSE path
simultaneously with the variable right shifter of the FAR path, and in the
FAR path simultaneously with the variable left shifter of the CLOSE path.

18. Note that in Figure 8.9 (for both paths) the rounding is included in the module together
with the adder and is performed before the normalization; this is explained later.

432
c:i::. ~,,~,~ .~i~ i~:: :.,.,.~ ;';i~ ;~ i~!!!il ~:~i~: :,!!~

Floating-Point
R

epresentation,
A

lgorithm
s,

and
Im

plem
entations

r

,.l:z �9

s ,.Q

r i
r

.,..~
rae3

�9
.,.~

l)

r

~ r

.,..~

.~

u
l

u
_

Floating-Point Addition 433

To reduce the latency, the rounding is combined with the adder and

performed before the normalization. This combined addition + rounding

is performed by having a compound adder (which produces the sum and

the sum plus 1) and the correct rounded result is selected from the two

possible outputs. Specifically:

�9 For the CLOSE path, roundup might be required when the exponent

difference is one and the output of the adder is normalized.

EXAMPLE 8 .6

SUB

1.1100100

0.10000001

1.01000111

R O U N D 1.0100100 �9

For the FAR path, roundup might be required both when the result of

addition is normalized or unnormalized (with one additional integer

bit for addition and with one leading zero for subtraction). Since the

rounding is done before normalization, the selection of the correct

output has to take into account the various positions of the rounding
bit.

To illustrate the operation of the ADD, ROUND, and

NORMALIZE module we show the case of effective addition and
rounding to nearest. 19 In this case, the ADD part produces two

outputs: Sum (of inputs) and Sum + one (sum-plus-one), both up to bit
position m - 1 (L). Moreover, we have also bits m (G),rn + 1 (R), and

the sticky bit (T), which correspond to the operand that has been

19. The complete description can be obtained from references at the end of this chapter. The
operation has additional complications for subtraction because of the 1 to be added for two's
complement, and for round toward infinity when overflow occurs because an additional
output of sum plus two is needed.

434 c H ~ g~ ~ E ~ ~ Floating-Point Representation, Algorithms, and Implementations

shifted right. Then, for the selection among the two outputs of the

adder, two situations have to be considered:

The result of addition (Sum) is normalized. In this situation, the

rounded result is (L is bit position m - 1 of Sum)

rounded -- I Sum
! Sum + one

if (G' + L' R' T') = 1

i f G (R + T + L) = 1
8.51

The result of addition (Sum) has one additional integer bit. In this

situation, the rounded result is (L* is position m - 2 of Sum)

R1SHIFT(Sum)
rounded -- 1SHIFT (Sum + one)

i f (L ' + (L*) 'G'R 'T ') -- 1

i f L (L ' + G + R + T) = 1

8.52

3. The magnitude subtraction is performed with a two's complement adder,
as discussed for the single-datapath case. However, for the case in which the

exponents are the same (CLOSE path) it is not possible to perform a

comparison of the significants before the adder, since this adder is in the
first stage of the pipeline. Consequently, to avoid the two's complement of
the result when it is negative (which would require an incrementer), we do

as follows:

�9 Bit-invert one operand.
�9 Select the sum plus one output if the result is positive and the bit invert

of the sum if the result is negative.

Note that because of the swap at the input, the difference can be negative
only when the exponents are equal, and therefore this situation does not

conflict with the roundup.
In the FAR datapath, the swap assures that the output is always

positive.

4. Leading-zeros anticipation (LZA) is included in the CLOSE path (as

discussed for the single-datapath case).

As seen in Figure 8.11, the use of a double-path implementation might reduce
the latency by one pipeline stage. However, it increases significantly the area.

Floating-Point Multiplication 435

8 .~<,,~ ~xr %~. . Floating-Point Multiplication
We now consider the algorithm and implementations for floating-point multi-
plication. The algorithm is given in generic terms, whereas the implementations
are geared to the IEEE standard.

Let x and y be the operands represented by (M], Ex) and (My, Ey), respec-
tively. The significands are signed and normalized, and the result

z - - x x y 8.53

is represented by (M z, Ez), where M z is also signed and normalized. The high-
level description of this operation is composed of the following four steps:

1. Multiply significands and add exponents.

M z - - M x x My 8.54

Ez -- Ex + Ey 8.55

2. Normalize M] and update exponent.

3. Round.

4. Determine exception flags and special values.

Basic Implementation

As in addition/subtraction we now consider an implementation in which operands
and result significands are in sign-and-magnitude representation. Moreover, to
be specific we consider the representation of the significand as in the IEEE
Standard 754, that is, normalized and in the range [1, 2). The number of bits of
the significand is m - - f -~- 1 bits, of which the most-significant bit is hidden.

The first three steps are implemented as follows:

1. Multiplication of magnitudes, addition of exponents, and generation of
sign.

�9 Multiplication of magnitudes produces a magnitude P of 2m bits.
Since only m bits are required in the result, from the second half we
require only one guard bit and the sticky bit, for rounding. No
additional guard bit is necessary, as discussed below.

436 c N r P~ E R 8 Floating-Point Representation, Algorithms, and Implementations

.

�9 The implementation of the addition of the exponents depends on the
representation. In a biased representation, the addition is performed by
adding the representation of the exponents and subtracting the bias.
That is,

E/3,z -- E/3,x + E/3,y - - B 8.56

�9 The sign of the result is

Sz -- Sx @ Sy 8.57

Normalization. Since 1 < Mx, My < 2, the result of the multiplication is
in the range [1, 4). Consequently, it might be necessary to normalize by
shifting one position to the right and incrementing the exponent.

Since no normalization left shift is required, the result of multiplica-
tion requires only one guard bit (and the sticky bit) for rounding. Note that
the sticky bit has to be updated during the normalization shift, so that the
new sticky bit is equal to the OR of the previous guard bit and the previous
sticky bit. The output of multiplier module P is in positions:

(-1)0 .123. . . (m - 2) (m - 1)m(m + 1) . . . (2m - 2) 8.58

If P [- 1] - 0, P is normalized:

L - - P[m - 1] , G -- P[m], T - - O R (P [m + I] , . . . , P [2 m - 2])

8.59

If P [-1] -- 1, normalize P by shifting right one position:

L -- P[m - 2], G -- P[m - 1] , T -- OR(P[m], . . . , P[2m - 2])

8.60

Rounding. The four rounding modes are implemented as in floating-point
addition, but now with only one guard bit (G) and the sticky bit (T).

R o u n d to Nearest (to Even i f Tie)

The rounding is done by adding rnd to the L position (least-significant position
of the result), where

rnd = G T + G T ' L = G (T + L) 8.61

with G and T being the two bits following L after the normalization.

Floating-Point Multiplication 437

As discussed for floating-point addition, it is also possible to do the rounding
by adding 1 to the G position (after normalization) and updating the L bit for a
tie. This method will be used in the modified implementations discussed later.

R o u n d toward Zero

In this case the result after normalization is truncated at bit L.

R o u n d toward Infinity

For round toward positive infinity, add rnd to L for

rnd = sgn' (G + T)

where sgn is the sign of the result.
Similarly for round toward negative infinity:

rnd = sgn(G + T)

Figure 8.12 illustrates the basic implementation discussed above.

8.62

8.63

8 ~ 1 7 6 Exceptions and Special Values
The exceptions and special values that happen in floating-point multiplica-
tion are:

Control signals,
handling of exceptions

not shown

s~ Sy

1
I xoR I

I EXPONENT
ADDITION

I EXPONENT
UPDATE I

Ez

mby m
MULTIPLIER

P[-1:2m - 2]~ 2m
/

P[ml+ 1:2m-21 [
m + 2] " s ~l STICKY

P[- 1 :m]
I NORMALIZE]L'G~~~

m+l~ lind
I ROUND I ~

m I
Mz

F I G U R E 8,12 Basic implementation of floating-point multiplication.

438 c H A iPs " ~iiii~i:.; ~iii~i~,~ ,s~ Floating-Point Representation, Algorithms, and Implementations

8 5,~ 4,

�9 Overflow: This situation can occur because the resulting exponent is too

large. This is detected after the exponent update. The overflow flag is set

and the result value is +infinity.
�9 U n d e r f l o w : The resulting exponent can be too small to be represented. In

such a case, the underflow flag is set and the exponent is set to E -- 0.

Moreover, the significand is shifted right to represent a denormal.

�9 Z e r o : The result of multiplication is zero when one of the operands has

value 0 and the other is not +infinity. The zero result is set.

�9 I n e x a c t : The result is inexact if, after normalization, G + T -- 1.

�9 NAN: The result is a N A N if one (or both) of the operands is a N A N or if

one of the operands is a 0 and the other +infinity.

Denormals

As in addition, denormal operands do not have a hidden 1. When one (or both)

operands are denormal, then the output of the multiplier will have leading zeros.
Consequently, a variable left shift is necessary for normalization, as in floating-

point addition (and a subtraction in the exponent).
When there is an exponent underflow, the significand is shifted right to allow

for gradual underflow (denormal result) and the exponent is set to 0.

Delay and Pipelining
The delay, or latency, of floating-point multiplication corresponds to the sum of
the delays of the modules in the significand path of Figure 8.12. To increase the
throughput, the unit is usually pipelined. The number of stages depends on the
clock rate. Since the multiplier module has a larger delay than the other modules,
it might be decomposed into several components, such as recoder, adder tree, and
final adder, and these components included in different pipeline stages.

Alternative Implementation

To reduce the latency of floating-point multiplication, the following items can be

included, as shown in Figure 8.13:

�9 Computing only the most-significant half (plus the guard bit) of the result

of multiplication in conventional representation and simplifying the

computation of the effect of the second half on this first half.

Floating-Point Multiplication 439

Mx I MY I Control signals,
handling of exponents

and exceptions
ruby m

MULTIPLIER not shown

with CS OUTPUT

PC [- l : 2 m - 3] 2m - 1 2m PS[-l:2m - 2]
m -2 PS[m + 1:2m - 2]

/

m -3 PC[m + l :2m - 3] |

m + 2 ~ m + 2 Cm I T
I

i I: S z > NORMALIZE
ROUND

F ! G U R E 8 . 1 3 A l t e r n a t i v e i m p l e m e n t a t i o n .

STICKY

One way to do this is to use the standard approach to implement
multipliers in which the bit array is first reduced to two rows (carry-save
representation of product) and then this carry-save representation is
converted to a conventional representation. As shown in Figure 8.13, for the
floating-point multiplier only the first part is converted, including the carry
Cm produced by the second part. In this case, the delay of generating Cm is in

the critical path.
Overlapping the computation of the sticky bit with the multiplication.
The basic way to compute the sticky bit requires that the second half of the
product is produced in conventional representation. This would require
a carry-propagate adder for the last part. The following two methods
eliminate the need for this adder:

1. The sticky bit can be determined directly from the operands for the
multiplication. This results from the fact that for a prime radix, such as
radix 2, the number of trailing zeros of the product is equal to the sum of
the trailing zeros of the operands. Consequently, the value of the sticky bit
is obtained from this sum. The implementation of this method requires
detectors of the number of trailing zeros, an adder, and a comparator.

2. The sticky bit can be determined from the carry-save representation
of the second half of the product. This method is based on the general

440 c ~! ~. F~:i' t~: ~! ~ Floating-Point Representation, Algorithms, and Implementations

method to determine whether the sum of two operands is zero, without

actually performing the addition. This method can be described by

adding - 1 to the sum and detecting the value -1 . Since the repre-

sentation o f - 1 is 1111..1 and this value can only occur when for all bit

positions the sum bit plus the carry bit add to 1, the algorithm is as follows:

S s s s s s s s s

C c c c c c c c c

- 1 1 1 1 1 1 1 1 1

Z Z Z Z Z Z Z Z

t t t t t t t

Consequently,

Zi - - (S i ~) Ci) t

t i --- S i + 1 + C i + l
8.64

Now we compute

W i - - Zi f ~ ti 8.65

and the sticky bit is

T = N A N D (w i) 8.66

�9 Combining in one module the carry-propagate addition (with inclusion of
the carry from the second part), the normalization, and the rounding.

A method to reduce the delay by removing the carry from the second

half from the critical path is described at the end of this section.

As shown in Figure 8.14, the carry from the second part (Cm) is added
at the guard bit position.

Now consider the rounding. We consider rounding to nearest (up if a tie) and

then include the effect of sticky. The other rounding modes are left as an exercise

(Exercise 8.31). Since we want to perform the rounding before the normalization,
we need to consider two situations:

Floating-Point Multiplication 441

Product P [- 1:2m - 2]

~ . (m + 2) ~ ~ , (m - 2) ~

XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXX

Cm

C m is the carry produced by

the least-significant m - 2 bits of product P

and added in position m.

F I G U R S 8.14 Adding carry from the least-significant half.

Bit position: (-1)(0) .123. . . (m - 2) (m - l) m

0 1 .xxx. . . x x x

C m

1

(a)

Bit position: (- 1) (0) . 1 2 3 . . . (m - 2) (m - l) m

1 x .xxx. . . x x x

1 Cm

(b)

F ! G U R E 8. lS Rounding position: (a) Normalized product. (b) Unnormalized product.

1. The product is normalized. Then the rounding is performed by adding 1 to

bit position m (see Figure 8.15(a)).

The product is not normal ized (that is, it has to be shifted 1 position right

for normalization). Then the rounding is performed before normalization by

adding 1 to bit position m - 1, as shown in Figure 8.15(b).

Since the product is in carry-save form, it is not known whether it is normalized.

Therefore, to combine the rounding with the addition, both additions should be

performed and then the correct one selected when it is de termined whether the

result is normalized.

.

442 r ~ Floating-Point Representation, Algorithms, and Implementations

PS

PC

(- 1) O. 1 2 3 . . . (m - 2) (m - l) (m)

X X X X X X X X

X X X X X X X X

!
Cm C m < = > (Cm + 1)2 - m

PS" x x x x x x x x

PC" x x x x x x x

G e t P0 and P1 = P0 + 2-m:

PS* x x x x x x x x

PC* x x x x x x x 0

P0 ovf x x x x x x x

P1 x x x x x x x x

Af te r selection:

P 1. x x x . . , x L

FIGURE 8.10 Adding carry Cm and rounding.

Consequen t ly , cal l ing P M the mos t - s ign i f ican t par t of the produc t , ob ta ined

by a d d i n g PS plus PC up to posi t ion m, we need to c o m p u t e

and

and then select

PO = P M + (Cm + 1) X 2 -m

P 1 -- P M + (C m Jr- 2) X 2 -m

P _ [P 0 i f P 0 [- l] - 0

/ 2 - 1 p 1 if P 0 [- 1] -- I

8.67

8.68

8.69

Th i s is i l lus t ra ted in F i g u r e 8.16.

T h e comple te process can be i m p l e m e n t e d as s h o w n in F i g u r e 8.17, wh ich

consists o f the fo l lowing parts:

Floating-Point Multiplication 443

P0[-1]

L G
PS[-1..m - 2] PS[m - 1] PS[m]

PC[-1..m - 2] / PC[m -
i

~ m - t m
m Half-Adders

PC* { m + 2 ~ m + 2 PS*

COMPOUND ADDER

] (shifted) I ~

MUX

P0[1..m]

P[1..m] \

m-2

m - 1

P[m -1, m]

F z [1..m- 1]
Rounded and normalized

fraction of the result significand

(r + 1) 2 -m

~Cmm ~
C m

Pl[m]

' t
I LAD I

I
Last digit

adjustment network

F I G U R E 8.17 Adding carry, normalization, and rounding implementation.

1. A row of HAs and FAs to add (C m + 1)2 -m tO PS[--1, m] and PC[-1, m].

2. A compound adder that produces the sum P0 and the sum plus 1 (P 1).

3. A multiplexer that selects P0 or the normalized (shifted) P 1 depending
whether P 0 does not overflow or overflows, respectively.

4. A module LADJ that determines the least-significant bit of the significand.
The tie situation (round to even) needs the use of the sticky bit. This sticky
bit includes the guard bit when there was an overflow in the addition.
Consequently, the sticky bit is updated by

T* = T + P 1 [m] �9 P 0 [- 1] update sticky bit 8.70

The expression for the adjustment of the least-significant bit in the tie case
is based on the fact that the 1 added for rounding complements the bit in

444 c ~ A P T E R s Floating-Point Representation, Algorithms, and Implementations

position m. So, if tie corresponds to (bitm, T) = 10 before rounding, it

corresponds to (bitm, T) -- O0 after rounding. Consequently,

L = P[m - 1](P[m] + T*) 8.71

R e m o v i n g 8 m f r o m Critical Path

The carry of the second half can be taken out of the critical path as follows. As

indicated, it is necessary to add to the position m of the carry-save representation

of the product either (Cm + 1) or (Cm + 2), depending on the overflow condition.

Then a compound adder produces the sum and the sum plus one, and the correct

result is selected. Consequently, taking into account the sum and carry bits in

position m, it is necessary to produce a value (~) from 1 to 5 in that position. This

addition produces a carry (Cm_l) tO position m - 1, which can have a value from

0 to 2. Therefore, a direct implementation of this would require the computation

of the sum, sum plus one, and sum plus two, and the selection after ~ is known.

This implementation is not convenient because of the three values required.

The implementation can be simplified to select only among sum and sum

plus one because three of the five bits that compose ~ are known in advance,

specifically the sum and carry bits of the carry-save representation and the one
added for rounding to nearest. In order to reduce the values of the carry tTm_ 1 tO

(0, 1), a 1 is preadded to the carry-save representation in position m - 1 (reducing

the range of]E by 2). The different cases are shown in Table 8.4.
The preaddition requires a row of half-adders as shown in Figure 8.18. The

control of selection is done using the four bits composing ~ (see Exercise 8.33).
Note that, in contrast to the previous implementation, in this case a right shifter

is included after the selection. This is because, when there is overflow, P1 is not

always selected.

Carry + Sum Range of Range of

in Position Y~ before Range Preadd E after

m Preadd Of Cm-1 17 Preadd

Range

Of Cm-1

0 [1,3] [0,1]

1 [2, 4] [1, 2]
2 [3,5] [1,2]

no [1,3] [0,1]

yes [0, 2] [0, 1]

yes [1, 3] [0, 1]

T A B L E 8.4 Preaddition cases.

Floating-Point Multiplication 445

PC[-1. .m - 1] PS[-1..m - 1]

tm+l tm+l

m + 1 Half-Adders

tm tm+l
~

(m - 1)

PS [m]

PC [m] t

"Preadd 1"

I
PP[-1]

I J
1

tm+l tm+l
COMPOUND ADDER

I Pl[-1..m- 1]

PC[m] PS[m]

1 PO[-I] I~ ~ ~ l~Cm
~Ot-lm-ll I S~, I

MUX

t PP[-1 . .m-1]
PP[O..rn - 1]

R1 S H I F T E R

P[1..m-1]

m-2
P[m - 11

m-1

I_ I
I-

PP[m]

PP[-1] 1 PO[m]
~ I ~ ~T(sticky)

I

F z [1..m - 1]
Rounded and normalized

fraction of the result significand

FIG U n t a. la Adding carry, normalization, and rounding implementation with carry out of
critical path.

8~176 Floating-Point Multiply-Add Fused (MAF)

We describe the algorithm and implementation for fused floating-point mul-
tiplication and addition z = x y + w . This operation reduces the number of
interconnections between floating-point units, the number of adders and nor-
malizers, and provides additional accuracy compared to separate multiply and

446 c ~i~.::it :~:ii~ ~!::~::!i:: {~!: ~ii ~ii: F loa t i ng -Po in t Represen ta t ion , A lgor i thms , and Imp lemen ta t i ons

add units. The increased accuracy is a consequence of having to perform a single,
instead of two, round/normalize steps. It also helps compilers produce more effi-
cient code. On the other hand, it increases the precision and delay of the adder and
requires a more complex normalizer. The MAF unit can also be used to perform
floating-point addition and floating-point multiplication by setting y = 1.0or
w -- 0.0, respectively.

The algorithm is given in generic terms, whereas the implementations are
geared to the IEEE standard. Let x, y, and w be the operands represented by
(M x, Ex), (My, Ey), and (M x, Ew), respectively. The significands are signed
and normalized, and the result

z = (x x y) + w 8.72

is represented by (M z, Ez), where M z is also signed and normalized. The high-
level description of this operation is composed of the following five steps:

1. Multiply significands M x and My, add exponents Ex and Ey, and
determine the alignment shift and shift M w. Produce the intermediate
result exponent Ez = max(Ex + Ey, Ew).

2. Add the product and the aligned M w.

3. Normalize the adder output and update the result exponent.

4. Round.

5. Determine exception flags and special values.

Implementation

We now consider an implementation in which operands and result significands
are in sign-and-magnitude representation. Moreover, to be specific in the nor-
malization step, we consider the representation of the significand as in the IEEE
Standard 754, that is, normalized and in the range [1, 2). Again, the number of
bits of the significand is m = f + 1, with a hidden most-significant bit.

The organization ofa MAF unit is shown in Figure 8.19. For biased exponent
representation, we have

max(Ex + Ey, Ew) -- max (E~,x + EB,y -- B, EB,w) 8.73

The alignment of the addend Mw with respect to the double-precision product
is performed concurrently with the multiplication step. Since the product is not

Floating-Point Multiplication 447

E x Ey E w

111
I SHIFT DISTANCE/[d

EXPONENT [

max(E x + Ey, E w)

EXPONENT
UPDATE

1
Ez

Control signals, sign,
handling of exceptions

not shown

m W

._l RIGHT
"-[SHIFTER

3m+2{

LOP

Mx My

mby m
MULTIPLIER
(CS RESULT)

I CSA

, I t ,
II II

3m+2 f

_1 REALIGN/ I
"-I NORMALIZE I

m+lr
[ROUND r"

 zmi
F I G U R E a. 19 Basic i m p l e m e n t a t i o n o f M A F operation.

STICKY

l

shifted for alignment, the alignment requires a left shift of at most m + 3 positions
(Figure 8.20(a)) and a right shift of at most 2m - 1 positions (Figure 8.20(b)). The
maximum left shift is obtained by observing that the guard (position m) and the
round (position m + 1) bits are 0 when the result significand corresponds to Mw.
Consequently, two additional positions are included, resulting in the shift ofm + 3
positions. The maximum right shift assures that Mw is shifted to the right of the
least-significant bit of the product Mx x My.

To avoid the bidirectional shifter, the addend Mw is positioned m + 3 bits
to the left of the product, as indicated in Figure 8.21 (a), and shifted right by the
distance

d -- Ex + Ey - Ew + m + 3

which for biased exponent representation is performed as

d -- EB,x + EB,y -- EB,w -- B + m + 3

No shift is performed for d < 0 and the maximum shift is 3m + 1.

8.74

8.75

448 r {:.:{.J~ ~;~,,.:~ :-"~::{!i {:~ii: 8 Floating-Point Representation, Algorithms, and Implementations

Product x.y:

Addend:

~ m ~ ~ 2 m ~

00xx.xxxxx...xxxxxxxxxx

l .XXXXXXXXXXXXX

[~ m - l + 4 ~]

(a)

- - 2 m ~

Product x.y: xx.xxxxx...xxxxxxxxxx

Addend: 01 xxxxxxxxxxxxx

Shift distance:] m 2 m - 2 + 1 ~]

(b)

FIG U R S 8.2O Position of addends using bidirectional shift: (a) Maximum left shift. (b) Max-

imum right shift.

The two zero bits shown in the figure are used as the guard and round bits

when Mw is not shifted, that is, the result significand is Mw. Figures 8.21 (b), (c),

and (d) show the different alignment situations.
The multiplier produces 2m-bit carry and sum vectors that are reduced,

together with the aligned Mw, in a (3rn + 2)-bit adder to produce a result (possibly
unnormalized). Since the leftmost m + 2 bits of the adder input produced by the
multiplier are always 0, the corresponding adder positions can be implemented as
an incrementer with the carry-out of the lower part of the adder as the increment
input. This implementation is shown in Figure 8.22. The sticky bit is adjusted
after normalization.

The output of the adder may require a realignment/normalization left shift

to place the leading 1 in the leftmost position, as shown in Figure 8.23. Since

the product is not shifted for alignment, the left shift can be up to about 2m

positions, which is twice as much as in the floating-point addition. The additional

rn positions are due to the initial position of the adder operands, as shown in

Figure 8.21 (a). As in floating-point addition, for fast implementation, the leading-
one position of the adder output is computed by a LZA module, concurrently

with the addition. Moreover, the sticky bit is updated by the normalization.

The rounding is performed after realignment/normalization. It involves
obtaining the guard, round, and sticky bits and performing the actual rounding.

Floating-Point Multiplication 449

Initial position:

P roduc t x.y:

Addend"

~ m ~

1 .xxxxxxxxxxxxx

] m m - - l + 4 ~

2 m

00xxxxxxxx xxxxxxxxxxxx

I
] ~ sticky

region

(a)

A l i g n m e n t w h e n Exy -- Ew:

~ m ~

P roduc t x ,y :

Addend"

Shift distance: I m m - 1 + 4

2 m

00xx.xxxxx xxxxxxxxxxxxxxx

1 .XXXXXXXXXXXXX

I-sticky]

I

(b)

A l i g n m e n t w h e n Exy - E w = k:

~ m ~ ~ 2 m ~

P r o d u c t x ,y : 00xx.xxxxx xxxxxxxx

A d d e n d : l xxxxxxxxxxxxx

Shift distance:] ~ m + 3 ~] ~ k ~]

(c)

A l i g n m e n t w h e n E x y - E w > 2 m - 1"

~ m ~ ~ 2 m ~

P roduc t x ,y : 00xx.xxxxx xxxxxxxx

A d d e n d : 01xxxxxxxxxxxxx

Shift distance:] ~ m + 3 ~] - - 2m - 1 ~]

(d)

F I G U R E 8.21 Alignment with right shifter.

450 c. ~i; ;~ p ~!~' ~i ~ ~ Floating-Point Representation, Algorithms, and Implementations

m W

t m
RIGHT

SHIFTER

t
3m+2

m+2

tm
mby m

MULTIPLIER

INCREMENTER ' ~ C S A + A D D E R

•/m+ 2 .~2m

To realign/normalize

F I G U R E 8.22 Implementation of MAF adder.

Adder output 1 ~ m+2 ~ l ~ 2m ~ l

Before shift 0000000000000000001.xxxxxxxxxxxxxxxxxxx

After shift 1.xxxxxxxxxxxxLGRT

F I G U R E 8 . 2 3 Left shifting of the adder output.

In floating-point addition the delay of the rounding is reduced by performing it
together with the addition and before the normalization. In the MAF case, this
delay reduction is difficult because, at the adder output, the radix point can be
anywhere in the leftmost m + 3 bits, so too many cases have to be considered.

To increase the throughput, the MAF unit is usually pipelined. For example,
in a three-stage pipeline, Stage 1 implements the multiplication, alignment, and
3-2 carry-save addition; Stage 2 performs 2-1 addition and predicts the leading
one in the sum; and, finally, Stage 3 performs normalization and rounding.

Floating-Point Division and Square Root 451

8~i 6 Floating-Point Division and Square Root
We now consider algorithms and implementations for floating-point division and
square root. The algorithms are given in generic terms, while implementations
are determined by the IEEE standard.

Division: Algorithm and Basic Implementation

The operands are x and d, represented by (M i , Ex) and (M~, Ed), with M]
and M~ signed and normalized. The result

q = x / d 8.76

is represented by (Mq, Eq), with Mq also signed and normalized. The high-level
description of the floating-point division algorithm is composed of the following
steps:

1. Divide significands and subtract exponents.

,

3.

4.

M; - Mx/V;

Eq -- Ex -- Ed

Normalize M; and update exponent.

Round.

8.77

Determine exception flags and special values.

Figure 8.24 shows the basic implementation. For biased representation of the
exponents, we produce the intermediate result exponent as

E B,q - - E B,x -- E B,d + B 8.78

For the division of the significands the methods discussed in Chapters 5 and 7
are used.

The normalization step depends on the range in the representation of the
significands. For instance, for the IEEE standard the range is [1, 2) so that Step 1
results in a range (�89 2). Consequently, normalization is required when the value
is less than 1 (a left shift of one position and a decrement of the exponent). To
perform this normalization, a guard bit (G) is needed.

452 CNAPVER 8 Floating-Point Representation, Algorithms, and Implementations

Con olsi,n s 1
sp ec i a l c a s e s

not s h o w n
SIGNIFICAND

EXPONENT DIVIDER
DIFFERENCE

Sx Sy 1

UPDATE I I ROUND I
s~ E~ Mqi

F I G U R E S.14 Basic implementation of floating-point division.

To perform the four rounding modes (after normalization), it is necessary to

compute the significand of the quotient as a truncation of f + 1 fractional bits

of the infinite precision quotient (that is, including another bit, the round bit R),

as well as the sticky bit T. This sticky bit is needed for rounding to plus and to

minus infinity and to determine whether the result is exact. However, it is not

needed for rounding to nearest, since the tie condition cannot occur. This can be

seen as follows:
The tie condition corresponds to an (f + 1) -bit exact quotient when dividing

operands with f - b i t fractions. To show that this cannot happen, consider dividing

Mx = 1 .x 1 . . . x f by Md = 1 .d 1 ' ' ' d f . The "exact" quotient with f + 1 fractional
bits would be Mq = 1.q 1 . . . q f 1 • 2 -e where e = {0, 1 }, because this quotient
can be normalized or unnormalized. Then, (Ma • 2 f) • (Mq X 2 f + l + e) =

Mx • 2f2 f +l+e, or

l d l . . . d f • l q l . . . q f l x 21-e = l x l . . . X f X 2 f+2

Since the second factor of the left side is odd, the product cannot have more than

f + 1 least-significant zeros. However, the right-hand side has at least f + 2

least-significant zeros. Consequently, the identity cannot be true, and the tie case

cannot occur.
The actual rounding step depends on the method used to obtain the signifi-

cand of the result (digit recurrence or iterative approximation). We consider these

two situations now.

Floating-Point Division and Square Root 453

8 , 6 , 2 D i v i s i o n : R o u n d i n g

As indicated, to perform the rounding it is necessary to produce the normal-
ized infinite precision quotient (significand) truncated to f + 1 fractional bits.
Moreover, it is necessary to obtain the sticky bit.

Rounding for Digit Recurrence

In the digit recurrence method the truncated quotient is directly obtained by the
iterations of the recurrence, after the correction step to make the remainder posi-
tive and the normalization. The sticky bit is provided by the condition "remainder

not equal to zero." Consequently, the rounding requires the detection of the zero

remainder and a conditional incrementation of the significand, depending on the

roundoff mode and on bits G and T. The number of bits to be computed by the

iterations is the number of bits of the normalized significand (m) plus two (the

guard and the round bits) plus p, where, because of the initialization, p = 1 for
p = 1 and p = 2 for p < 1 (see Section 5.2.2).

To reduce the overhead of correction, normalization, and rounding, it is pos-

sible to combine these steps in one cycle, together with the on-the-fly conversion
of the last digit. We show now how to do this for the simplified case z~ in which
the following applies:

�9 We consider only rounding to nearest (remember that the tie case cannot
occur).

�9 The number of bits m + 2 + p is a multiple of K -- log 2 r. These bits are
computed in (m + 2 + p) / K iterations.

Let us call qL the digit obtained in the last iteration of the recurrence. For the
correction step, it is necessary to determine the sign of the residual, defined by

1 if residual is negative
sign -- 8.79

0 otherwise

Since a negative residual makes it necessary to decrement the result, the correct
value of the last digit becomes (qL -- sign), as shown in Figure 8.25. If the value
ofqL is in the range [- a , a], the corrected digit is in the range [- a - 1, a].

20. The more general case is described in references listed at the end of this chapter.

454 c N ~ ~T~ ~ ~ Floating-Point Representation, Algorithms, and Implementations

qL:

G R

~ K ~

X X . . . X X X

- s i g n

+ n o r m

+1

qL: YYY "'" YYY
t= ! a U R t= 8.2s Adjustment of the last quotient digit due to correction and rounding.

We now consider the rounding. If it is done after normalization, it is per-

formed by adding one in position G. However, we need to consider also the

case when the quotient is not normalized: in such a case a one should be added

in position R. Consequently, both cases are included by adding in position R

one plus n o r m , where n o r m -- 1 if the quotient is normalized and 0 otherwise.

Consequently, the corrected and rounded digit is

q L - - q L + n ~ + (1 - - sign) , q L E [--a , a + 1] 8.80

Note that the value ofqL can be larger than r - 1, requiring one additional bit.

Figure 8.25 shows this process.

To determine n o r m , it is necessary to determine whether the result would be

normalized after performing the correction and the conversion, but before the

rounding. Since this conversion is not performed, the situation has to be detected

using the already converted part 21 (Q [L - 1], Q M [L - 1]), the digit qL, and

sign. Specifically,

n o r m - -

1 i fqc - sign > 0 and Q [L - 1] is normalized

1 i fqc - sign < 0 and Q M [L - 1] is normalized

0 otherwise

8.81

21.For the on-the-fly conversion, see Section 5.2.3.

Floating-Point Div#ion and Square Root 455

o r

Q [L - l]msb i f q 6 - - s i gn > 0
norm -- - 8.82

Q M [L - 1]msb if q L -- sign < 0

Since qL can be larger than r - 1, it is necessary to incorporate to the on-the-fly

conversion a third form

Q P [L - 1] - Q [L - 1] 4- r - (L - l)

so that the rounded significand before normal iza t ion and t runcat ion to m bits is

I
(Q P [L - 1],u)

M M q -- (Q [L - 1] , u)

(Q M [L - 1], u)

with u - q c m o d r .

The final m-bi t significand is

M M q [O ' m - 1]

M q [O ' m -- 1 1 - M M q [1 "m]

i fq~ > r (condition K 1)

i f 0 < q L < r - 1 (cond i t ionK2)

i fq~ < 0 (condition K3)

8.83

if MMq [0] = 1 (normalized case)

discard M M q [m, m + 1] bits

i f M M q [0] = 0 (unnormal ized case)

shift left and discard M Mq [m + 1] bit

8.84

where V[a" b] denotes bits Va, . . . , Vb.

The updat ing of Q[j] and Q M [.1.] are described in Chapter 5 for the on-

the-fly conversion. For the rounding, the form Q P [j] - Q [j] + r - J is also

needed, 22 and the updat ing is done according to the following expression"

(Q P F], 0)

Q P[j + 1] - (Q[j], (qj+l + 1))

(QM[j], (r -[qj+l] + 1))

i f q j + l = r - 1

if - 1 < q j + l < r - 2

if q j + l < - 1

8.85

Table 8.5 describes the updat ing for the radix-4 case, with signed-digit set q j E

{-3, ...,3}.

22. Note that this form is only needed when qL > r, which can occur when a > r - 2. For
instance, this form is not needed in the radix- 16 implementation with a = 10 (see Exercise
8.43).

456 r H ApT E~ 8 Floating-Point Representation, Algorithms, and Implementations

qj+l Q[j + 1] Q M[j + 1] Q P[j + 1]

3
2
1
0

-1
- 2
- 3

(Q[j], 3)
(Q[j], 2)
(Q[j], 1)

(Q[j], 2)
(Q[j], 1)
(Q[j], o)

(Q P[j] , o)

(Q[j], 3)
(Q[j], 2)

(Q[j], o) (QM[j], 3) (Q[j], 1)
(QM[j],2)

(QM[j], 1)
(QM[j], O)

(QM[j], 3)
(QM[j], 2)
(QM[j], 1)

(Q[j], o)
(Q M[j 1, 3)
(QM[j],2)

T A B L E 8.5 Updating of forms for radix 4.

EXAMPLE 8 .7 The following example illustrates the rounding-to-nearest process for a radix-
4 division with a - 2. Since a -- r - 2, it is necessary to include QP. We show
the conversion of quotient digits qL-1 and qL. Note that we have already
shifted the quotient by two bit positions, which is required by the fact that the
initial condition is x /4 .

Q[L - 2]

QP[L - 2]

QM[L - 2]

q L - 1

Q [L - 11

Q P [L - 11

Q M [L - 1]

qL

SUm

carry

1.xx . . . x 2 3

1.xx . . .x30

1.xx . . . x 2 2

- 1

1.xx . . . x223

1.xx . . . x230

1.xx . . . x 2 2 2

--2

residual

01011001

00101000

The residual is negative (sign - 1). Moreover, q L is negative and
QM[L - 1] is normalized, so that norm - 1. Consequently,

qL -- --2 + 1 + 0 - --1 8.86

Floating-Point Division and Square Root 457

E X A M P L E 8,8

Therefore, MMq -- (Q M [L - 1], 3). Since MMq is normalized, we get

Mq = QM[L - 1] = 1.x x . . . x 222 8.87

To verify that this is correct let us compare with the result when the round-
ing is done after conversion, correction, and normalization. The conversion
would produce

Q[L] = (QM[L - 11, 2) = 1.xx . .x2222

Since the residual is negative, correction produces

Q [L] = 1.x x ..x 2221

8.88

8.89

The result is already normalized, so for rounding, 2 has to be added to the
last digit, namely,

Q[L] 1.xx...x2221011

1

Then the result is truncated, producing Mq = 1.xx ...x 222.

Implementation. A possible implementation of the rounding-to-nearest scheme
is shown in Figure 8.26. It consists of three left-shift registers to keep the forms
Q[j], Q M [j], and Q P [j], logic to generate the digit to concatenate, and the
loading controls.

The rounding is performed by the selection described by expression (8.84).
In addition, it is necessary to have a network to detect the sign of the residual
from its redundant representation, as discussed in Section 5.3.1.

R o u n d i n g f o r I terat ive Approx imat ion

The algorithms presented in Chapter 7 result in approximations that do not
produce directly the truncated quotient required for rounding, even if the error
is small enough. This is illustrated by the following example.

In this example q is the infinite precision quotient (here 16 bits) and qc
are two approximations (also 16 bits) with error less than 2 -l~ We see that
for the first approximation the truncation to four bits does not produce the

458 :c~-~,.r162162 .~!i~ Floating-Point Representation, Algorithms, and Implementations

truncated q"

qc

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

1 . 1 0 1 1 [0 0 0 0 0 0 0 0 1 0 1

1 . 1 0 1 0 1 1 1 1 1 1 1 l x x x x

1 . 1 0 1 1] O 0 0 0 0 0 x x x x x

Parallel load with
wired left shift

,11

ri [
QMin

I.. Load/shift |-.

Qin

Q []<Load/shift
~z
<

o

qj+l

K1
K2
K3

K
-~ j<l qL
(.9~ l~ Q[L-1]msb

QM[L - 1]msb
i< sign

u ~ K K = log2r

Q~ Q~; QP!
I vANol I vANol I A,61

'

vector gates
Jfm + 2 MMq

I ~H'F~"ONC'~ I

M~
F!G U RE 8 . 2 6 A n implementation of quotient conversion, correction, normalization, and
rounding.

Floating-Point Division and Square Root 459

Moreover, the algorithm does not produce the sticky bit (zero remainder). 23

As illustrated in the previous example, the cases for which it is not correct to

truncate the approximation correspond to approximations that have a string of

all zeros or all ones after the truncation bit. It has been shown that for division

the maximum length of this string is about 2 f bits (for the exact number, see the

references at the end of this chapter). Consequently, it is correct to truncate an

approximation that has an error of about 2 -2f . This method has the disadvan-

tage that producing such an accurate approximation might require additional

iterations and a wider multiplier and adder.

An alternative is to produce the truncated approximation with an error

of about 2 - f and then compute the corresponding remainder and correct the

approximation for the cases in which the remainder is not correct (not positive or

not bounded by d • 2-~f+1)). This also allows the detection of the zero remainder

condition. We now consider two cases depending on whether the approximation

is always from one side (for instance, from above) or from either side.

Case 1: Approximation from One Side. As discussed in Chapter 7, the one-sided

approximation is achieved by the implementation of the Newton-Raphson algo-

rithm with a suitable roundofferror in the last iteration. In this case, the approx-

imation is from below. However, the rounding is simpler if the approximation is

from above, e4 To achieve this approximation from above with an error bound of

2 -w, the approximation from below with the same error bound is incremented
by 2 -w.

So, we consider that the approximation is from above. Moreover, we assume
that the approximation has an error of less than 2 -(f+l) . That is, ifq is the infinite

precision quotient and qc is the approximation, then

0 < qc - q < 2-(f+1) 8.90

This situation is described by Figure 8.27, which represents the discrete real-

numbers line.

As can be seen, qt, the truncated qc to f + 1 fractional bits, has the two

possible values A and B, and only A is the correctqT. Consequently, to determine

23.As indicated in the previous section, this remainder can only be 0 i f q f + l = 0.
24. For the case from below, see Exercise 8.39.

460 c H • pT E R 8 Floating-Point Representation, Algorithms, and Implementations

q

q T

q c

Y

q t

is infinite precision value

truncation of q (to granularity 2 -(f+l))

computed value (from above error <2 -(f+l))

region of qc

truncation of qc (two possible values A and B)

qc

q t

r t + --

F I G U R E 8.27 Quotient approximation.

. qqqqqqqq Discrete real-number line

]]]] points of granularity 2 -(f+l)

q T

YYYYYYYYYYYYYYYY

A B

whether the computed qt is correct, it is necessary to obtain

rt - - x - - q t • d 8.91

Because the approximation is from above, rt > 0 for qt n A and rt < 0 for

q t -" B . Consequently,

q r - qt i f rt > 0

q T - - q t -- 2-(f+1) i f rt < 0

The sticky bit is zero i f r t = 0 or i f r t -- - d • 2 -(f+l).

All four rounding modes can be achieved by observing the sign and zero

value of rt and position f + 1 of qt (called the guard bit g) and selecting q f ,

q f -~- 2 - f , or q f - - 2 - f , where q f is q t truncated to position f .
For instance, for rounding to nearest the rounded value is qT + 2-(f+1)

truncated to f fractional bits. Consequently, we have the following cases:

�9 rt > O. ThenqT -- qt and the rounded value i s q f + g 2 - f .

�9 rt < 0. Then qT -- qt - 2-(f+l) and the rounded value i s q f .

Case 2: Two-Sided Approximation. As described in the previous chapter, the

direct method produces a one-sided approximation if the precision of the multi-
plications is sufficient, but a two-sided one for less precision.

Floating-Point Division and Square Root 461

8~176

. qqqqqqqq

I I I I
q T

q c yyyyyyyyyyyyyyyyyyyyyyy

q t A B C

r t + + -

F I a U R m 8 . 2 8 Two-sided quotient approximation.

For a two-sided approximation,

]q - qc] < 2-(f+1) 8.92

The situation is described by Figure 8.28.

As can be seen, qt can take three possible values. So, rt - - x - q t d is com-
puted and

q T - - q t if0 < rt < 2-(f+l)d

q T - - q t + 2-(f+l) i f rt > 2-(f+l)d

q T - - qt - - 2-(f+l) i f rt < 0

This requires a comparison o f r t with 2-(f+l)d. A variation does not require this

comparison, but an approximation with an error of less than 2 -(f+2), that is,

[q - qc [< 2-(f+2) 8.93

We then produce

resulting in Figure 8.29.

q = qc + 2-(f+2) 8.94

Consequently, q T can be obtained by detecting the sign of r] as in Case 1.
Moreover, the rounded value is obtained in a similar manner.

Square Root: Algorithm and Implementation

The operand x is represented by (Mx, E x), with M x signed and normalized.

The result

s - - x / 7 8 . 9 5

462 c }:,~ #~: p :~ a!~i ~: ai!~ Floating-Point Representation, Algorithms, and Implementations

q c

q

qt
r

t

. qqqqqqqq

I I I I
qT

YYYYYYYYYYYYYYY

Z Z Z Z Z Z Z Z Z Z Z Z Z Z

A B

+

F I G U R E 8 . 2 9 Case with error less than 2 - (f + 2) .

is represented by (M s, Es), with Ms also signed and normalized. The high-level

description of the algorithm is composed of the following steps:

1. Obtain the square root of the significand and produce the exponent of the

result.

Ms - - x / / M ; 8 .96

To obtain an integer, exponent Ex should be even. Consequently, if Ex is

odd, we utilize Mx/2 and Ex + 1.

2. Normalize M 7 and update exponent.

3. Round.

4. Determine exception flags and special values.

The implementation of this operation is very similar to floating-point division.

Consequently, here we give a short summary.
Figure 8.30 shows the basic implementation. For a biased exponent repre-

sentation, the intermediate result exponent is computed as

Et3,s - [(Es,x + B)/2~ 8.97

To obtain the square root of the significand, the methods discussed in Chapters 6

and 7 are used.

The normalization step depends on the range in the representation of the
12)25 significands. For instance, for the IEEE standard the range is [3' so that

25. Because of the division by two for odd exponent. An alternative is to have an operand
range of[l, 4), producing a result in the range [1, 2), so no normalization and exponent
update is required; in this case, E~ -- [Ex/2J and the significand input is either Ms or 2Mx.

Floating-Point Division and Square Root 463

ceiling (Ex/2)

Mx or Mxl21

SIGNIFICAND
SQUARE

ROOT

Control signals, sign, /

/

special cases
not shown

EXPONENT
UPDATE

I NORMALIZE I

I ROUND I

F I G U R E 8.30 Basic implementation of floating-point square root.

Step 1 results in a range (l /x/2, x/2). Consequently, normalization is required
when the value is less than 1 (a left shift of one position and a decrement of the
exponent). To perform this normalization a guard bit (G) is needed.

To perform the four rounding modes (after normalization), it is necessary to
compute the significand of the quotient as a truncation of f + 1 fractional bits
of the infinite precision quotient (that is, including another bit, the round bit R),
as well as the sticky bit T. This sticky bit is needed for rounding to plus and to
minus infinity and to determine whether the result is exact. However, it is not
needed for rounding to nearest, since the tie condition cannot occur.

The actual rounding step depends on the method used to obtain the signifi-
cand of the result (digit recurrence or iterative approximation). The correspond-
ing methods are variations of those discussed for division (for additional details
see the references at the end of this chapter).

8 ~ 1 7 6 C o m p a r i s o n b e t w e e n D i g i t R e c u r r e n c e

a n d M u l t i p l i c a t i v e M e t h o d s

In Chapters 5, 6, and 7 we have presented two methods to perform division
and square root. Moreover, in this chapter we have extended these methods
to perform the corresponding floating-point operations. We now discuss the
elements required for a comparison between these methods. This is not intended

464 c ii~i ~ ~:::~ ~i~;~:!il ii~ ~ii:ii!~ Floating-Point Representation, Algorithms, and Implementations

to determine which of the methods is preferable, since this depends on many

characteristics of the implementation and on system requirements.
The main aspects that are considered in the evaluation of an implementa-

tion are timing aspects, such as execution time, throughput, and effect on other
operations; cost issues, such as the additional hardware required to perform the
operations; and energy consumed. We now compare the methods in terms of
timing and cost. We consider the case in which for the digit recurrence method

dedicated hardware is used (no sharing with other operations), whereas for the

multiplicative method a (modified) floating-point multiplier is used (shared with

floating-point multiplication).

Timing
The execution time depends on the number of cycles and the cycle time. In the

digit recurrence method, the convergence is linear and each iteration is usually
performed in one cycle. Consequently, the number of cycles corresponds to the

ratio between the number of bits of the quotient and the number of bits per
iteration. Moreover, one cycle is needed to terminate the operation. Since the
rounding is simple, this cycle can also include the rounding process.

On the other hand, in the multiplicative method the convergence is quadratic

so that the number of iterations is much smaller than in the digit recurrence
method. However, each iteration includes floating-point multiplications, 26 so
that it is performed in several cycles. Moreover, the rounding process is more
complex and requires some additional cycles.

The cycle time depends on the desired clock rate and affects the radix to be
used in the digit recurrence method and the number of stages in the pipelined

floating-point multiplier.
To get a rough feeling of the corresponding execution times for double-

precision floating-point operations, we consider the following situation, in which

the cycle times are assumed to be the same so that the relative execution times

correspond to the ratio of number of cycles:

�9 A radix-16 digit recurrence implementation (see Chapter 5), resulting in

about 54/4 + 1 = 15 cycles. The same number of cycles is required for

division and for square root.

26. In this situation, each iteration performs complete floating-point multiplications so that
the improvements resulting from using limited multiplications are not applicable.

Concluding Remarks 465

A multiplicative implementation with a four-stage pipelined floating-point
multiplier. The number of iterations depends on the initial approximation.
If the error of this approximation is about 2 -15, two iterations are required
and the total number of cycles is about 20 for division 27 and 25 for square
root.

Moreover, since digit recurrence implementation uses dedicated hardware, it does
not affect the execution of the other operations. On the other hand, the multiplica-
tive method utilizes the multiplier so it prevents the execution of multiplications
while the division/square root is being executed. In addition, it requires a modi-
fication of the multiplier, which can make it slower.

Additional Hardware

The digit recurrence implementation uses dedicated hardware. The number of
equivalent gates is estimated in Chapter 5.

The multiplicative method could be implemented using directly the floating-

point multiplier or fused multiply-add. However, to implement it more efficiently,

in most cases some modifications to the multiplier are included. Specifically, it
might be necessary (1) to increase the size of the multiplier to achieve the required

approximation accuracy, and (2) to incorporate some feedback paths to implement
the recurrence and the rounding. Moreover, a module is required to obtain the
initial approximation.

Concluding Remarks
Floating-point representation produces a high dynamic range that simplifies the
design and programming of numerical computations. However, with respect
to fixed-point representations, it reduces the available precision and makes the
implementation of operations slower and more complex. Moreover, because it
eliminates the need for specific scaling operations, it might lead unaware users to
unsatisfactory results.

The definition of a specific floating-point representation consists of a vari-
ety of parameters, such as the number of bits for each component, the base of

27.For instance the algorithm described in Oberman (1999) has 3 cycles to obtain the initial
approximation, 9 cycles for the two iterations, 4 cycles for a final multiplication, and 4 cycles
to compute the residual and correct the result.

466 c H ~: ~::~ ~ E ~ ~:~ Floating-Point Representation, Algorithms, and Implementations

the exponent, the range and representation of the significand and of the expo-
nent, as well as the definition and representation of special cases. Although these
parameters can be optimized for a particular application, the tendency today is to
use the IEEE Floating-Point Arithmetic Standard 754 (ANSI and IEEE 1985).
This provides portability among systems and assures that experts have consid-
ered the possible anomalies and designed a good compromise among the different
characteristics.

The algorithms and implementations of the basic operations for floating-
point representation are based on the corresponding fixed-point ones, as pre-
sented in the previous chapters. On top of these, it is necessary to incorporate the
effect of the exponents, the requirement for normalization and rounding, and the
detection of special cases. Division and square root are implemented either using
digit recurrence schemes, discussed in Chapters 5 and 6, or iterative (convergence)
schemes, described in Chapter 7. In the latter case, additional modules such as
tables are needed to provide initial approximations. The resulting algorithms/
implementations are complex and have been the object of much research and de-
velopment in order to produce the desired objectives, in terms of delay, through-
put, area, and energy.

8 ~

8 . 1

8 . 2

Exercises
F l o a t i n g - P o i n t R e p r e s e n t a t i o n

[Range and precision] How many radix-10 digits are needed in a fixed-point
format to represent the approximations of both Planck's constant (6.63 • 10 -27)
and Avogadro's number (6.02 x 1023)? How many radix-10 digits are needed to
represent these constants in a floating-point number format (consider a base 10
for the exponent, and radix-10 biased representation of the exponent, such that

E b i a s e d - - E + 50) ?

[Range and precision] Consider computing x P for 2 -1 < x < 1 and p -- 64 for

a 32-bit fixed-point representation with the radix point at the left.

(a) Determine the range ofx for which at least 16 significant bits in the result
are representable.

(b) What is the maximum value ofx for which no significant bits of the result
are representable?

Exercises 467

8 . 3

8 . 4

8 . 5

8 . 6

8 . 7

8 . 8

[Spacing of F L P T numbers] Consider a floating-point representation with a 40-
bit word, composed of a normalized significand in sign-and-magnitude with a

fractional part of 8 hexadecimal digits, and a sign-and-magnitude exponent with
7 bits (exponent base 16).

(a) Determine the maximum and minimum difference between successive

floating-point numbers.

(b) Determine the maximum relative spacing

X ~ X
c~ - max

x'

where x ~ and x are two successive floating-point numbers.

[FLPT representation with different bases] Consider two floating-point repre-

sentations, both with m bits for the normalized significand and e bits for the

exponent. Determine the ratio between the number of floating-point numbers

that are represented by systems A and B for

(a) System A has base 16 and system B base 2.

(b) System A has base 16 and system B has base 4.

[ulp and relative error] A value x is represented by a floating-point number with
1 an error in the significand of gulp. Determine the relative error in ulps. For

details on the relation between relative error and ulp, see Goldberg (1991).

[Unnormalized form] How many different floating-point numbers represent
3 exactly the value ~ if the format consists of 24-bit fractions and 8-bit exponent?

The base is 2.

[Normalized form] How many normalized significands can be represented in a
base-64 floating-point system with 48-bit significands?

[Effect of base b] Show that for a given machine word of n -- f + e bits, the

choice of base b -- 2 always provides as much accuracy and more exponent range
than some b -- 2 k. The accuracy (maximum relative spacing) is defined as

X ~ X

a(f , k~ - - m ~ x
x

where x ' and x are two successive floating-point numbers. The exponent range

is defined as E (f , k) - k (2 " - f - 1). For details, see Brown and Richman (1969).

468 e H ~ pTE N 8 Floating-Point Representation, Algorithms, and Implementations

8 . 9

8 . 1 0

[Biased arithmetic] In a binary biased number representation a number x is
represented by x + B where the bias B = 2 n-1 or B = 2 n-1 - 1 and n is the

number of bits in the bit-vector. Develop bitqevel algorithms for the following
operations and the two choices for B: (1) conversion from/to two's complement;
(2) change of sign; (3) addition; (4) subtraction; and (5) overflow detection.

(a) Compare (1) through (5) for the two choices of B.
(b) Compare (2) through (5) for the two choices of B with the same operations

in the two's complement number representation system.

RoundoffModes and Error Analysis

[Rounding] Consider the following rounding schemes: round-to-nearest-even
(RNE), round-to-nearest-odd (RNO), round towards zero (truncate) (RZ), and
round toward +inf (RP). Show the final rounded result in the following three
cases (fill in the blanks in the table):

Sign Exponent Fraction Guard Round Mode

00011111 1111111111

RNE

RNO

RZ

RP
0 11111110 1111111111 1

11111110 1111111111

RNE

RNO

RZ

RP

RNE

RNO

RZ

RP

8 .11 [Bias for the four rounding modes] Derive the expressions for the total and
average bias for each rounding mode.

Exercises 469

8 . 1 2

IEEE Floating-Point Standard

[Representation] Complete the following table assuming the IEEE FLPT Stan-
dard single-precision format:

Hex-Vector Value
0.0

80000000
A73FF801

_248

7F7FFFFF
00800000

plus infinity
FF800000
7FC00000

8 . 1 3

8 . 1 4

[Errors in the rounding modes] Determine the absolute and relative error in
representing the number 0.1 (decimal) using the IEEE Standard single-precision
format with significands of 8 bits instead of 24 bits for each rounding mode.

[Denorms] How many denormalized numbers are there in the IEEE Standard
single-precision format, and what is their range?

8 . 1 5

8 . 1 6

Floating-Point Addition

[FLPT additionmsign of result] Determine a switching expression for the sign
of the result of an addition/subtraction in terms of the signs of the operands, their
relative magnitudes, and the operation (addition/subtraction).

[Examples of execution for basic implementation] Perform the following oper-
ations using the basic implementation. Include the guard bits, perform all four
rounding modes, and determine if there is an exponent overflow. The represen-
tation is IEEE Standard single precision, with significands of 10 bits instead of
24 bits. Indicate the outputs of each module in Figure 8.6.

470 c:: i!14 .:~,~. ili::,: ::~i:: ili,,i!izi iR .8 Floating-Point Representation, Algorithms, and Implementations

8 . 1 7

8 . 1 8

8 . 1 9

8 . 2 0

Operation X Y
Add 000110001001111000 000110011100011101

Add 000110001001111000 100110011100011101

Sub 000110001001111000 000110001001110111

Sub 011111110111100011 111111100001010101

[FLPT additionmexceptions] For the basic implementation of Figure 8.6 deter-
mine expressions for the five special cases.

[FLPT addition--special values] Give sets of operands (in IEEE Standard
single-precision representation with 10-bit significands) and operations (add/
subtract) that produce each of the five special cases. Indicate the output of each
module in Figure 8.6.

[Denormals]

(a) Modify the basic implementation of Figure 8.6 to allow denormal
operands and produce a denormal result.

(b) Give one example of the execution of addition and one example of
subtraction for the case in which one of the operands is denormal. Show
the output of each module.

[Calculation of delay for basic implementation] For critical path delays of the
modules in Table 8.6, determine the delay of the floating-point adder in Figure 8.6

Module Delay (ns)
Exponent difference
Swap (includes buffer for control)
Right shift
Add significands (s + m)
LOD
Left shift (includes buffer)
Round

Right shift (one position, including buffer)

Special cases

0.3 [log 2 el + 0.5
0.5

0.2 [log 2 m]
0.3 [log 2 m] + 1.0

0.3 [log 2 m]
0.2 [log 2 m] + 0.2

0.2 Flog 2 m]
0.5

0.8

T A B L E 8 . 6 Delay of modules.

Exercises 471

8.21

(as stated in the text, as an approximation the delay can be obtained by the sum
of the delays in the critical path) for single precision and for double precision.

Pipeline the floating-point adder (for single precision and for double) for a
clock rate of 200 MHz. To account for clock skew and other delays, the stage
delay should not be larger than 80% of the clock cycle.

[Executing FLPT addition and subtraction on improved single-path implemen-
tation] Perform the following operations using the implementation of Figure 8.8.
Include the guard bits, perform all four rounding modes, and determine if there
is an exponent overflow. The representation is IEEE Standard single precision,
with significands of 10 bits instead of 24 bits. Indicate the outputs of each module
in Figure 8.8.

Operation X Y

Add 000110001001111000 001001100100011101

Add 000110001001111000 101001100100011101

Sub 000110001001111000 000110001001110111

Sub 011111110111100011 111111100001010101

8 . 2 2

8 . 2 3

[Design details] Determine switching expressions for the shift control of the
L1/R1 shifter of Figure 8.8.

[Executing add/sub on double-path implementation] Perform the following
operations using the implementation of Figure 8.9. Include the guard bits, perform
rounding to nearest (only for the case of effective addition), and determine if there
is an exponent overflow. The representation is IEEE Standard single precision,
with significands of 10 bits instead of 24 bits. Indicate the outputs of each module
in Figure 8.9.

Operation X Y

Add 000110001001111000 001001100100011101

Add 000110001001111000 101001100100011101

Sub 000110001001111000 000110001001110111

Sub 011111110111100011 111111100001010101

472 c ~t A p ~'ii ~' ~!~!:~ ~!~ 8 Floating-Point Representation, Algorithms, and Implementations

Module Delay (ns)
Exponent difference

Swap (includes buffer for control)

Rl-shifter

Compare

R-shifter

Bit-invert control (includes buffer)

Conditional bit invert

Bit invert

Two's complement compound adder

LZA

Two's complement adder

L1/Rl-shifter (includes buffer)

L-shifter (includes buffer)

Round and norm overflow

MUX

Add, Norm, and Round

0.3 [log 2 e] + 0.5
0.5

0.5

0.2 [log 2 rn]

0.2 [log 2 rn]

0.5

0./3

0.1

0.3 [log 2 m] + 0.6

0.2 [log 2 m]

0.3 [log 2 m] + 0.3
0.7

0.2 [log 2 m] + 0.2

0.3 [log 2 m]
0.5

0.3 log m +2.0

T A B L E 8.7 Delay of modules.

8 . 2 4

8 . 2 5

[Calculating delays of single-path and double-path implementations] For the
module delays in Table 8.7, determine the maximum clock rate for the pipelined
adders of Figure 8.11 for double precision. To account for clock skew and other
delays, the maximum stage delay should not be larger than 80% of the clock cycle.

In the single-path implementation, how would you change the positioning
of the stage latches to reduce the clock cycle?

In the double-path case, modify the implementation so that no swap is needed
in the CLOSE path. Determine the new clock cycle.

Floating-Point Multiplication
[Example of execution for basic implementation] For the following floating-
point operands in the IEEE Standard single-precision representation (10-bit sig-
nificand, instead of 24), perform the multiplication using the basic implementa-

tion. Show the four rounding modes. Verify the correctness of your result.

Exercises 473

8 . 2 6

8 .27

8 . 2 8

8 . 2 9

8 . 3 0

X Y

001010101010110011 101111111101110011
110011110101110010 111000111011111100

[Delay of basic implementation] Give an estimate of the delay (in inverter
delays with a load of four) of the floating-point multiplication implementation of
Figure 8.12 for single- and double-precision formats. Make reasonable estimates
(and justify them) of the delay of each module.

Propose a pipelining structure so that the delay of a stage is about the delay
of 20 inverters.

[Exceptions and specials] Show an example of a pair of operands in the IEEE
Standard single-precision representation (10-bit significand, instead of 24) that
produce an underflow in floating-point multiplication. Indicate the representa-
tion of the result.

[Denormals] Indicate which of the two operands (in IEEE Standard single-
precision representation, with 10-bit significand) is denormal and perform the
floating-point multiplication with rounding to nearest. Verify the correctness of
your result

X Y

001010101010110011 000000000000101010

[Calculation of sticky] Determine the sticky bit in the floating-point multipli-
cation for the following operands (in IEEE Standard single-precision represen-
tation, with 10-bit significand). Use the two methods described in Section 8.5.5.

X Y

001010101010111000 001010101010010000
010000000001100000 O01010101011000000

[Example(s) of execution for alternative implementation] For the following
floating-point operands in the IEEE Standard single-precision representation (10-
bit significand, instead of 24) perform the multiplication using the implementation
of Section 8.5.5. Show the four rounding modes. Verify the correctness of your
result.

474 c H ~ P~~ ~ }~ 8 Floating-Point Representation, Algorithms, and Implementations

8.31

8 . 3 2

8 . 3 3

X Y

001010101010110011 101111111101110011

110011110101110010 111000111011111100

[Other rounding modes] Extend the alternative implementation to perform

(a) round to zero
(b) round to plus infinity
(c) round to minus infinity

[Comparing delay of basic and alternative implementations] Give an estimate
of the delay (in inverter delays with load of four) of the alternative floating-
point implementation of Figure 8.13 for single- and double-precision formats.
Estimate the reduction in delay of this implementation with respect to the basic
implementation of Figure 8.12.

Make reasonable estimates (and justify them) of the delay of each module.
Propose a pipelining structure so that the delay of a stage is about the delay

of 20 inverters.

[Selection when Cm not in critical path] Determine the control of selection in
Figure 8.18 using the four bits composing E.

8 . 3 4

F l o a t i n g - P o i n t M u l t i p l y - A d d F u s e d

[Example of execution for basic implementation] For the following floating-
point operands in the IEEE Standard single-precision representation (10-bit sig-
nificand, instead of 24) perform the multiply-add using the basic implementation.
Show the four rounding modes. Verify the correctness of your result.

X Y W

8 . 3 5

001010101010110011 lOllllllllOlllO011 110011110101110010

[Delay of basic implementation] Give an estimate of the delay (in inverter delays
with a load of four) of the floating-point MAF implementation of Figure 8.19
for single- and double-precision formats. Make reasonable estimates (and justify
them) of the delay of each module.

Propose a pipelining structure so that the delay of a stage is about the delay
of 20 inverters.

Exercises 475

8 . 3 6

8 .37

[Adder output realignment] Determine the amount of left shift needed to realign
the adder output when the product is unnormalized, the exponents and the signs
of the addends are equal, and

(a) there is no overflow in addition
(b) there is an overflow

[Exponent updating] Describe the updating of the result exponent in floating-
point MAF operation.

8 . 3 8

8 . 3 9

8 . 4 0

8 .41

Floating-Point Division

[Example of execution for digit recurrence method] For the following floating-
point operands in the IEEE Standard single-precision representation (10-bit sig-
nificand, instead of 24), perform the division using the radix-2 digit recurrence
method. Show the round-to-nearest mode. Verify the correctness of your result.

X D

001010101011010011 101111111110110011

110011110001011010 111000111101011101

[Rounding with approximation from below] Consider an approximation of the
quotient from below with an error less than 2 -(f+l) . Show that a direct algorithm
for rounding to nearest involves a comparison with 2-(f+l)d (see notation in this

chapter).

[Example of execution for iterative method] For the following floating-point
operands in the IEEE Standard single-precision representation (10-bit signifi-
cand, instead of 24), perform the division using the NR iterative method with an
initial approximation of 4 bits (computed using 5 bits of the divisor). Show the
round-to-nearest mode. Verify the correctness of your result.

X D

001010101011010011 101111111110110011

110011110001011010 111000111101011101

[Example of execution for the multiplicative method] Repeat Exercise 8.40 for
the direct (multiplicative) division method described in Section 7.3.2.

476 c H A. P T E R 8 Floating-Point Representation, Algorithms, and Implementations

8 . 4 2

8 . 4 3

8 . 4 4

8 . 4 5

8 . 4 6

[Combined quotient conversion, correction, normalization and rounding] For
the following floating-point operands in the IEEE Standard single-precision
representation (10-bit significand, instead of 24), perform the division using the
digit recurrence method and show the bit-vectors used in the combined scheme
for quotient conversion, correction, normalization, and rounding for the round-
to-nearest mode. Verify the correctness of your result.

X D

001010101011010011 101111111110110011

[Conversion and rounding] Consider the on-the-fly conversion and rounding of
the quotient in the digit recurrence method. Develop an algorithm for updating
of Q, Q N, and Q P when a < r - 2. Show that Q P is needed for the rounding
but not for the updating of registers when a - r - 2. Consequently, no register
Q P is required. Show that for a < r - 2, Q P is not required at all.

[Overflow after rounding] Show that in floating-point division overflow after
round to nearest cannot occur.

[Normalization control] In the algorithm given for rounding to nearest for
floating-point division for the digit recurrence case, two different signals are used
to determine whether the result is normalized: the signal norm before rounding
and the bit MMq [0] after rounding. Show thatnorm can be used for both situations;
that is, show that the situation "unnormalized" is not changed by the rounding.
Indicate the advantage in delay of this approach.

[Rounding to plus infinity] Describe an algorithm for rounding toward plus
infinity in floating-point division for the digit recurrence case.

8~ Further Readings
There are several general treatments of floating-point arithmetic (Sterbenz 1974;
Kulisch 1977; Kulisch and Miranker 1981; Knuth 1998; Goldberg 1991; Overton
2001). The choice of base and its effect on range and relative accuracy for a given
machine precision is discussed in Brown and Richman (1969). Brent (1973) reports
on the precision attainable with various floating-point number systems. Statistical
properties of floating-point addition obtained from program traces, presented

Further Readings 477

in Sweeney (1965), led to the adoption of base 16 floating-point format in the
IBM S/360 systems. Underflow and the denormalized numbers are discussed in
Coonen (1981). Loss of significance in floating-point subtraction and addition is
discussed in Feldstein and Goodman (1982). Algorithms for arbitrary precision
floating-point arithmetic are presented in Priest (1991). Bohlender et al. (1991)
present semantics for exact floating-point operations.

Floating-Point Representation" Rounding
A classic on rounding errors in algebraic processes is Wilkinson (1963). Kuck et al.
(1977) discuss the basic measures and characteristics of errors. Statistical studies
of the accuracy and static and dynamic numerical characteristics of floating-point
arithmetic are reported in Kuki and Cody (1973) and Cody (1973). Early work on
rounding in floating-point arithmetic is presented in Yohe (1973). An axiomatic
approach to rounding is discussed in Kulisch and Miranker (1981).

Floating-Point Standards
The IEEE Floating-Point Standard and its implementation aspects are discussed
in Coonen (1980). Cody et al. (1984) describe a standard independent of radix and
word length. An analysis of proposals for floating-point standards is described
in Cody (1987). The reasons for rounding to even if tie are discussed in Reiser
and Knuth (1975). The issues and status of the standard are presented in Kahan
(1996).

Implementation of Floating-Point Unit: General
Design and implementation of floating-point arithmetic are the subject of
numerous articles. Early designs are described in Bucholz (1962), Anderson et al.
(1967), and Gosling (1971). More recent design issues are presented in Oberman
(1996), Oberman and Flynn (1996b, 1997), and Even and Paul (2000). There
are many descriptions of specific designs and implementations in the literature
(Ware et al. 1982; Benschneider et al. 1989; Montoye et al. 1990; Darley et al. 1990;
Dobberpuhl et al. 1992; Dao-Trong and Helwig 1992; Ide et al. 1993; Nicks
et al. 1994; Flynn et al. 1995; Bannon and Keller 1995; Hunt 1995; Williams et al.

478 <:i: ii:=ii :~:: p~=iii: ~!i ~'~i~:: ~:~ Floating-Point Representation, Algorithms, and Implementations

1995; Schwarz et al. 1999; Gerwig and Kroener 1999; Sharangpani and Arora
2000; Naini et al. 2001).

Implementation of Floating-Point Adder

Implementations of floating-point adders are presented in Vassiliadis et al. (1989),
Beaumont-Smith et al. (1999), Seidel and Even (2001), and Bruguera and Lang
(2001) among others. The FAR/CLOSE path scheme was proposed in Farmwald
(1981), and its implementations are reported in Greenlay et al. (1995) and Oberman
et al. (1999). A variable-latency adder is discussed in Oberman and Flynn (1998).
Nielsen et al. (2000) propose a packet-forwarding adder to reduce the stage delay.
Schemes for fast detection of leading one/zero are developed in Hokenek and
Montoye (1990), Oklobdzija (1994), Suzuki et al. (1995), and Bruguera and Lang
(1999).

Implementation of Floating-Point Multiplier

Designs of floating-point multipliers are described in many articles (Uya et al.
1984; Yu and Zyner 1995). Specific details of rounding schemes for multiplication
have been presented in Santoro et al. (1989), Kabuo et al. (1994), Yu and Zyner
(1995), Park et al. (1999), and Even and Seidel (2000).

Implementation of Floating-Point Multiply-Add Fused
Multiply-add fused designs are discussed in Hokenek et al. (1990), Jessani and
Putrino (1998), and Chen et al. (2001).

Implementation of Floating-Point Division and Square Root

Soderquist and Leeser (1996) present area and performance trade-offs in floating-
point division and square root implementations. Floating-point division/square
root schemes using multiplicative approach are presented in Anderson et al.
(1967), Oberman (1999), Clouser et al. (1999), Horel and Lauterbach (1999), and
Agarwal et al. (1999). The digit recurrence schemes for division and square
root described in Chapter 5 are applicable to floating-point operations and have

Bibliography 479

been used frequently in practice (Prabhu and Zyner 1995; Yeager 1996; Inui
et al. 1999). A self-timed floating-point divider is reported in Williams et al.
(1995) and Suzuki et al. (1997). Rounding for digit recurrence and convergence
division/square root are discussed in Ercegovac and Lang (1992) and in Markstein
(1990), Kabuo et al. (1994), Schwarz (1995), Oberman and Flynn (1996a), and
Markstein (2000), respectively. Design and implementation aspects of rounding
units are presented in Burgess and Knowles (1999). Bounds on the number of bits
of result required to perform correct rounding for division, square root, reciprocal,
and square root reciprocal are presented in Iordache and Matula (1999) and Lang
and Mullar (2001).

Verification and Testing

Verification of floating-point implementations supporting the IEEE Standard
754 is presented in Chen et al. (1996), Rusinoff (1998), Moore et al. (1998), and
Cornea-Hasegan et al. (1999). An approach to the verifiable design of floating-
point units is proposed in Even and Paul (2000). Benchmarks for floating-point
arithmetic are presented in Karpinsky (1985). A number-theoretic approach to
testing of rounding modes is developed in Parks (2000). A tool for testing of
floating-point implementations is discussed in Verdonk et al. (2001).

8 o t 0 Bibliography
Agarwal, R. C., E G. Gustavson, and M. S. Schmookler (1999). Series approxi-

mation methods for divide and square root in the Power3 Microprocessor.
In Proceedings of the 14th IEEE Symposium on Computer Arithmetic, pages
116-23.

Anderson, S. E, J. G. Earle, R. E. Goldschmidt, and D. M. Powers (1967). The
IBM 360/370 model 91: floating-point execution unit. IBMJournal of Research
and Development, pages 34-53.

ANSI and IEEE (1985). IEEE standard for binary floating-point arithmetic.
ANSI/IEEE Standard, Std 754-1985, New York.

Bannon, P., and J. Keller (1995). Internal architecture of Alpha 21164 micro-
processor. In Digest of Papers COMPCON '95, pages 79-87.

480 c ~i~ ;r !I:~ :r ;~ ~!i:: ~i~ ~ 8 Floating-Point Representation, Algorithms, and Implementations

Beaumont-Smith, A., N. Burgess, D. Lefrere, and C. C. Lim (1999). Reduced
latency IEEE floating-point standard adder architecture. In Proceed-
ings of the 14th IEEE Symposium on Computer Arithmetic, pages 35-
42.

Benschneider, B. J., W.]. Bowhill, E. M. Copper, M. N. Gavrielov, R E.
Gronowski, V. K. Maheshwari, V. Peng, J. D. Pickholtz, and S. Samudrala
(1989). A pipelined 50MHz C MOS 64-bit floating-point arithmetic processor.
IEEE Journal of Solid-State Circuits, SC-24(5): 1317-23.

Bohlender, G., E Kornerup, D. W. Matula, and W. Walter (1991). Semantics for
exact floating-point operations. In Proceedings of the l Oth IEEE Symposium
on Computer Arithmetic, pages 22-26.

Brent, R. E (1973). On the precision attainable with various floating point number
systems. IEEE Transactions on Computers, C-22(6):601-7.

Brown, W. S., and E L. Richman (1969). The choice of base. Communications of
the ACM, 12(10):560-61.

Bruguera, J. D., and T. Lang (1999). Leading-one prediction with concur-
rent position correction. IEEE Transactions on Computers, 48(10):1083-
97.

Bruguera, J. D., and T. Lang (2001). Using the reverse-carry approach for double
datapath floating-point addition. In Proceedings of the 15th IEEE Symposium
on Computer Arithmetic, pages 203-10.

Bucholz, W. (1962). Planning a New Computer System: Project STRETCH (Chapter
14, page 210). Wiley & Sons, Inc., New York.

Burgess, N., and S. Knowles (1999). Efficient implementation of rounding units.
In Conference Record of the 33rd Asilornar Conference on Signals, Systems, and
Computers, volume 2, pages 1489-93.

Chen, C., L.-A. Chen, and J.-R. Cheng (2001). Architectural design of a fast
floating-point multiplication-add fused unit using signed-digit addition.
In Proceedings Euromicro Symposium on Digital Systems Design, pages 346-
53.

Chen, Y.-A., E. Clarke, E-H. Ho, Y. Hoskote, T. Kam, M. Khaira, J. O'Leary,
and X. Zhao (1996). Verification of all circuits in a floating-point unit
using word-level model checking. In Proceedings of International Confer-
ence on Formal Methods in Computer-Aided Design (FMCAD '96), pages 19-
33.

Bibliography 481

Clouser,]., M. Matson, R. Badeau, R. Dupcak, S. Samudrala, R. Allmon, and
N. Fairbanks (1999). A 600-MHz superscalar floating-point processor. IEEE
Journal of Solid-State Circuits, 34(7):1026-29.

Cody, W.]. (1973). Static and dynamic numerical characteristics of floating-point
arithmetic. IEEE Transactions on Computers, C-22(6):598-601.

Cody, W.]. (1987). Analysis of proposals for the floating-point standard. Computer,
20(3):63-68.

Cody, W. 1.,]. T. Coonen, D. M. Gay, K. Hanson, D. Hough, W. Kahan,
R. Karpinski, 1. Palmer, E N. Ris, and D. Stevenson (1984). A proposed
radix-and-word-length-independent standard for floating-point arithmetic.
IEEE MICRO, 4(4):86-100.

Coonen, 1. T. (1980). An implementation guide to a proposed standard for floating-
point arithmetic. Computer, 13(1):68-79.

Coonen,]. T. (1981). Underflow and the denormalized numbers. Computer,
14(3):75-87.

Cornea-Hasegan, M. A., R. A. Golliver, and P. Markstein (1999). Correctness
proofs outline for Newton-Raphson based floating-point divide and square
root algorithms. In Proceedings of the 14th IEEE Symposium on Computer
Arithmetic, pages 96-105.

Dao-Trong, S., and K. Helwig (1992). A single-chip IBM System/390 floating-
point processor in CMOS. IBM Journal of Research and Development,
36(4):733-48.

Darley, M., B. Kronlage, D. Bural, B. Churchill, D. Pulling, P. Wang, R. Iwamoto,
and L. Yang (1990). The TMS390C602A floating-point coprocessor for Sparc
systems. IEEE Micro, 10(3):36-47.

Dobberpuhl, D. W., R. T. Witek, R. Allmon, R. Anglin, D. Bertucci, S. Britton,
L. Chao, R. A. Conrad, D. E. Dever, B. Gieseke, S. M. N. Hassoun, G. W.
Hoeppner, K. Kuchler, M. Ladd, B. M. Leary, L. Madden, E. J. McLel-
lan, D. R. Meyer, and J. Montanaro (1992). A 200-MHz 64-b dual-issue
CMOS microprocessor. IEEE]ournal of Solid-State Circuits, 27(11):1555-
64.

Ercegovac, M. D., and T. Lang (1992). On-the-fly rounding. IEEE Transactions
on Computers, 41 (12): 1497-1503.

Even, G., and W. J. Paul (2000). On the design oflEEE compliant floating-point
units. IEEE Transactions on Computers, 49(5):398-413.

482 c H ~!!~ ~:~!i ~: ~!~i ~i~: s Floating-Point Representation, Algorithms, and Implementations

Even, G., and E-M. Seidel (2000). A comparison of three rounding algorithms
for IEEE floating-point multiplication. IEEE Transactions on Computers,
49(7):638-50.

Farmwald, M. P. (1981). On the Design of High-Performance Digital Arithmetic
Units. PhD thesis, Stanford University.

Feldstein, A., and R. Goodman (1982). Loss of significance in floating-point
subtraction and addition. IEEE Transactions on Computers, C-31:328-
35.

Flynn, M. J., K. Nowka, G. Bewick, E. M. Schwarz, and N. Quach (1995). The
SNAP project: towards sub-nanosecond arithmetic. In Proceedings ofthe 12th
Symposium on Computer Arithmetic, pages 75-82.

Gerwig, G., and M. Kroener (1999). Floating-point unit in standard cell design
with 116 bit wide dataflow. In Proceedings of the 14th IEEE Symposium on
Computer Arithmetic, 266-73.

Goldberg, D. (1991). What every computer scientist should know about floating-
point arithmetic. ACM Computing Surveys, 23(1):5-48.

Gosling, J. B. (1971). Design of large high-speed floating-point arithmetic units.
In IEE Proceedings, volume 118, pages 493-98.

Greenley, D., et al. (1995). UltraSPARC: the next generation superscalar 64-bit
SPARC. In Digest of Papers. COMPCON '95. Technologies for the Information
Superhighway, pages 442-51.

Hokenek, E., and R. K. Montoye (1990). Leading zero anticipator (LZA) in the
IBM Risc System/6000 floating-point execution unit. IBM Journal of Research
and Development, 34(1):71-77.

Hokenek, E., R. K. Montoye, and P. W. Cook (1990). Second-generation RISC
floating point with multiply-add fused. IEEE Journal of Solid-State Circuits,
25(5):1207-13.

Horel, T., and G. Lauterbach (1999). UltraSPARC-III: designing third-
generation 64-bit performance. IEEE Micro, 19(3):73-85.

Hunt, D. (1995). Advanced performance features of the 64-bit PA-8000. InDigest
of Papers COMPCON '95, pages 23-28.

Ide, N., H. Fukuhisa, Y. Kondo, T. Yoshida, M. Nagamatsu, J. Mori, I. Yamazaki,
and K. Ueno (1993). A 320-MFLOPS CMOS floating-point processing unit
for superscalar processors. IEEEJournal of Solid-State Circuits, SC-28(3):352-
61.

Bibliography 483

Inui, S., T. Uesugi, H. Saito, Y. Hagihara, A. Yoshikawa, M. Nishida, and M.
Yamashina (1999). A 250 MHz CMOS floating-point divider with operand
pre-scaling. In Symposium on VLSI Circuits, pages 17-18.

Iordache, C., and D. W. Matula (1999). On infinitely precise rounding for division,
square root, reciprocal and square root reciprocal. In Proceedings of the 14th
IEEE Symposium on Computer Arithmetic, pages 233-40.

Jessani, R. M., and M. Putrino (1998). Comparison of single- and dual-pass
multiply-add fused floating-point units. IEEE Transactions on Computers,
47(9):927-37.

Kabuo, H., T. Taniguchi, A. Miyoshi, H. Yamashita, M. Urano, H. Edamatsu, and
S. Kuninobu (1994). Accurate rounding scheme for the Newton-Raphson
method using redundant binary representation. IEEE Transactions on
Computers, 43(1):43-51.

Kahan, W. (1996). Lecture Notes on the Status of IEEE 754. Technical Report
http://http.cs.berkeley.edu/'wkahan/ieee754status/ieee754.ps, University of
California, Berkeley.

Karpinsky, R. (1985). PARANOIA: A floating-point benchmark. BYTE,
10(2):223-35.

Knuth, D. E. (1998). The Art of Computer Programming: SeminumericalAlg~
Addison Wesley, Reading, Massachusetts, 3rd edition.

Kuck, D. J., S. Parker, and A. Sameh (1977). Analysis of rounding methods
in floating-point arithmetic. IEEE Transactions on Computers, C-26:643-
50.

Kuki, H., and W. J. Cody (1973). A statistical study of the accuracy of
floating point number systems. Communications of the ACM, 16(14):223-
30.

Kulisch, U. W. (1977). Mathematical foundation of computer arithmetic. IEEE
Transactions on Computers, C-26(7):610-21.

Kulisch, U. W., and W. L. Miranker (1981). Computer Arithmetic in Theory and
Practice. Academic Press, New York.

Lang, T., and J.-M. Muller (2001). Bounds on runs of zeros and ones for algebraic
functions. In Proceedings of the 15th IEEE Symposium on Computer Arithmetic,
pages 13-20.

Markstein, P. (2000)./A-64andElementary Functions: Speed and Precision. Hewlett-
Packard Professional Books. Prentice Hall.

484 c MAPTE~ 8 Floating-Point Representation, Algorithms, and Implementations

Markstein, E W. (1990). Computation of elementary functions on IBM RISC
System/6000 processor. IBM]ournal of Research and Development, pages 111-
19.

Montoye, R. K., E. Hokonek, and S. L. Runyan (1990). Design of the floating-point
execution unit of the IBM RISC System/6000. IBM]ournal of Research and
Development, 34(1):59-70.

Moore, J. S., T. W. Lynch, and M. Kaufmann (1998). A mechanically checked
proof of the AMD5k86 floating-point division program. IEEE Transactions
on Computers, 47(9):913-26.

Naini, A., A. Dhablania, W. James, and D. Das Sarma (2001). 1 GHz HAL
SPARC64 r dual floating point unit with RAS features. In Proceedings of the
15th IEEE Symposium on Computer Arithmetic, pages 173-83.

Nicks, T. N., R. E. Fry, and E E. Harvey (1994). POWER2 floating-point unit:
Architecture and implementation. IBM]ournal of Research and Development,
38(5):525-36.

Nielsen, A. M., D. W. Matula, C. N. Lyu, and G. Even (2000). An IEEE compliant
floating-point adder that conforms with the pipelined packet-forwarding
paradigm. IEEE Transactions on Computers, 49(1):33-47.

Oberman, S. E (1996). Design Issues in High Performance Floating Point Arith-
metic Units. PhD thesis, Department of Electrical Engineering, Stanford
University.

Oberman, S. E (1999). Floating-point division and square root algorithms and
implementation in the AMD-K7 microprocessor. In Proceedings of the 14th
IEEE Symposium on Computer Arithmetic, pages 106-15.

Oberman, S. E, G. Favor, and E Weber (1999). AMD 3DNow technology: archi-
tecture and implementations. IEEE Micro, 19(2):37-48.

Oberman, S. E, and M. J. Flynn (1996a). Fast IEEE rounding for division by
functional iteration. Technical Report CSL-TR-96-700, Computer Systems
Laboratory, Department of Electrical Engineering and Computer Science,
Stanford University.

Oberman, S. E, and M. J. Flynn (1996b). Implementing division and other
floating-point operations: A system perspective. In Scientific Computing and
Validated Numerics (Proceedings of SCAN'95), pages 18-24.

Oberman, S. E, and M. J. Flynn (1997). Design issues in division and
other floating-point operations. IEEE Transactions on Computers, 46(2):154-
61.

Bibliography 485

Oberman, S. E, and M. J. Flynn (1998). Reducing the mean latency of floating-
point addition. Theoretical Computer Science, 196(1-2):201-14.

Oklobdzija, V. G. (1994). An algorithmic and novel design of a leading zero
detector circuit: comparison with logic synthesis. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 2(1):124-28.

Overton, M. A. (2001). Numerical Computing with IEEE Floating-Point Arithmetic.
SIAM.

Park, W.-C., T.-D. Han, S.-D. Kim, and S.-B. Yang (1999). A floating point
multiplier performing IEEE rounding and addition in parallel. Journal of
Systems Architecture, 45(14):1195-1207.

Parks, M. (2000). Number-theoretic test generation for directed roundings. IEEE
Transactions on Computers, 49(7):651-58.

Prabhu, J. A., and G. B. Zyner (1995). 167 MHz radix-8 divide and square root
using overlapped radix-2 stages. In Proceedings of the 12th IEEE Symposium
on Computer Arithmetic, pages 155-62.

Priest, D. M. (1991). Algorithms for arbitrary precision floating point arithmetic.
In Proceedings of the 10th IEEE Symposium on Computer Arithmetic (Arith-10) ,
pages 132-44.

Reiser, J. E, and D. E. Knuth (1975). Evading the drift in floating-point addition.
Information Processing Letters, 3(3):84-87.

Rusinoff, D. (1998). A mechanically checked proof of IEEE compliance
of a register-transfer-level specification of the AMD-k7 floating-point
multiplication, division, and square root instructions. LMS Journal of Com-
putation and Mathematics, 1:148-200.

Santoro, M. R., G. Bewick, and M. A. Horowitz (1989). Rounding algorithms for
IEEE multipliers. In Proceedings of the 9th Symposium on ComputerArithmetic,
pages 176-83.

Schwarz, E. M. (1995). Rounding for quadratically converging algorithms for
division and square root. In Conference Record of the 29th Asilomar Conference
on Signals, Systems and Computers, volume 1, pages 600-3.

Schwarz, E. M., R. M. Smith, and C. A. Krygowski (1999). The S/390 G5 floating-
point unit supporting hex and binary architectures. In Proceedings ofthe 14th
IEEE Symposium on Computer Arithmetic, pages 258-65.

Seidel, P.-M., and G. Even (2001). On the design of fast IEEE floating-point
adders. In Proceedings of the 15th IEEE Symposium on Computer Arithmetic,
pages 184-94.

486 c H ~ ~~ ~ ~i ~ ~ii~ Floating-Point Representation, Algorithms, and Implementations

Sharangpani, H., and K. Arora (2000). Itanium processor microarchitecture.
IEEE Micro, 20(5):24-43.

Soderquist, P., and M. Leeser (1996). Area and performance tradeoffs in floating-
point division and square root implementations. ACM Computing Surveys,
28(3):518-64.

Sterbenz, P. H. (1974). Floating Point Computation. Prentice-Hall, Englewood
Cliffs, New Jersey.

Suzuki, H., H. Makino, K. Mashiko, and H. Hamano (1997). A floating-point
divider using redundant binary circuits and an asynchronous clock scheme.
In Proceedings of the International Conference on Computer Design: VLSI in
Computers and Processors, pages 685-89.

Suzuki, H., Y. Nakase, H. Makino, H. Morinaka, and K. Mashiko (1995).
Leading-zero anticipatory logic for high-speed floating point addition.
In Proceedings of the IEEE 1995 Custom Integrated Circuits, pages 589-
92.

Sweeney, D. W. (1965). An analysis of floating-point addition. IBM Systems Jour-
nal, 4:31-42.

Uya, M., K. Kaneko, and J. Yasui (1984). A CMOS floating-point multiplier.
IEEE Journal of Solid-State Circuits, SC-19(5):697-702.

Vassiliadis, S., D. S. Lemon, and M. Putrino (1989). S/370 sign-magnitude
floating-point adder. IEEE Journal of Solid-State Circuits, 24:1062-
70.

Verdonk, B., A. Cuyt, and D. Verschaeren (2001). A precision- and range-
independent tool for testing floating-point arithmetic, i. Basic operations,
square root, and remainder. ACM Transactions on Mathematical Software,
27(1):92-118.

Ware, F. A., W. McAllister, J. R. Carlson, D. K. Sun, and R. J. Vlach (1982). 64
bit monolithic floating-point processors. IEEE Journal of Solid-State Circuits,
SC-17(5):898-907.

Wilkinson, J. H. (1963). Rounding Errors in Algebraic Processes. Prentice-Hall,
Englewood Cliffs, New Jersey.

Williams, T., N. Patkar, and G. Shen (1995). SPARC64: a 64-b 64-active-
instruction out-of-order-execution MCM processor. IEEE Journal of Solid-
State Circuits, 30(11):1215-26.

Bibliography 487

Yeager, K. C. (1996). The Mips R10000 superscalar microprocessor. IEEE Micro,
16(2):28-41.

Yohe, J. M. (1973). Roundings in floating-point arithmetic. IEEE Transactions on
Computers, C-22(6):577-86.

Yu, R. Y., and G. B. Zyner (1995). 167 MHz radix-4 floating point multiplier.
In Proceedings of the 12th IEEE Symposium on Computer Arithmetic, pages
149-54.

C {~{ji :& iP ~:~iii::: #!{!!! gi:: Digit-Serial Arithmetic

Introduction
In the previous chapters we described algorithms and implementations for arith-
metic modules that have the inputs applied all at once (in parallel) and deliver the
results in the same way. However, since the numerical values are represented by
digit vectors, it is possible to apply the inputs and deliver the output one digit at a
time (serially), so that all digits of the same numerical operands/results share the
same digit lines. The system is usually clocked so that one digit is applied/delivered
per clock cycle. This serial alternative is the topic of this chapter. We consider the
case in which all operands and results are serial, although it is possible to have
a mixed system in which some inputs and outputs are serial and others parallel.
The methods to design these mixed systems can be devised from those for parallel
and serial systems.

The main reason for having serial input/output is to reduce the number of
signal lines connecting modules and to simplify their interface, since these con-
nections and interfaces influence both area and energy dissipation. The drawback
is the time (number of cycles) required to receive the inputs and to deliver the
results. This delay can be compensated for by overlapping the execution of suc-
cessive operations (even if dependent), since the successor operation can begin
when a few digits of the operands have been received.

Although the algorithm to perform the operation, as well as the imple-
mentation of the module, is affected by the serial characteristic of the signals, it
is important to distinguish between the characteristics of the input/output sig-
nals and that of the algorithm and implementation. For instance, one possible
algorithm for serial input/outputs is to collect all the input digits before beginning
the operation and to produce the result in parallel, before delivering it in a serial
manner. However, this would add the delay of collecting and delivering to the
time to perform the operation; consequently, a reduction of delay is achieved if an

489

490 ,c ~i~ ~r ~, ~ii~ i!i!!i!il i~i!:~ii~ i~i~ Digit-Serial Arithmetic

Cycle: 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Inpu t ', ', ', ', ', ', ', ', ', ', ~ ~ ~
C o m p u t e : : ', ', ', ', : ', ', ', : ~ ~
Outpu t : : ', ', ', : ', ', '. '. ', , t ..

5 = 0

T12 = 1+ 12
(a)

Cycle:
Inpu t
Compute
Outpu t

- 3 - 2 - 1 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

. . . . I I I I I I I I I

1 l l : l l l l : I I I I >

', : ', ', ', ', I I l I i l i > ,5=3

T12 = 3 + 1 + 12

(b)

F I G U R E 9 . 1 Timing characteristics ofserial operation withn = 12. (a) With 8 = 0. (b) With

8 = 3 .

algorithm is devised that takes into account the serial nature of the signals. Simi-
larly, in parallel input/output systems some algorithms use operands and produce
results in a digit-serial manner; examples of this are the sequential multiplication
a l g o r i t h m a n d the d ig i t r e c u r r e n c e d iv i s ion a l g o r i t h m . 1

Modes of Opera t ion and A lgo r i t hm and Imp lemen ta t i on Models

W e c o n s i d e r the case in w h i c h the n u m e r i c a l va lues are r e p r e s e n t e d in a r ad ix -

r n u m b e r sys tem. In s o m e cases, w e use c o n v e n t i o n a l r e p r e s e n t a t i o n s , w h i l e in

o t h e r s r e d u n d a n t r e p r e s e n t a t i o n s a re p r e f e r ab l e .

A ser ial s igna l is a n u m e r i c a l i n p u t or o u t p u t w i t h one d ig i t pe r c lock cycle.

F i g u r e 9.1 s h o w s typ ica l t i m i n g d i a g r a m s for a ser ial o p e r a t i o n , in w h i c h in

each cycle one d ig i t o f each o p e r a n d is a p p l i e d a n d one d ig i t o f the o u t p u t is

d e l i v e r e d . N o t e t h a t by c o n v e n t i o n w e d e n o t e as cycle 1 the cycle in w h i c h the

1. Although in this case the digits produced are in a signed-digit representation, so that a
conventional representation can only be delivered when all digits have been obtained.

Introduction 491

first digit of the output is delivered. The total execution time is the sum of two
components:

�9 The initial delay 8, which corresponds to the additional number of operand
digits required to determine the first result digit. That is, the first output
digit is delivered 8 + 1 cycles after the application of the first input digits.
So, as shown in Figure 9.1(a), 8 = 0 corresponds to the case in which the
first output digit is delivered one cycle after the application of the first input
digits. Figure 9.1(b) shows a case in which the first output is delivered in
the cycle after four input digits have been applied (8 = 3).

�9 The time to deliver the n output digits. Since one digit is delivered per cycle,
for an output ofn digits, this time is equal to n cycles.

Consequently, the execution time is

T~ -- 3 -+- 1 + n 9.1

Serial Modes

Two serial modes are typical:

1. Least-significant dig#first (LSDF) mode. The digits of the operands (result)
are applied serially starting from the least-significant digit. This mode is
also known as right-to-left mode and, since it was the first serial mode,
typically this mode is implied when the term "serial arithmetic" is used.

Because of the order of the digits, the indexing is simplified if right-
to-left indexing is used, as in the representation of integers, namely,

n--1

X - - x i r 9.2

i=0

2. Most-significant dig#first (MSDF) mode. The digits are applied starting
from the most-significant digit (left-to-right mode). Arithmetic performed
in this mode is known as online arithmetic, and the corresponding initial
delay is called online delay.

The indexing is simplified here by using left-to-right indexing, as in
the representation of fractions, that is,

x - - x i r 9.3

i=1

492 c N APT E R 9 Digit-Serial Arithmetic

Algorithm and Implementation Model

We now describe a general model for a serial algorithm and its implementation.
Consider an operation with two n radix-r digit operands, x and y, and one result
z. The input-output model is described as follows.

In cycle j the result digit Zj+I is computed. Consequently the cycles are
labeled from - 8 , . . . , 0, 1, . . . , n so that in cycle j the operand digits Xj+I+ 8

and yj+l+8 are received, output digit Zj+ 1 is computed, and output digit zj is
delivered (Figure 9.2(a)). To conform with both serial modes, in LSDF (MSDF)

mode digits are counted from the least-significant (most-significant) side.
The algorithm consists of recurrences on numerical values. In each of the

n + 8 iterations, one digit of the operands is introduced (for the last 8 iterations the
input digits are set to zero), an internal state w (also called a residual) is updated,
and one digit of the result is produced (zero for the first 8 cycles). 2 An additional
cycle is needed to deliver the last result digit.

Calling x [j], y [j], and z[j] the numerical values of the corresponding signals
when the representation consists of the first j + 8 digits for the operands and j
digits for the result, iteration j is described by

x[j + 1] = (x[j] , X ' j+I+8)

y[j + 1] = (y[j] , Yj+l+a)

• j+ l - - F(w[j], x[j], Xj+l+8, y[j], Yj+l+~, z[j]) 9.4

z[j + 11 = (z[j],zj+l)

w[j + 1] = G(w[j], x[jl, Xj+I+8, y[j], yj+l+a, z[j], zj+l)

Figure 9.2(b) depicts the serial algorithm and implementation model.
The initial delay 8 depends on the serial mode and on the specific operation

(Table 9.1). As can be seen from the table, for the MSDF mode all basic oper-
ations can be performed with a small and fixed (independent of the precision)
initial delay. On the other hand, for the LSDF mode, only addition and multi-
plication have a small initial delay, whereas division, square root, and max/min
have an initial delay O (n), which means that this mode is not suitable for these

2. When more than n digits of the result are required, such as in some multiplications in
which all 2n digits are delivered, the number of iterations is increased correspondingly.

Introduction 493

J
Cycle I I

Xj+l+8

Yj+I+5
Input I I

x[j + 1] ---q

Zj+l
Compute I I

Output I I

(a)

j + l
I

Xj+2+8

Yj+2+5
I

/

x[j + 2] -~

%2
I

%1
I

Xj+l+5 Yj+l+8

I

x;Y [
y[j]

Zj+l qr ql Y Y l V .

~[F; G I
zj w[j + ll ~

z[j] [
w[j] (residual)

Digit-serial
zj ~ Digit-parallel

(b)

F I G U R E 9.2 Serial a lgori thm model: (a) Timing. (b) Implementat ion.

operations. Moreover, the initial delay is also O (n) for multiplication if only the
most-significant half of the product is required (see Figure 9.3(a)).

As seen in Figure 9.3(b), online arithmetic is well-suited for variable precision
computations: once a desired precision is obtained, the operation can terminate.

494 c H.r ~ ~ F~ ~ ~ Digit-Serial Ar i thmet ic

O p e r a t i o n L S D F M S D F

A d d i t i o n

M u l t i p l i c a t i o n

2 (r = 2)

l (r > 4)

3 (r = 2)

2 (r = 4)

O n l y M S h a l f o f p r o d u c t n

D i v i s i o n 2 n * 4

S q u a r e roo t 2 n * 4

M a x / m i n n 0

* The result digits delivered LS first.

T A U L E 9.1 Initial delay (8).

L S D F mode

n-d ig i t addition:

Cycle: 0 1 2 . . .

L S D M S D

Inputs: x x x x x x x x x

Output : x x x x x x x x x

n by n --+ 2n multiplication:

L S D M S D

Inputs: x x x x x x x x x

Output : x x x x x x x x x x x x x x x x x x

MS half
(a)

M S D F mode

Cycle: 2 1 0 1 2 . . .

n -d ig i t operation:

M S D L S D

Inputs: x x x x x x x x x

Output : x x x x x x x x x

online delay = 2

(b)

F I G U R E 9.3 (a) L S D F and (b) M S D F modes.

I n t r o d u c t i o n 495

81

(online
delay)

Xh Yh

I

l a i i = h - 8 1 - 1 bi I
I
I

Operation:

~ / / /

OLADD J / / I-

OL O TI
g~p=k_83_l I ~

")i OLDIV] 84

q = p - ~ 4 - 1 I Sq

Squaring

\

\ \ 8 2 1 Addition

(p-bit shift A = p
register)

83

[-- Division 84 OLDIV r

Square root

(a)

x , y : I I I I I ', ', I I.~
a , b 81 ' ' ' I I I i I i I : I : :
f 52 '. '. '. '. '. ', ', : I I : : I I~
g 53 : : : ' ' : : : : : : ', ', ',~
c , s ~ I I : 1 ', ', ', ', ', I I 1 1 I

(b)

FLOUR[9.4 Online computation in 2D vector normalization: (a) Network. (b) Timing

diagram.

C o m p o s i t e A l g o r i t h m

Since the execut ion t ime of a serial ope ra t ion can be h igh, it is conven ien t to develop

compos i t e a l go r i t hms in wh ich the execut ion o f successive (dependen t) opera t ions

over lap; tha t is, a successor ope ra t ion can begin as soon as the resul t digits o f its

p redecessors are available. Th i s is i l lus t ra ted in the fo l lowing e x a m p l e w h e r e

a sequence of opera t ions is i m p l e m e n t e d by a n e t w o r k o f digi t -ser ia l (online)

a r i t hme t i c modu les . T h e n e t w o r k in F i g u r e 9.4(a) i m p l e m e n t s the express ions

4 9 6 c. >~:~ J:~i, F:~,:~'~i : ~!i~ R~: :~: D i g i t - S e r i a l A r i t h m e t i c

9 ~

for the 2D vector normalization)
x y

c = s - 9 . 5 v/.2 +y2 ../,2 +y2
The corresponding timing diagram is given in Figure 9.4(b).

The online delay of the network is the sum of online delays of the operations
on the longest path. For r -- 2, we obtain from Table 9.1

A n o r m - - 81 + 82 + 83 + 84 = 3 + 2 + 4 + 4 = 13 9.6

The total execution time for the composite operation is D,orm - - A n o r m -~- 4 + n.

The more levels there are in a sequence of operations and the longer the
precision, the more advantageous is the online approach.

To reduce further the execution time, the three modules in the dashed box in
Figure 9.4(a) can be merged into a single online module, called a composite module,

with a shorter online delay than the sum of the online delays of the dependent

components.
The latency in the case of LSDF arithmetic is obtained in a similar manner

(Exercise 9.1).

LSDF Arithmetic
We consider now the algorithms and implementation for addition/subtraction
and for multiplication for the LSDF mode. As discussed before, these are the
basic operations that result in a small initial delay. This is true for multiplication
if all result digits are required.

L S D F A d d i t i o n a n d S u b t r a c t i o n

In addition/subtraction the internal state corresponds to the carry. Consequently,
the initial delay is 8 = 0 and the radix-2 k implementation consists of a k-bit
adder with a carry flip-flop (or a latch), as illustrated in Figure 9.5(a). Subtraction
is performed by adding the two's complement of operand y. This is done by
(bit) complementing input yi and initializing the carry flip-flop to 1. Overflow is
detected as in a bit-parallel adder (see Chapter 1).

3. Ercegovac and Lang (1988b, 1999).

LSDF Arithmetic 497

Operand Y:
xi

SUB

Operand X:

k-bit / m Zi-1
"k [~4 CPA Result digit

register

I ' c[-.
Carry/borrow FF

(initialize to 0 if ADD
1 if SUB)

(a)

Operand Y: Operand X:

yi,o) xi,o :[
yi, l_ >Xi, l :,

", ~ ~ xi'3 21..]

SUB I
Carry/borrow FF] ~]

(initialize to 0 if ADD
1 if SUB)

Result Z:
Zi'o ~ ~ Zi-l'O

z/,l _1~ I z/;1,1

Zi,2 Zi-1,2

Zi'3 ~l~l Zi-l'3

(b)

F I G U R E 9.5 (a) Radix-2 k digit-serial adder/subtractor. (b) Radix-16 digit-serial adder/

subtractor.

The cycle delay is

tLSDFadd_ k -- tCPA(lO + tFF

and the total time for n-bit addition is

TLSDFadd-n -- (k + l)tLSDFadd-k

9.7

9.8

The cost is one k-bit CPA, k xo R gates, one flip-flop, and one k-bit output register.

A radix-16 adder/subtractor is shown in Figure 9.5(b).

498 r ~ ~,~ ~:~~ E ~ .~ Digit-Serial Arithmetic

9~ ~2 LSDF Multiplication

There are many schemes for performing LSDF multiplication, differing in the
treatment of inputs and outputs and in the design of basic cells. We concentrate
on the two most commonly used digit-serial multipliers for radix-2 and two's
complement representation:

1. Serial-serial (LSDF-SS) multiplier, with both operands used in digit-serial
f o r m .

2. Serial-parallel (LSDF-SP) multiplier, in which one operand is first con-
verted to parallel form. It is similar to the sequential multiplier discussed
in Chapter 4.

In both types of multipliers the output is produced digit-serially. Since there
are n input digits and 2n product digits with the most-significant half obtained
in cycles n + 1 to 2n + 1, the operation cannot be completed during the input of
the operands.

Serial-Serial Multiplier (Radix 2)

We define an internal state (residual)

w[j] = 2-ff+l)(x[j] x y [j] - p[j]) 9.9

where

J
x[j] = ~ x i 2 i

i=0

and similarly for y[j] and p[j]. Since now both operands are used in serial form,
the recurrence is

w[j + 1]-- 2-ff+2)(x[j + 1] x y[j + 1] - p[j + 1])

-- 2-(J+2)((x[j]+xj+12J+l)(y[j]+ yj+12J+l)_(p[j]+ Pj+12J+l))

= 2-1(w[j] + y[j + 1]Xj+l + x[j]yj+l - - P j + I) 9.10

Calling

v[j] -- w[j] + y[j + 1]Xj+l + x [j] y j + l 9.11

LSDF Arithmetic 499

Xj+2 ~ [

Xj+l
Yj+I ~[

(Shift-register for load control in left-append registers not shown)

LA-Reg X
n~x[j] n~x[j]

SELECTOR [

w[j+l]:

2w[j]:

,11
[4:21

ADDER

Shifted W

xj+l

l n+l
n Shifted WS

]Shift-RegWCI IShift-RegWS

nt nI

LA-Reg Y I

Yj+I n~y[j+l] n+y[j+l]
.J
"-1 SELECTOR

n4"
sign(x)

~sii(Y) cyclen

LS bits
=1 FA] ~Pj+I

Carry-out

r

~1 A[~ MS bits

(Register control signals not shown) SA (Serial adder)

F I G U R E 9 . 0 Serial-serial two's complement radix-2 multiplier.

to keep w[j + 1] an integer and P j+l ~ {0, 1} we make

w[j + 1]-- /2-1v[jlJ

pj+l - v[j]mod 2
9.12

With a carry-save form of the residual w[j] (two bit-vectors) and adding to
it two multiples (y[j + 1]Xj+l and x[j]yj+l), the addition to produce v[j] is
implemented by a [4:2] adder of n positions, as shown in Figure 9.6. The bit-
vectors x[j] and y[j + 1] are generated using two left-appending registers with
load controlled by a "moving" 1 shift-register. The input latches for xj+l and yj+l
are used to avoid left-appending in both X(Y) registers and the corresponding
selectors at the expense of one extra cycle.

The residual is produced by a (wired) shift right of one position. The least-
significant digit is peeled off as the result digit.

500 C ~ & PT E ~, 9 Digit-Serial Arithmetic

This recurrence is performed n times. After that, since the input digits are

0, we obtain w[j + 1] - 2-1w[j] - zj+l, so that the rest of the result digits are

obtained by shifting right the residual.

For two's complement representation, the operand bits Xn_ 1 and Yn-1 have
negative weights and the last two multiples are possibly negative. Instead of

subtraction, addition of their two's complements is used. This is performed as

usual by taking ones' complement and adding a 1 as carry-in. The two carry-ins

are incorporated in a FA stage as shown in Figure 9.6. During the cycles 0 to
n - 1 the FA stage simply transmits the LS product bit. During the n th cycle the

FA stage produces product bit Pn-1 and a carry-out as the result of adding Xn-1,
Yn-1 (carry-ins for two's complement) and the LS sum bit of the [4:2] adder. The

carry-out initializes the carry-in FF in the serial adder SA, which produces the

remaining product bits Pn, . . . , P2n-1.
The total execution time of the operation is

TSSMVLT = 2nt~yc 9.13

where the delay of the critical path in a cycle is

tcyc = tseL + t[4:2] + tFF 9.14

The cost is one n-bit [4:2] adder, 5 n-bit registers, and gates to form multiples.

Compared to a serial-parallel sequential multiplier, a serial-serial multiplier has a

longer t~yc and requires more circuits. Its main justification is the ability to begin
producing product bits while inputting the operands.

Serial-Parallel Multiplier (Radix 2)

The core of this multiplier is similar to the sequential multiplier discussed in
Chapter 4. To that core it is necessary to add modules to (1) convert one of the
operands to parallel form and (2) deliver the result in serial form. One possible
implementation is to perform the operation in 3n cycles split into three phases:

�9 Phase 1: Serial input and conversion of one operand to parallel form--not

necessary if one operand is constant. 4 The second operand can be entered

together with the first and stored in a register, or it can be entered during
Phase 2, maybe using the same digit lines as the first operand.

4. This case with a constant operand is frequent in signal-processing applications, such as FIR
filters (Oppenheim et al. 1999). In such a case, this type of multiplier is especially convenient.

LSDF Arithmetic 501

(Shifted-in
in Phase 1 or
constant)

xj

(Used serially
in Phase 2)

Yj

"~[Shift-Reg X I
-I I

n x n x

=1 SELECTOR

n I { 0_x,x }

[3:21
ADDER

Shifted W w[j + 1] n Shifted WS

(Register control signals not shown)

sign(y)
Cycle n
in Phase 2

(Shifted-out
A._. in Phase 2)

~[HA] ~ LS bits

Carry-out

| (Shifted-out
_d, in Phase 3)

~[SA~ ~ MS bits

SA (Serial adder)

Phase 1: shift-in operand X (n cycles)
Phase 2: serial-parallel carry-save multiplication (n cycles)

shifted sum and carry bit-vectors loaded bit-parallel
Phase 3: MS bits obtained using bit-serial adder SA operating

on bits shifted out of WC and WS shift-registers (n cycles)

F I G U R E 9 .7 Three-phase serial multiplier.

�9 Phase 2: Serial-parallel processing and output of the LS half of the product.

�9 Phase 3: Serial output of the MS half of the product.

The multiplier in Phase 2 corresponds to the sequential multiplier discussed in

Chapter 4. The difference here is the serial delivery of the result. Figure 9.7 shows

a block diagram of the implementation.

If the multiplier is negative, a subtraction is performed in the last cycle of

multiplication by adding the two's complement of the multiplicand. A half-adder

502 c ~.~ ~ P:r ~!il ~,~ ~i~ Digit-Serial Arithmetic

9 ~

is used to add a carry-in in cycle n. This assures that one product bit is produced

per cycle.
Since the least-significant bit of the product is produced in the first cycle

of Phase 2, the initial delay is n for the case of nonconstant operands (cycles of

Phase 1) and 0 if one of the operands is constant. On the other hand, for fractional

operands and n-bit result (most-significant n bits), the LS bits are suppressed and

only the MS half is delivered. This increases the initial delay by n. To obtain a

rounded MS half of the product, a 1 is inserted in the least-significant bit of the

initial carry-save partial product.

The critical path in a cycle is

tcyc = tSEL -Jr- tCSA n t- tFF 9.15

The delay of the LSDF-SP multiplier (from time of LS bit of operand to MS bit

of product) is TsPrn d = 3n • tcyc. The cost is similar to the cost of a sequential

multiplier.
This design can be extended to radix 4 with recoding using the scheme

described in Chapter 4, Section 4.1.
This approach is suitable for systems where a high throughput is the primary

objective: the phases can be used as pipeline stages so that up to three multiplica-

tions can be in progress.

MSDF: Online Arithmetic
As indicated in Section 9.1, online arithmetic algorithms operate in a digit-serial

MSDF mode. Moreover, as shown in Figure 9.8 there is an online delay 8 so

that to compute the first digit of the result, 8 + 1 digits of the input operands
are needed. Thereafter, for each new digit of the operands, an extra digit of the

Cycle - 2 - 1 0 1 2

Input X 1 ,t" 2 ,X" 3 X 4 , I ' 5 �9 �9 �9

Compute Z l z 2 z 3 �9 �9 �9

Output Zl z2 �9 �9 �9

8 = 2

F I r U R E 9.8 Timing in online arithmetic.

MSDF: Online Arithmetic 503

result is obtained. As indicated in the figure, another cycle is needed to output

the computed result digit.
The left-to-right mode of computation requires a flexibility in computing

output digits on the basis of partial information about inputs. This is achieved by
the use of redundancy in the number representation system, which allows several
representations of a given value. The main redundant representation systems are
signed-digit and carry-save, as presented in Chapter 2. With these representa-

tions, there is a flexibility in choosing an output digit so that, if necessary, a com-
pensation can be introduced in the following iterations. In online arithmetic the
most-frequent representation used is signed-digit, with both symmetric { - a , . . . ,
a } and asymmetric {b, . . . , c } digit sets. Overredundant digit sets are also useful.

Since different redundant representations are possible, an integrated ap-
proach for a complex computation can use heterogeneous representations to op-

timize the implementation.
In addition to redundancy in the representation of the serial signals, to have

fast addition operations some internal signals also use a redundant representation,

as discussed in Chapter 2.
In some cases, conversion from redundant to conventional representation is

needed; this conversion in parallel arithmetic requires a carry-propagate addition.
In the online approach, the conversion can be performed efficiently without carry-
propagate addition using an on-the-fly conversion method discussed in Chapter 5.

Algorithms have been developed for most of the basic arithmetic operations,
as well as for certain composite operations. Of significance is the larger set of
operations for which an online implementation has a small initial delay, in contrast
with the LSDF approach.

We first describe the algorithms and implementations for online addition and
subtraction, which can be obtained directly from the parallel counterparts. Then
we develop a general method of designing online algorithms and implementations
and apply the method to multiplication and division.

Addition/Subtraction

The online addition/subtraction algorithm can be obtained from the serialization
of a redundant adder (carry-save or signed-digit, see Chapter 2). As indicated
there, for radices larger than 2 witha > r /2 , redundant addition allows a transfer
digit that propagates only to the adjacent more significant digit. Consequently, the

504 c !i~i::li :,~:~::, ~:~:::~,,: ::~{~:: i,~{,~i~!zi~: ll!::~i~!: :o, Digit-Serial Arithmetic

F I G U R E 9 . 9 (a) A segment ofradix-r > 2 signed-digit parallel adder. (b) Radix-r > 2 online

adder. All latches cleared at start.

corresponding online adder, shown in Figure 9.9, has an online delay of 1 and

corresponds to the following expressions:

and

(t j+l , wj+2) -- /

(0, x j+2 -[- Yj+2)

(1, Xj+2 -]- Yj+2 -- r)

(--1, xj+2 -]-Yj+2 + r)

i f Ixj+2 -+- Yj+2[_< a -- 1

ifxj+2 --]- Yj+2 >__ a

ifxj+2 + Yj+2 <~ --a

9.16

gj+l - - Wj+l -]- t j+ l 9.17

where x j , y j , z j E { - a , . . . , a }.

EXAMPLE 9.1 In Table 9.2, we illustrate a radix-4 online addition with a - 3 and operands

m m

x - - (. 1 2 3 3 0 1)
m m

y - (. 2 1 3 3 2 2)

The result is z - (1.101221).

MSDF: Online Arithmetic 505

J

--1

0

1

2

3

4

5

6

ocj+2 Yj+2

1 2

2 -1

- 3 - 3

3 3

0 2

-1 2

0 0

0 0

* Latches initialized to 0.

tj+l

1

0

- 1

1

0

0

0

0

w j+2

- 1

1

- 2

2

2

1

0

0

Wj+l

O*

- 1

1

- 2

2

2

1

0

Zj+l

1

-1

0

1

2

2

1

0

g j

0*
1

1 D

0

1

2

2

1

T A 8 L S 9.2 Example of radix-4 online addition.

Note that during cycle 0 the result digit z0 - 1 is produced. Although

this might be interpreted as an overflow, the range of the result remains less

than 1 since the next digit i s -1 . See also Exercise 9.10. �9

The cycle time corresponds to the delay of one digit radix-r signed-digit adder

plus the loading of the register.
For r = 2, the condition a > r /2 is not satisfied, so that in the corresponding

signed-digit adder output digit z j depends on input digits up to index j + 2.
Consequently, Figure 9.10 illustrates how a digit-parallel radix-2 signed-digit
adder (Chapter 2, Section 2.12.2) is converted into a radix-2 online adder with
online delay ~ = 2. In this implementation, a signed-digit xi E {-1, 0, 1} is
represented by a pair of binary variables (x +, x~) such that

xi - - x + - x 7 9.18

The cycle time is

tcy~ -- 2tFA + tpF 9.19

and the operation time

TOLADD_ 2 = (2 + n + 1) tcyc 9.20

The cost is 2 FAs and 5 FFs.

506 C ~:ii{ a{~.,...,: p ~:' ~: ~: ~ili~,. Digit-Serial Arithmetic

EXAMPLE 9. ̀ 3

F I G U R E 9 .10 (a) A segment of radix-2 signed-digit parallel adder. (b) Radix-2 online adder.

All latches cleared at start.

We illustrate radix-2 online addit ion with operands

m m

x -- (.01011101)
m m ~

y - - (.10101110)

m

The result is z -- (1.10100101). The signals in Table 9.3 correspond to Figure

9.10(b) and signed bits are encoded using 9.18.
Note that dur ing cycle 0 the result digit z0 - 1 is produced. Al though

this migh t be interpreted as an overflow, the range of the result remains less

than 1 since the next digit is - 1 . See also Exercise 9.10. �9

MSDF: Online Arithmetic 507

J

2

1

0

1

2

3

4

5

6

7

8

xj+3 Yj+3

0 1

1 0

0 - 1

- 1 0

1 1

1 - 1

0 - 1

- 1 0

0 0

0 0

0 0

x++3x j-_+3

oo

lO

oo

Ol

lO

lO

oo

Ol

oo

oo

oo

yf+3yf+3

lO

oo

Ol

oo

lO

Ol

Ol

oo

oo

oo

oo

h j+2

1

1

0

0

1

1

0

0

0

0

0

g j+3

10

10

O1

10

O0

11

O1

10

O0

O0

O0

gj+2

00"

10

10

O1

10

O0

11

O1

10

O0

O0

tj+lWj+2

O1

O0

11

11

O0

O1

10

11

11

O0

O0

zj++lZj-+l

10

01

11

10

00

11

01

11

10

00

zj

1

- 1

C

1

C

C

- 1

C

1

*g latches initialized to 00.

T A 8 L E 9.3 Example of radix-2 online addition.

A Method for Developing Online Algorithms

We now describe a method to develop online algorithms and implementations.

This method is a generalization of the method presented in Chapter 5 for digit

recurrence division; we assume that the reader is familiar with that material and

will consult some of the notation and definitions there. The method consists of two

parts. Part 1 defines the residual and the corresponding digit recurrence. Part 2

determines the output-digit selection function. There are several possibilities in
defining the selection function, the main ones being (1) selection using selection

constants, similar to the quotient-digit selection derivation described in Chapter 5,

and (2) selection by other methods such as rounding and truncation of the residual

to produce the output digit. We discuss both selection techniques, leaving the

choice open.
In later sections we illustrate the method by the operations of multiplica-

tion and division. Other operations, such as square root, sum of squares, and

maximum, can be developed in the same manner.
In terms of the components described in Section 9.1, Part 1 consists of the

development of the recurrence on the residual (internal state) w[j] such that

w [j + 1] = G(w[j] , x[j] , Xj+l+6, y[j], Yj+I+B, z[j], Zj+l) 9.21

508 C M A P T E R 9 Digit-Serial Arithmetic

f o r - ~ < j < n - l w h e r e

j+8 j+8 j
x [j] - ~ X i r - i , y [j] - y~y i r-i, z [j] - ~ z i r

i=1 i=1 i=1

- i 9.22

are the online forms of the operands and the result, respectively. Moreover, the

bounds of the residual are determined.
In Part 2 the result digit is obtained as

zj+l = F(w[j] , x[j], Xj+I+8, y[j], Yj+l+~, z[j]) 9.23

Part 1: Residual and Its Recurrence

�9 Step 1. Describe the online operation by the bound on the error after j
digits have been computed. For an operation f with operands x and y and
result z, this bound has the form (for simplicity we consider thecase p - 1)

[f(x[j] , y[j]) - z[j]] < r - j 9.24

�9 Step 2. Transform expression (9.24) so that it can be used to develop a
recurrence with only primitive operations, such as multiplication by r
(shift), addition/subtraction, and multiplication by a single digit. The form

of the resulting expression is

B < G (f (x [j] , y [j]) - z[j]) < B 9.25

where G represents the required transformation and B and B are the

transformed bounds.
For example, a division error expression

Ix[j]/y[j] - z[j]l < r - j

is transformed into

I x [j l - z[j] . y[j l l < Ir-Jy[j]J 9.26

to avoid the use of division. Similarly, for square root the error expression

Ix[j] 1/2 - z[j]l < r - j

is transformed into

--2z[j]r - j -+-r -2j < x[j] - z[j] 2 < 2z[j]r - j +r -2j 9.27

MSDF: Online Arithmetic 509

Step 3. Define a scaled residual (called in the sequel just "residual") as
follows: 5

with the bound

w[j] -- rJ (G(f (x[j] , y[j]) - z [j])) 9.28

c o - rJB < w[j] < r J - B - -~ 9.29

and the initial condition w [- 8] - 0. The values co and ~ are the actual

bounds to be determined in Step 6.

�9 Step 4. Determine a recurrence on w [j] of the form

w[j + 1] - - r w [j] + r J + l (G (f (x [j + 1], y[j + 1]) - z [j + 1])

- G(f (x[j] , y[j]) - z [j]))) 9.30

�9 Step 5. For purposes of selection of the result digit Zj+I, express the

recurrence as

w[j + 1] - rw[j] + H1 -~- H2(zj+l) 9.31

so that/41 is independent ofz j+l . This leads to the following decomposition:

v[j] -- rw[j] + H1 9.32

w[j + 1] -- v[j] + H2(zj+l) 9.33

Note that H1 depends on the online delay 8, the radix r, and the redundancy

factor p. Moreover, to reduce the recurrence delay, redundant adders are

used, resulting in redundant representations for v[j] and w[j].
�9 Step 6. Determine the bounds o f w [j + 1] in terms of H1 and H2. From

(9.31) we obtain 6

= r ~ + max(H1) +/-/2 (a) 9.34

max(I-11) + H2(a)
= - 9 . 3 5

r - - 1

resulting in

5. The scaling is done to have a bound that is not multiplied by r-J.
6. For simplicity we consider the case in which the bound ofw[j] is independent ofj . If this
is not the case (for example, for square root), the derivation has to be modified accordingly
(see Chapter 6).

510 ~c ~!~ ~:~ p ~" !~!!! i~:~ ~i~ Digit-Serial Arithmetic

Similarly,

min(H1) + H2(-a)
co - - - 9 . 3 6

- - r - 1

Part 2a: Selection Function with Selection Constants

The selection function produces the result digit 2:j+ 1 so that w[j + 1] is bounded

according to (9.35) and (9.36). In the method with selection constants it is described

by the the selection constants 7 mk such that

Zj+I - - k if mk < ~ [J] < mk+l 9.37

where'b"[j] is an estimate o f v [j]. In the type of implementations considered here,

this estimate is obtained by truncating the redundant representation of v[j] to t

fractional bits.

To produce a correct selection function, the selection constants need to satisfy
A A

max(L k) < m k < rain(U k-1) 9.38
A A

where ILk, Uk] is the selection interval of the estimate~'[j] , which we determine

now. The max and min operators relate to variables on which the selection interval

depend, such as the divisor in division and the result in square root.
A A

�9 Step 7. Determine ILk, Uk], the limits of the selection intervals of'b"[j].

We begin by obtaining [Lk, U k], the selection intervals on v [j], and then

restrict these intervals to take into account the effect of using the estimate
"b"[j].

From the relation between w[j + 1] and v[j] (expression (9.33)) we

have

~ - U k + H2(k) c o - L k + H2(k) 9 . 3 9

Substituting ~ and co from (9.35) and (9.36), we get the selection intervals

for v[j] ,

max(I l l) 4- H2(a)
U k - - - H2(k)

r - 1 9 . 4 0

min(/-/1) + H 2 (- a)
L k = - - H2(k)

r - 1

7. To simplify the description we consider the case in which there is only one selection
constant for each k; if this is not possible, a staircase function has to be developed, as described
in Section 5.4.

MSDF: Online Arithmetic 511

N o w we restrict the intervals because of the use of the estimate'b" [j]. The

estimate introduces an error such that

e m i n ~ v [j] - ' b " [j] < e m a x

producing the error-restricted selection interval [Lk , U k] with

U ; - - U k - -ema x L k - - L k -Jr-[emin I

Specifically, as shown in Section 5.4, for a redundant representation

truncated to t fractional bits, the errors are as follows:

9.41

9.42

For carry-save representation, emax - - 2 -t+l -- u l p and emin - - O.

- - 2 - t u l p and For signed-digit representation, e m a x

e min - - - - (2 - t -- u l p) .

Since the estimate is obtained by assimilating t fractional bits of v i i i , the

errors are multiples of 2 - t . Consequently, the actual selection interval

boundaries and the selection constants have a granularity of 2 -t . Let U and

L denote the actual (grid-restricted) selection intervals. As shown in Section

5.4,

U k - 1 - LUk_ 1 + 2-tAt
A

L k - - fL k],
9.43

w h e r e / x It and Ix]t indicate x values truncated to t fractional bits. The

choice of constants mk is illustrated in Figure 9.11.

Lk Uk-1

I l l i i l I I

' I : ' ' ' T_ ,'i
T T

Possible choices 2-t+ .~
form k [" "-1

2 - t

I I I I I
I I I I I

v[j]

Lk U* k-1 Uk-1

Lk
(The ticks on the v[j] line represent the estimate ~[j])

F I G U R ~: 9.11 The choices of selection constant ink.

512 C i~+,,!i ,~,~, p":~" I!~!~i ii~;i~ :~:iiiii~ Digit-Serial Arithmetic

�9 Step 8. Determination of t and 8. To be able to determine ink, from (9.38)

we need
A A

min(Uk_l) -- max(Lk) >__ 0 9.44

This gives a relation between t and 8 that is used to choose suitable values.

�9 Step 9. Determination of the selection constants mk using expression (9.38).

Moreover, determine the range ofF'[j] as

[rco + min(H1) - Cmax] t ~ ~ [j] ___ [r~ + max(H1) +]eminl] t 9.45

Part 2b: Other Selection Methods

In algorithms using a higher radix (r > 4), implementing a selection function

based on selection constants becomes quickly impractical. In such a case there are
other methods for selecting output digits in online algorithms. We present here

a selection method based on rounding of the residual part v[j].

Selection by Rounding Consider the residual expression (9.33)

w[j + 1] = rw[j] + H1 + m 2 (z j + l) - - v[j] + H2(zj+l) 9.46

In the rounding method, the result digit is obtained as

zj+l - [v[j] + ~] 9.47

1 with Jv[j]J < r - ~ to avoid overredundant output digit. Replacing this selection
in the recurrence, we get ([1])

w[j+l]--v[j]+H2 v[j]+~ 9.48

This next residual has to satisfy the bounds for convergence. This limits the direct

application of the approach to some operations, while for others some transfor-

mations are required. If applicable, for a high radix this type of selection is far

simpler to implement than a selection function using constants. Its implementa-

tion depends on the representation of the output digit, and in the case of a two's

complement conventional representation of the digits, it corresponds to a short

CPA.

For residuals in redundant form, the rounding is performed on an estimate

~ ' [j] defined in the expression (9.41). Since the selection by rounding is equivalent

MSDF: Online Arithmetic 513

:;~::

to the selection using selection constants

i n k =
2 k - 1

we can use a similar procedure in determining the necessary precision of the

estimate as presented in Step 8.

Specifically, for an estimate of the residual in carry-save form of t fractional

bits, the estimate error is e m a x - - 2 - t + l - - ulp. When ~ '[j] - m k - 2 -t it must

be possible to choose zj+l = k - 1. Consequently, to have a correct selection it is

necessary that

2 k - 1 A
m k -- 2 - t + emax = -~- 2 - t < U k _ 1 9.49

2

Generic Form of Execution and Implementation

We now describe a generic execution of an online algorithm and present the

components of an implementation.

The execution corresponds to n + 8 iterations of the recurrence, each corre-

sponding to one clock cycle. The iterations (cycles) are labeled from - 8 to n - 1.

One digit of each input is introduced during cycles - 8 ton - 1 - 8 and digits value

0 thereafter. The result digits are 0 for cycles - 8 to - 1, and z 1 is produced in cycle

0. Finally, the result digit zj is output in cycle j . Consequently, one additional

cycle is required to output zn.

For an operation with two operands x and y and one output z, the

execution in cycle j consists of the following actions:

�9 Input X j + l + 8 a n d Y j + l + 8 .

�9 Update x[j + 1] = (x[j] , Xj+l+a) and y[j + 1] = (y[j] , yj+l+a) by
appending the input digits.

�9 Compute v[j] = r w[j] + HI.
�9 Determine Zj+l using the selection function.

�9 In some algorithms, update z[j + 1] = (z[j] , zj+~+a) by appending the

result digits.

�9 Compute the next residual w[j + 1] = v[j] + H2(zj+l).

In addition, result digit zj is output.

Due to this similar structure of the algorithms, they are all implemented

using the same basic components, such as the following:

514 c ~,,:r .,,~i~ p"~ I~!i: r 9 Digit-Serial Arithmetic

1. Registers to store operands, results, and residual vectors

2. Multiplication of vector by digit

3. Append units to append a new digit to a vector

4. Two-operand and multioperand redundant adders, such as signed digit

adders, [3:2] carry-save adders, and their generalization to [4:2] and [5:2]

adders

5. Converters from redundant representations (i.e., signed-digit and carry-

save) to conventional representations

6. Carry-propagate adders of limited precision (3 to 6 bits) to produce

estimates of the residual functions

7. Digit-selection schemes to obtain output digits

An online algorithm implementation is similar to implementation of the digit

recurrence algorithms discussed in Chapter 5 and consists of a linear array of

digit slices, as shown in Figure 9.12. The number of digit slices depends on the

operation implemented.

@. 3,. 4 Algorithms and Implementations

We now develop algorithms for online multiplication and division and give ex-
amples of these for radix 2.

X j + l + 8 Y j + l + ~ 5

1!' ,.,, i

,,
1 *

i

zj+]

9

| *
!

!
i

I ! 2 1
!

. . . , .

r'i **
!

Digit slice
* Paths for appending input digits
** Left-shifted bits of the residual
*** The width of the MS slice depends

on the selection function

F I G U RE 9.12 A typical digit slice organization of an online arithmetic unit.

MSDF: Online Arithmetic 515

Mul t i p l i ca t i on

Using the design method discussed in Section 9.3.2, we develop a radix-r online
multiplication algorithm for n-digit signed operands x and y, and product p in

the range (- 1, 1) represented with n signed digits from the set { - a , . . . , a }. Let
the operands and the result at cycle j be

j+8 j+8 j

x [j] - ~-~xi r-i, y [j] - ~ y i r-i , p [j] - ~ p i r
i=1 i=1 i=1

The error bound at cycle j is

Ix[j] . y[j] - P[j]I < r - J

- i 9.50

9.51

The corresponding residual is defined as

w[j] - r J (x [j] �9 y [j] - p [j]) 9.52

with the bound]w [j][< co.

The resulting recurrence is

w [j + 1] - r w [j] + (x[j]yj+l+a + y [j + 1]xj+l+a)r -a

This is decomposed into

--Pj+l 9.53

v[j] -- r w [j] + (x[j]yj+l+a + y [j + 1]Xj+l+a)r -a

w [j + 1] -- v[j] - Pj+I

resulting in

H1 -- (x[j]yj+l+a + y [j + 1]xj+l+a)r -a

and the bound (from 9.35)

-- - - c o - co -- p(1 -- 2r-~)

H2 -- - P j+l

9.54

9.55

9.56

The selection intervals are

U k ~ m

2ar -a _ a

r - - 1
+ k - p(1 - 2r-a) + k

Lk ~ m
--2ar -a + a

r - - 1
+ k -- - p (1 - 2r-a) + k

9.57

516 e N A PTE R 9 Digit-Serial Arithmetic

EXAMPLE 9 .3

Radix p t

Initial Number of

Bits/Operand

6

4

6

9

T ABLE 9.4 Examples of relations between r, p, t, and 8 based on (9.60).

Using a carry-save representation for w [j] and v [j], the grid-restricted intervals

a r e

U'k = tp(1 - 2r-8) + k - 2-t]t 9.58

- r - p (1 - 2 r - 8) + kl,

The expression to determine t and 8 is 8

Lp(1 - 2r -8) + k - 1 - 2 - t / t - I - p (1 - 2r -8) + k l t > 0 9.59

This results in

tp (1 - 2r - 8) / t > 2-1 (1 + 2 - t) 9.60

Several examples of relations based on (9.60) between p, t, and 8 for radices 2, 4,

and 8 are presented in Table 9.4.

The selection constants are determined using the selection interval (9.58).

The range of the estimate'b"[j], using expression (9.45), is

L - r p + 2 r - 8 (r p - 1) --emaxJ t ~ ~ [j] _< [rp - 2 r - ~ (r p - 1) + [emin[Jt 9.61

which is simplified to

L - p (r - 2r -8) - - 2 - t + l .] t <_ ~ [j] < Lp(r - 2r-8)J t 9.62

We now present a radix-2 online mult ipl icat ion a lgor i thm and its implemen-

tation for the carry-save representat ion of the residual. F r o m Table 9.4, the

online delay is 8 - 3 and t - 2.

8. For multiplication the selection interval does not depend on another variable, so the min
and max operators in the general description are not needed.

MSDF: Online Arithmetic 517

The selection constants i n k ' S are obtained from

A

L k < m k < U k _ 1 9.63

where

Uk -- [1 - 2 -2 + k - 2 -2J2 - - k + 2-1

"Lk - - ['--1 + 2 -2 + k]2 - k - 3 x 2 -2
9.64

So Uk_ 1 - - k-2-1,~k - k - 3 x 2-2, so thatmk - k - 2 -1 is acceptable.
Therefore, the selection constants are

_ _ 2 - 1 1 mo , m l - - 2 - 9.65

The range of ~ [j] is

7
- 2 < ~ [j] < -

4

The corresponding selection function SELM(~[j]) is

9.66

1 A 7 1 i f~ < v [j] < ~
1 -"- 1 9.67 Pj+I -- S E L M (~ [j]) - - 0 i f - ~ < v [j] <

~- 3 - 1 if - 2 < v [j] < - ~

This selection function has a simple implementation. The assimilated
estimate ~" is (v_i, vo, v 1, v2). Since the selection constants have one fractional
bit, bit v2 of the estimate is not used. The product digit Pj+I is coded with
two bits (pp, pn) as follows:

Pj+I PP pn

1
0

-1

1 0

0 0

0 1

Using this coding and the fact that the estimate bit v2 is not used, the
selection function is described by Table 9.5.

518 ~: N ;~ F~ '~ ~i!~ i~ ~i~ Digit-Serial Arithmetic

3
2

1
1
2

0
1 - 3

-1
3 - 3

- 2

V - l V 0 . V l

01.1

01.0

00.1

00.0

11.1

11.0

10.1

10.0

p j+l

1

1

1

0

0

- 1

- 1

- 1

l A 8 L E 9.S Radix-2 multiplication selection function.

The corresponding switching expressions are

! /
p p - - V_l(V 0 + Vl) , p n - - b'_l(V ~ + Vl) 9.68

The algorithm is shown in Figure 9.13, and its implementation in Fig-
ure 9.14(a). The latches L X and L Y are the output latches of the predeces-
sor online units. The carries C x and C y correspond to the signs of x j+4 and
y j+4 , respectively. The module V produces the estimate of v [j] . The calcu-
lation o f 2 w [j + 1] is illustrated in Figure 9.14(b). The subtraction o f v [j] -
P j+ l can be implemented by simply complementing the estimate bit v0 if
P j+l :5~ 0 (Exercise 9.11). The critical path consists of a S E L E C T O R
(2-input MUX), a [4:2] adder, a 4-bit CPA, the SELM module, and an xoP, for
complementing v0.

In Table 9.6, we illustrate radix-2 online multiplication with operands

x - (.11011011)

y - (. 10111110)

For simplicity we show v and w in nonredundant form.
The computed product is p - (. 10101110). The true double-precision

product is p* - (.0110010110000010). The absolute error with respect

to the true product truncated to 8 bits is IP - PtrJ -- 2-8. Note that p[8] +
w[812 -8 - p �9 �9

MSDF: Online Arithmetic 519

1. [Initialize]

x[-3] = y[-3] = w[-3] = O

for j -- - 3 , - 2 , - 1

x [j + 1] <---CA(x[j],xj+4); y[j + 1] +--CA(y[j] , Yj+4)

v[j] -- 2w[j] + (x[j]yj+4 + y [j + 1]xj+4)2 -3

w [j + 1] +--v[j]

e n d f o r �9

2. [Recurrence]

f o r j = O . . . n - 1

x [j + 1] +--CA(x[j] ,xj+4); y[j + 1] +--CA(y[j] , Yj+4)

v[j] -- 2w[j] + (x[j]yj+4 + y [j + 1]xj+4)2 -3

Pj+l -- SELM(v[j]) ;

w [j -+- 1] +- v[j] - Pj+l

Pout +-- Pj+l

e n d f o r

where

�9 The residual is in redundant form, represented by the pseudosum WS and
stored-carry WC bit-vectors. For simplicity, we use w[j] in the description.

�9 n is the precision in bits.
�9 The online delay 8 = 3; the estimate ~ ' [j] is computed with t = 2.
�9 SELM(~'[j]) is the product-digit selection function. Since the selection

1 the second fractional bit of the estimate is not used. constants are 4- ~,
�9 CA is on-the-fly conversion/appending function producing the online

operands in the conventional representation (discussed in Section 5.2.3).
�9 Pout is the product digit register.

F I G U R S 9. l a Radix-2 online multiplication algorithm.

Online Divis ion

Using the design method discussed in Section 9.3.2, we develop a radix-r online
division algorithm for n-digit signed operands x and y, and quotient q in the
range (- 1, 1) represented with n signed digits from the set { - a , . . . , a }. Let the

520 c ~,={ A p"t~ ~ ~ .9 Digit-Serial Arithmetic

(Shift-register for load control in right-append registers not shown)
Predecessor
online unit Predecessor online

,, unit ,,

i = CA-Reg X Yj+5 = CA-Reg Y

. XJ +4 n~X[J] n~x[j] Yj+4 n ~y[j+l] n~y[j+ l]
._1 Yj+4 #[SELECTOR I Xj+4 "-I SELECTOR

n

It,
[4:2] i: ADDER

[4 v 4
A

I I 1 ~ ~_ __1_ _ twil r_ed shift left~ 3 P J + I I I I

V block produces estimate of v

M block performs subtraction of Pj+l

C x = 1 if Xj+ 4 < 0

Cy = 1 if Yj+4 < 0

(Register control signals not shown) (a)

I VS_lVS vs 1 vs 2 vs 3 vs 4

v[j] VC-l Vr Vr 12C'2 Vr Vr

Estimate o fv [j] v-1 vO " vl v2

2w[j + 1] I v~ Vl " V2 vS3 vS4

•C 3 VC 4 . . .

v 0 -- voXORIpj+ll
(b)

F I G U R E 9 .14 (a) Implementation of radix-2 online multiplier. (b) Calculation o f 2 w [j + 1].

MSDF: Online Arithmetic 521

J

- 3

2

1

0

1

2

3

4

5

6

7

x j+4

1

1

0

-1

1

0

-1

1

0

0

0

Y j+4

1

0

1

-1

1

1

1

0

0

0

0

x[j + 1]

.1

.11

.110

.1011

.10111

.101110

.1011011

.10110111

.10110111

.10110111

.10110111

y[j + 1]

.1

.10

.101

.1001

.10001

.100011

.1000111

.10001110

.10001110

.10001110

.I0001110

v[j]

00.0001

00.00110

00.011110

00.1100011

11.10000111

11.001001010

00.0100111101

00.10110000010

11.0110000010

00.110000010

11.10000010

P j+l

0

0

0

1

0

-1

0

1

1

1

0

w[j + 1]

00.0001

00.00110

00.011110

11.1100011

11.10000111

00.001001010

00.0100111101

11.10110000010

00.0110000010

11.110000010

11.10000010

l',~aI.E 9.6 Example of radix-2 online multiplication.

operands and the result at cycle j be

j+8

x[j] = ~ xir
i=1

j+8
-i , y[j] -- yir -i,

i=1

The error bound at cycle j is

J
q [j] - - E q i r

i = I

- i 9.69

Ix[j] - q [j] d [j] l < d[j]r - j 9.70

The residual is

w[j] = rJ(x[j] - q[j]d[j]) 9.71

with the bound Iw[j][< oo < d[j].
The residual recurrence is

w[j + 1] = rw[j] + Xj+l+sr

which is decomposed as

-8 _q[j]d j+l+sr -8 - d [j + 1]qj+l 9.72

v[j] -- rw[j] + xj+l+sr -8 - q[jldj+l+sr

w[j + 1] = v [j] - d [j + 1]qj+l

- 8

9.73

522 c N A p T E F t o Dig i t -Ser ia l A r i t h m e t i c

In terms of the notation of Section 9.3.1,

- 8
g l - - x j + i + s r -- q [j] d j + l + s r

- 8 H2 = - d [j + 1]qj+l 9.74

The bound o f w [j] is

2ar -8 - ad[j + 1]
co = - = p(d[j + 1] - 2r -8) 9.75

r - 1

The selection intervals on v[j] are

U k = p(d[j + 1] - 2r -~) + kd[j + 1] 9.76

L k -- - p (d [j + 1] - 2r -8) + kd[j + 1]

Using a carry-save representation for w[j] and v[j], the grid-restricted intervals

a r e

Uk = [p (d [j + 1] - 2r -8) + kd[j + 1] - 2-ti t
9.77

L k = [- p (d [j + 1] - 2r -8) + kd[j + 1]It

The expression to determine t and 8 is

d[j + 1]min([p(d[j + 1] - 2r -8) + (k - 1)d[j + 1] - 2-t i t)

- d [j + 1]max([- p (d [j + 1] - 2r -8) + kd[j 4" 1]It) ~ 0 9.78

1 the expression has a valid solution Using d [j + 1]max = 1 and d [j + 1]rain = 3'
only for r = 2. We consider only this case here; for higher radices it is necessary
to divide the range of d[j + 1] into intervals and develop a staircase selection
function as was done in Section 5.4.

For r = 2 (p = 1), we get

[2 -1 - 2 -8+1 + 2-1(k - 1) - 2-t .]t - [- 1 + 2 -8+1 + k] t ~ o 9.79

The worst case is for k - 1, resulting in

L 2-1 _ 2-8+1.] t _ [2-8+1]t ~ 2 -t 9.80

A solution to this is t = 3 and 8 -- 4.

The selection constants are obtained using the selection intervals of (9.77).
The range of ~ ' [j] is

L - r p (1 - 2 r - 8) - 2 a r - 8 - 2 - t + l .] t < ~ ' [j] < [rp (1 -2r -~) -2ar-8.] t 9.81

MSDF: Online Arithmetic 523

Since this is the same expression as for multiplication, it can be likewise simplified
to

L-p(r - 2r -81 - 2 - t + l] t ~ "b'[j] _< Lp(r - 2r-8).lt 9.82

EXAMPLE 9 .4 We now present a radix-2 online division algorithm and its implementation
for the carry-save representation of the residual. Using t -- 3, 8 - 4, and
min/max values 9 ofd [j + 1], we obtain

m i n U 0 = U 0 [d [j + l] - - 1 / 2] = 2 - 1 - 2 - 3 + 0 - 2 - 3 = 2 -2
9.83

max'L1 = ' L l [d [j + 1] - 1] - - 1 + 2 -3 + 1 - -2 -3

resulting in m 1 = 2 -2

m a n U - 1 - U - l [d [j + 1] - 1] - 1 - 2 . 3 - 1 - 2 . 3 - - 2 -2

max'L0 -- 'L0[d[j + 1] - 1/2] = - 2 - 1 + 2 - 3 - - 3 • 2 -3
9.84

so that m0 = - 2 -2.
The range of~[j] is

15
- 2 < ~ ' [j] < - - 9.85

- - 8

The corresponding quotient-selection function S E L D (~ [j]) is

1 A . 1 5
1 i f ~ < v [j] < T

1 - ~ �9 1 9.86 qj+~ - - S E L D (' d [j]) - - 0 i f - ~ _< v[./] _
1 --1 i f - -2 <vA[j] < --2

The assimilated estimate'b" is (V-l, v0, Vl, v2, v3). Since the selection con-
stants have two fractional bits, bit v3 of the estimate is not used. The imple-
mentation of the selection function is left as Exercise 9.18. In summary, the
radix-2 algorithm is given in Figure 9.15.

The corresponding implementation is shown in Figure 9.16. The
latches LX and LD are the output latches of the predecessor online units.
The carries ca and Cq are determined by the signs of the divisor d and digit

A A

9. Actually for r = 2, since p = 1, L1 and U_ 1 do not depend o n d [j + 1] so only d [j + 1] =

! matters in the derivation of the selection constants.
2

524 c N A pT E R 9 Digit-Serial Arithmetic

1. [Initialize]

x[-4] = d [-4] = w [- 4] = q[0] = 0

for j = - 4 , . . . , - 1

d[j + 1] <---CA(d[j], dj+5)

v[j] -- 2w[j] + x j + 5 2 - 4

w[j + 1] <--v[j]

end for

2. [Recurrence]

f o r j = 0 . . . n - 1

d[j + 1] <--CA(d[j] ,dj+5)
2-4 -4 v[j] -- 2w[j] + xj+5 -q[j]d j+52

q j +1 -- SELD(v~'[j]);

w [j + 1] + - - v [j] - q j + l d [j + 1]

q[j + 1] <---CA(q[j],qj+l)

Qout <--- q j+l
end for

where

�9 The residual is in redundant form, represented by the pseudosum WS and
stored-carry WC bit-vectors. For simplicity, we use w[j] in the description.

�9 n is the precision in bits.
�9 The online delay 8 = 4; the estimate~'[j] is computed witht = 3.
�9 SELD(~[j]) is the quotient-digit selection function. Since the selection

constants are +1/4, the third fractional bit of the estimate is not used.
�9 CA is on-the-fly conversion/appending function producing the online

operands in the conventional representation (discussed in Section 5.2.3).
�9 Q out is the quotient digit register.

F I G U R E 9. lS Radix-2 online division algorithm.

dj+5, and the quotient q and digit q j+l, respectively. Block U combines the
dividend digit xj +52-4 and the sign extension bits ofq [j]dj +52-4. This allows
the use of a [3:2] adder in computing v[j]. The design details of module U
are considered in Exercise 9.19. The critical path consists of a SELECTOR

MSDF: Online Arithmetic 525

X J+6 ~ ~ [

Predecessor
online unit

SELD 1r

qj+l 1

[OOUt [

(Shift-register for load control in right-append registers not shown)

qj+l =1 CA-Reg Q

n~q[J] n~q[j]

SELECTOR I
qs n iu I I lws t

All 6 bits wide - - - - t - t - t "~
i

, [3:21 i

V
4 I~ /,

' ADDER i

v[j]

"5
[3:21

ADDER

,r--

Predecessor online
unit ,,

dj§ n~d[j+l]n~d[j+l]

qj+l "J "-I SELECTOR]

wc n

(Register control signals not shown)

C,l = 1 if (dj+ 5 > 0 and q > 0)

or (dj+ 5 < 0 and q < 0)

Cq = 1 i f (qj+l > 0 and d > 0)

or (qj+l < 0 and d < 0)

-I
, Wired left shift

2w[j + 1]

RegWS [I RegWC

2w[j]
WS WC

F I G U R S 9.16 Block diagram of radix-2 online divider.

(2-input MUX), module U, a [3:2] adder, estimate module V, selection module
SELD, a SELECTOR, and a [3:2] adder.

In comparison with conventional digit recurrence division using resid-
uals in carry-save form, the online division is somewhat more complex and
has a longer cycle time. For example, while the conventional division uses
a [3:2] adder, 1 fractional bit estimate of the partial remainder, one 2-input

526 c H APT E R 9 Digit-Serial Arithmetic

multiplexer, and 5 registers (1 for the nonredundant divisor, 2 for the redun-
dant partial remainder, and 2 for the redundant quotient), the online algorithm
uses two [3:2] adders, a 3-bit (fractional) estimate, 6 registers (2 for the redun-
dant divisor, 2 for the redundant residual, and 2 for the redundant quotient),
two 2-input multiplexers, two on-the-fly converters (using the divisor and the
quotient registers), and two appending networks. The implementation of the
selection function has similar complexity as that of multiplication. �9

The Reduction of Digit Slices in Online Implementations

The number of bit slices required in an implementation of an online algorithm
is smaller than that required in serial-parallel implementation. As illustrated in
Figure 9.17(a), n is the number of bits in the result, i b is the number of integer
bits ofv[j] , andt the number of fractional bits in its estimate~"[j]. Let p < n be
the number of fractional bit slices in the implementation. In the first p cycles the
computation of the residual is exact. Beginning with step p + 1, an error in the
residual due to "truncation" of the fractional bit slices p, . . . , n + ~ is introduced

~5 Not implemented

O00.OOO00000000OOOO000000
ib t n

(a)

P
x x x x x x x x x x x
x x x x x x x x x x x
x x x x x x x x x x x
x x x x x x x x x x x

x x x x x x e
x x x x x e e

x x x x x e e After left shift:
x x x x e e e

(b)

F I G U R E 9 .17 Reduction of bit slices in implementation.

MSDF: Online Arithmetic 527

and propagated to the left by one position due to the term 2w[j] . For residuals
formed using a [4:2] adder, the error in cycle p + 1 (after left shift) affects bits
in positions p - 2, p - 1, p (Figure 9.17(b)). After cycles p + 1, . . . , p + h are
performed, the truncation error has affected all bit positions up to and including
bit position p - 2h + 8 (in the last ~ cycles the input digits are 0 and the error
propagation is caused by the left shift of the residual). To have a valid selection
using an estimate of t fractional bits,

p - 2h + 8 > t 9.87

Since p + h = n + 8, we obtain

[2n + 8 + t 1
P - 3 9.88

and the total number of bit slices is ib + p.
For example, the number of bit slices for 32-bit radix-2 online multiplication

is F2 32+3+2]
2 + 3 = 2 + 23 = 25 9.89

compared to 34 in an implementation without slice reduction.

Multioperation and Composite Online Algorithms

To reduce the overall online delay of a group of operations, it is often advantageous
and feasible to combine several operations into a single multioperation online al-
gorithm. As an example, t~ below we show an online algorithm for sum of squares
x 2 + y2 + z 2, which is used in 3-D normalization. The inputs are in the range [�89 1)

1 3) and itsonline delay 8ss -- 0when the output digit and the output in the range [g,
is overredundant. This is in contrast with the delay of(3 + 2 + 2 -- 7) of the corre-
sponding network consisting of three online multipliers and two adders. This re-
duction in delay is partially due to the overredundant output digit. The algorithm
is given in Figure 9.18 and the corresponding implementation in Figure 9.19(a).

As shown in Figure 9.19(b) the selection functions j +1 = csint(v [j]) produces
an output digit in the range from 0 to 8. If it can be used in this form in the next
operation, which is the case in the 3-D normalization, no recoding to the digit set
{ - 1, 0, 1} is necessary.

10. Ercegovac and Lang (1999).

528 e H APT E R 9 Digit-Serial Arithmetic

1. [Initialize]

w [0] = x [0] = y [0] = z [0] = 0

2. [Recurrence]

f o r j = 0 . . . n - 1

v[j] -- 2w[j] + (2x[j] + Xd+12-J-1)xj+l + (2y[j] + Yj+12-J-1)Yj+1

+ (2z[j] + zj+12-J-1)Zj+l

w [j + 1] ~--csfract(v[j])

s j+l +- csint(v[j])

x [j + 1] ~--(x[j] , Xd+l); y[j + 1] ~--(y[j] , Yd+l); z[j + 1] ~ (z[j] , zj + l)

Sour ~ S j + l

end for

where
�9 n is the precision in bits.
�9 csfract(v) and csint(v) correspond to the fractional and integer parts of v

obtained in carry-save form (see Figure 9.19(b)).
�9 Sour is the result-digit register.

F ! G U R E 9.111 Radix-2 online sum-of-squares algorithm.

For more complicated algorithms that cannot be implemented by a single
online module, an interconnection of modules is required. A modular approach
would be to use the standard online implementation of primitive operations as
components. However, this might lead to suboptimal implementations with re-
spect to area and online delay. An alternative is to develop an integrated approach
and develop one composite algorithm. As an illustration we show in Figure 9.20 the
use of the sum-of-squares with overredundant output digit in the set {0, . . . , 8},
and a square root algorithm 11 developed for this input digit set to perform

d = ~/(x 2 + y2 + z 2)

with an overall online delay of 5. This is part of an online unit to compute the
3-D normalization. A network of standard online modules would have an online
delay of 11.

11. Ercegovac and Lang (1999).

MSDF: Online Arithmetic 529

= Serial Xj+I

Parallel IAPPEND~
x[j+l]~

w[j+ l] [x[j]]

WC

Yj+I

IAPPENOI
I !tJ!l

APPEND~

, i

IAPPENDI IAPPEND| [APPEND| I MULl ~'I MUL/

[5:2] ADDER

 'AI 1 1
'j+l i] w[j+ 1] IS ut APPEND

implements
x[j + 11 = x[j] + Xj.l 2-j-1

sj in {0 8} (a)

MUL/APPEND
implements

2x[j lxj+ 1 + x2j+l 2-J -1

555 = 0

X. X X X X X X X X X I

X. X X X X X X X X X

X. X X X X X X X X X

X. X X X X X X X X X

X. X X X X X X X X X

I-/.,11 csSrac I ~
max(csint) = 8

2w[j]

(2x[j]xj+ 1 + x2j+12-J -1)

(2 y[jl Yj+ 1 + y2j+12-j-1)

(2 z[j] zj+l + Z2j+I 2-j-l)

Note: the fractional portion of the 5-2 CSA
produces at most three carries

(b)

F I @ U e E 9.19 (a) Radix-2 online unit for computing sum of squares. (b) Carry-save operation:
obtaining residual and output digit.

Online Implementation of Recursive Algorithms

An important characteristic of MSDF/online arithmetic is its capability to re-
duce the latency between successive recurrence evaluations, independent of the
precision of computation. These recursive algorithms are frequently used in

530 C H APT r: R O Digit-Serial Arithmetic

= Serial xj+5

Parallel]APPEND I+
x[j+l]~ t

w[j+l] I
x [j]

"~ I . u - L
we IAPPENDI

CPA I

SJ +6

Is"u t]

Y j+5 Z j+5

I .u~, L I .u~, 1. APP'=ND F IAPP'=NOI
1 ,

[5:21 ADDER I

w[j+l]

Operation:

Sum of squares

s j+5

dj+l

{o 8}

R[j+I]

RS

RC

I dse' I I
~ {-1,0, 1}

On-the-fly
converter

APPEND K
R[j]

[3:2] ADDER

I 1
R[j + 11

dj+l

Square root

u = - (2 d [j l d j + 1 + d2j+l 2-j-l)

L

FlaUeE 9.20 Composite scheme for computing d = V/(x 2 + y2 + zZ).

signal processing applications, such as recursive filtering, lz As an illustration
of the potential benefits of online arithmetic in such applications, we consider a
second-order IIR filter (Figure 9.21 (a)) characterized by the output expression

y[k] - al y [k - 1] + a2 y [k - 21 + b x [k] 9.90

12. Oppenheim et al. (1999).

MSDF: Online Arithmetic 531

y[k] .._l "-I MUL

Coefficients

x or y '~

(a)

M1

ADD

Y
ADD

~ a 1

MUL I~.
r

~ a2

MUL L
r

IM3 M4

(Multiply) (Multiply-add) ([4:2] adder) ([4:2] adder)

= y[k]

y [k - 1]

y [k - 2]

M5

(CPA)

lY._

v CS form (b)

CYCLE:

Module:
M1

M2

M3

M4

M5

k k + l k+2 k+3 k + 4

bx[k] R a2y[k- 2] R

(bx[k]R)

+ bx[k] L

aly[k-1] R

(a2y[k- 2] R) +

a2y[k-2] L

(a ly[k 1]R) +

alY[k- 1] L

(bx[k]) +

(a2 y[k - 2])

bx[k + 1] R

(bx[k] +

a2Y[k-2])+

(aly[k-1])

k+5

y[k]

(c)

FIGURE 9.21 Conventional implementation of second-order IIR filter: (a) Filter. (b) Five-

module network. (c) Schedule.

532 c H ApT E R 9 Digit-Serial Arithmetic

Without attempting any optimizations, several filter implementation alternatives
are analyzed, assuming (i) parallel-in/parallel-out interface, (iii) coefficients in
parallel form, and (iii) fixed-point format with n bits. Alternatives 2 and 3 use
digit-serial arithmetic internally.

1. Conventional parallel arithmetic implementation may, for example, use
a five-module network: Module M1 is a n • n /2 multiplier producing
a carry-save product; module M2 is a multiply-add unit producing the
2n-bit product in carry-save form; modules M3 and M4 are [4:2] adders;
and module M5 is a carry-propagate adder (Figure 9.21 (b)). As indicated in

the schedule (Figure 9.21(c)), the time to obtain y [k] is TcoNv -- 6tmodule.

We assume that the longest critical path is in module M5 corresponding
to a 2n-bit CPA with tmodule ~ 6tvA for n < 31, where tFA is the delay
of a full-adder. Since the next computation can begin in cycle k + 4, the
rate of filter computation using this implementation is RcoN-v ~

1/(4 • 6tvA).

2. LSDF serial arithmetic implementation uses three serial multipliers and
two serial adders. Since it takes n clocks to begin producing the most-
significant half of the product, the time to produce y[k] is TLsDv ~ ntvA.

The rate of generating outputs in this alternative is RLsDv ~ 1/ (n • tvA).

The input/output format conversions are not in the critical path.

3. Online arithmetic implementation uses online multioperation module M
shown in Figure 9.22(a). The module M consists of the following
components: (i) one online multiplier (one operand in parallel form) with
online delay of 2 and (ii) two online multiply-add modules computing
v u + w , where v is in parallel form while u and w are in online form. This
module has an online delay of 3. The cycle time of module M is tM ~ 3tvA.

A filter consisting of a single M module has a rate of one n-bit output every
n cycles.

To produce a higher throughput we can use the fact that online
algorithms operate in the MSDF mode, so that several successive
computations can be overlapped. As indicated in the timing diagram of
Figure 9.22(c), consecutive y outputs can be produced digit-serially Aiter =

3 + 1 -- 4 cycles apart. Since tM ~ 3tva, the rate is RoL -- 1/(Aiter X tM)

1/(12tvA), which, for n > 12, is better than rates achievable with

MSDF: Online Arithmetic 533

y [k - 2] ~ y[k-1]~5
', ~5=2 = 3

Module M ',
, ~

,"b a 2 ._ ~1~1 +
x[k] ," "-1 I c "-I] Y [k]

(a)

x[j] ~ +

r

x [k - 2]

x[k 1]

x[k]

x[k + 1]

]�89
I 7-_1

�89

M

M

M

] y [k - 2] ._1

iP
I y[k- II -~

I y[k] "~ ~ .~, �9

IL o

] y [k + l]

i I -i

Array for n = 16 and Ai t e r = 4

M

(b)

Y[j]

y [k - 2] : : : ', : : : ', ', : : ', : : ~ Fromother
y [k - 1] : : : ', ', : ', : ', : ', ', ', : ~ modules

x[k] I I I I I ', ', ', ', ', : ', : ', =
c I I I I I I I I I 1 I I I I ~

y[k] : : ', : ', : : ', ', ', ', ', : :

(e)

F I G U R E 9.22 Onl ine implemen ta t ion of second-order I IR filter: (a) T h e online mul t ioper -

ation module . (b) N e t w o r k for h igher th roughpu t . (c) T i m i n g d iagram.

a p p r o a c h e s 1 a n d 2. M o r e o v e r , t h e t h r o u g h p u t in t h e o n l i n e a p p r o a c h is

i n d e p e n d e n t o f t h e w o r k i n g p r e c i s i o n . H o w e v e r , a c h i e v i n g th i s t h r o u g h p u t

r e q u i r e s [n /mi te r q m u l t i o p e r a t i o n o p e r a t o r s , as i l l u s t r a t e d in F i g u r e 9 .22(b) .

T h e i m p l e m e n t a t i o n c o s t w o u l d be c o m p a r a b l e to t h e c o s t o f t h a t m a n y

534 c H APT E R 9 Digit-Serial Arithmetic

conventional serial-parallel carry-save multipliers (without carry-propagate
adders). The number of bit slices in online units is reduced as discussed on
page 526. Moreover, the modules are interconnected serially. The parallel
input is serialized and demultiplexed to the online modules. The serial
outputs are converted to parallel form using on-the-fly conversion and
multiplexed to obtain the filter output.

This example indicates that significant speedups might be possible using the
online alternative.

9 . 4 Concluding Remarks
Digit-serial arithmetic is attractive in implementations where the area and the
interconnection width between the modules should be minimized while the in-
creased latency is acceptable. It allows appropriate choice of radix, digit set, and
precision to satisfy design needs. This approach is well-suited to the design of
massively parallel implementations. Two modes of computation are considered:
right-to-left (a conventional LSD first approach), and left-to-right (MSDF or
online approach). These modes have different characteristics in terms of delays,
cost, and applicability. The MSDF mode allows overlapping successive operations
after a few cycles, which is important in implementing recursive algorithms. The
discussion in this chapter focused on the basic concepts and algorithms: more
advanced developments of digit-serial arithmetic and its applications are covered
in the references at the end.

9 . 5
9 . 1

Exercises
Show a block diagram for performing 2D vector normalization, similar to the
one in Figure 9.4, for LSDF arithmetic. Compare the total number of cycles to
the online scheme discussed in the text.

LSDF Addition/Subtraction

9.2 Write a recurrence for radix-r LSDF addition.

Exercises 535

9 . 3

LSDF Multiplication

A serial algorithm is described by the following expressions:

x [j] - x [j - 1] + 2Jx j

y [j] = y [j - 1] + 2J y j

w [j] - [(1/2)(w[j - 1] + x [j - 1]yj + y [j] x j)]

z j = (w [j - 1] + x [j - 1]yj + y [j] x j) m o d 2

z [j] - z [j - 1] + 2 jzj

Show x [j], y [j], z [j] for 0 < j < 6 for the following input sequence:

j 0123456

x [j] - 1011010

y [j] - 1110011

Is this an LSDF or MSDF algorithm ?

9 , 4 Place latches in Figure 9.6 to have a pipelined implementation.

9 . 5 For a serial-serial multiplier show a timing diagram with the contents of all
registers for the 5 • 5 bit two's complement multiplication of x = 01011 by
y = 10001.

9 . 6 For each of the 3 x 3 serial-parallel LSDF multipliers shown in Figure 9.23:

(a) Give a timing diagram (schedule).
(b) Determine the number of cycles to produce the 6-bit product.
(c) Determine the critical path in a cycle.

9 . 7 Develop an LSDF algorithm for squaring of unsigned and two's complement
n-bit integers. Design a bit slice and show the network for n = 8.

MSDF Addition/Subtraction

9 . 8

9 . 9

Perform the radix-4 online addition ofx - 0.2312. and y = 0.223i.

Perform the radix-2 online addition of x = 0.10i i01 i0 and y = 0.1010110i.

536 C H A PT E R 9 Digit-Serial Arithmetic

X 2, Xl, X 0

o~
~ Y 2 ~ Y]

F ~ ~ F ~ ~

(a)

~ Yo

Z 5 Z 0
FA @

X 2, X 1 , X 0

o~ FA _1 I
-I F~I

~)

~ Y2

FA I Z 5 ' " " Z o

I

X 2, X1, X0

o~ FA ~FFIFF~--

~ Yo

F, ~FF FF, I
Z5, � 9 ZO

FA ----~l FFI FFI--~

(c)

F | G U R E a.aa Serial-parallel multipliers (Exercise 9.6).

Exercises 537

9 . 1 0 Consider radix-2 online addition with operands satisfying x + y < 1.

(a) Perform the addition algorithm to show that if z0 = 1, then the next
nonzero result digit must have a value -1 .

(b) Devise a modification to the online addition algorithm to produce z0 to 0
and develop the corresponding design.

9.11

9 . 1 2

9 . 1 3

9 . 1 4

9 . 1 5

9 . 1 6

9 . 1 7

MSDF Multiplication

Show that the subtraction ofv [j] - P j+l can be implemented by complementing
the estimate bit v 0 if pj +1 ::~ 0.

Show the execution of the radix-2 online multiplication of 0.1 i 1 by 0.11 i.

Develop an algorithm and a design to perform on-the-fly conversion and append-
ing for radix-2 online multiplication.

Design a radix-2 online multiplier using a signed-digit adder. A signed digit
X i E {-1, 0, 1} is encoded a s x i - " X i l - - x i O , X i l , XiO E {0, 1}. Compare with the
implementation in Figure 9.14.

Develop a radix-4 online multiplication algorithm with digit selection by round-
ing. Show the execution of the algorithm to multiply x = 0.2~.1 by y = 0.i21.

Develop a radix-2 online algorithm for computings = x 2, x ~ (-1 , 1), n bits of
precision.

Derive an MSDF multiplication algorithm for radix 2, multiplicand x in parallel
two's complement form, and online multiplier y and product p in signed-bit form.
The residual is in carry-save form. Determine the online delay 8 and the number
of fractional bits t of the estimate~'[j]. Show a block diagram of implementation,
and compare it with the online multiplication implementation shown in Figure
9.14 with respect to the critical path and the modules used.

9 . 1 8

9 . 1 9

MSDF Division

Implement the selection function for radix-2 online division.

Module U of Figure 9.16 is specified as follows:

538 C H A P T E R 9 Digit-Serial Ari thmetic

9 . 2 0

9 .21

xj+5;dj+5 - 1

1. 1 1 0

2. 0 0

3. - 1 0

Output u

0. 1 2 3 4

0 0 0 0 0

0 0 0 0 1

0 0 0 0 1

4. 0 1 1 1 1 1 1 1

5. 0 0 0 0 0 0 0

6. - 1 0 0 0 0 0 0

7. - 1 1 1 1 1 1 1 0

8. 0 1 1 1 1 1 1

9. - 1 1 1 1 1 1 1

I fq < 0, rows 1 and 3, 4 and 6, 7 and 9 are swapped. The input X j + 5 and dj+5
are coded as (xp, xn) and (dp, dn). xz and dz denote zero digit values, qs is the
sign of the quotient.

(a) Show that the output of module U is

(b)
(c)

U i = 1, i = - - 1 , . . . , 3 i f xn + x z (d p . ~ - d + d n .qs) = 1

U 4 = 1 if ~ . dz + ~ (d p .qs + dn �9 ~-f-) + xz (dp �9 ~ + dn .qs) = 1

Show that the given table and expressions are correct.
Show a gate network implementing the module. Compare its delay with
the delay of a 6-bit [4:2] adder.

Perform radix-2 online division for x = 0.10110010 and d = 0.11011101.

Derive an MSDF division algorithm for radix 2, dividend x in parallel two's
complement form, and online divisor d and quotient q in signed-bit form. The

residual is in carry-save form. Determine the online delay 3 and the number of
fractional bits t of the estimate ~ '[j]. Show a block diagram of implementation,
and compare it with the online division implementation shown in Figure 9.16
with respect to the critical path and the modules used.

Exercises 539

9 . 2 2

9 . 2 3

9 . 2 4

9 . 2 5

9 . 2 6

9 . 2 7

MSDF Other Operations

Develop a radix-2 multiply-add online algorithm using the method in Section
9.3.2.

Develop a radix-2 square root online algorithm using the method in Section 9.3.2.

Develop an online algorithm for z = max(x, y) with a minimum online delay
for the following cases:

(a) Signed-digit inputs and output
(b) Nonredundant magnitude inputs and output
(c) Nonredundant two's complement inputs and output

Compare the two algorithms with respect to online delay, cycle time, and cost.

Number of Slices

In a manner similar to that of Figure 9.17, determine the bits affected by imple-
menting p < n bit slices to update a residual using

(a) [3:2] reduction
(b) [5:2] reduction
(c) [6:2] reduction

MSDF Composite

(a)

(b)
(c)
(d)

Develop a composite online algorithm to compute a b + cd .

Show a design at the level of Figure 9.14.
Identify the critical path.
Compare online delay, clock cycle, and cost with respect to a scheme that
uses two online multipliers and one online adder.

M S D F M u l t i m o d u l e

Show a block diagram for the execution of the following operation using several
online modules. Give a timing diagram of the operation, using the initial delays
of Table 9.1.

Z m
4X2 + y2

~/w 2 + v 2

540 c ~4 A pT E ~ 9 Digit-Serial Arithmetic

Compare the execution time with the case in which each operation requires
the operands to be provided in parallel form. Assume that the operands x, y, w, v
are provided in parallel form and that the result is required in parallel form. Make
any reasonable assumption on the execution time of the operations.

9~ Further Readings
Digit-serial arithmetic is the subject of several books and many articles (Denyer
and Renshaw 1985; Smith and Denyer 1988; Hartley and Corbett 1990; Hartley
and Parhi 1995).

LSDF Arithmetic~General

The least-significant digit first (LSDF) algorithms and implementations for ad-
dition are often covered in standard texts on digital systems. LSDF multiplica-
tion is discussed in Lyon (1976), Chen and Willoner (1979), Danielson (1984),
Gnanasekaran (1985), Dadda (1989), and Ienne and Viredez (1994). Design issues
in digit-serial signal processors are discussed in Irwin and Owens (1989, 1990).
An architecture and implementation of digit-serial processor are presented in
Owens et al. (1993).

MSDF Arithmetic General

A discussion of the MSDF approach and its application to the evaluation of
polynomial and rational functions is presented in Ercegovac (1975, 1977) (see
more details in Chapter 10). Variations of MSDF and LSDF bit-serial arithmetic
are discussed in Sips (1984). An overview of online arithmetic is given in Ercegovac
(1984), and a method for the design of online algorithms appears in Ercegovac and
Lang (1988a). The design of the corresponding selection functions is discussed
in Tu (1990). The properties of functions computable in online arithmetic are
studied in Muller (1994).

MSDF Algorithms

Online division and multiplication algorithms are introduced in Trivedi and
Ercegovac (1977), and variations and implementations are reported in Irwin

Further Readings 541

(1977), Trivedi and Rusnak (1978), Gorji-Sinaki (1981), Lin and Sips (1987), Tu
and Ercegovac (1989), Guyot et al. (1989), Tu and Ercegovac (1991), and Tenca
and Ercegovac (1999). Other algorithms and implementations appear in Owens
(1980), Irwin and Owens (1987), and Bajard et al. (1994). Online square root is
discussed in Ercegovac (1978), Oklobdzija and Ercegovac (1982), and Tu (1990).
Online algorithms for evaluation of elementary functions are discussed in Kla
et al. (1991).

The use of high-radix online arithmetic for accurate computing is investi-
gated in Lynch and Schulte (1995) and Daumas et al. (1997).

VLSI implementations of online arithmetic algorithms are discussed in Irwin
and Owens (1983) and Tullsen and Ercegovac (1986).

MSDF Recursive Computations

The use of online arithmetic in recursive computations and the development of
algorithms and implementations are discussed in a number of places (Brackert
1988; Knowles et al. 1989; Brackert et al. 1989; Ercegovac 1991; Ercegovac and
Lang 1992; Fernando 1993; Fernando and Ercegovac 1994, 1997). A method for
designing MSDF algorithms for recursive filters is discussed in McQuillan and
McCanny (1995).

MSDF Floating-Point

Floating-point online arithmetic and its implementation are presented in
Watanuki (1981), Lin and Sips (1987), Tu (1990), Tu and Ercegovac (1991), and
Duprat et al. (1991). Error analysis of floating-point online arithmetic is discussed
in Watanuki and Ercegovac (1983).

MSDF Complex Number Arithmetic

Online arithmetic algorithms and implementations for operations on complex
numbers are presented in Nielsen (1997) and Mcllhenny (2002).

MSDF Variable Precision

Variable-precision algorithms and implementations using online arithmetic are
reported in Tenca (1998) and Tenca and Ercegovac (1999).

542 c H A PT E R 9 Digit-Serial Arithmetic

MSDF FPGA-Based Algorithms and Implementations

Implementations of online arithmetic algorithms in FPGAs are reported in
Daumas et al. (1994), Tenca et al. (1999), Tisserand et al. (1999), and Tenca and
Hussaini (2001).

MSDF Various Applications

Online arithmetic has been applied to CORDIC (Ercegovac and Lang 1990;
Lin and Sips 1990; Osorio et al. 1995), 2D DCT (Bruguera and Lang 1995),
signal processing (Galli and Tenca 2001), digital communications (Rajagopal and
Cavallaro 2001), digital control of real-time systems (Dimmler 1999; Dimmler et
al. 1999), and neural networks (Girau and Tisserand 1996).

Composite online algorithms and implementations for various applications
including various matrix computations such as triangularization, singular value
decomposition, and 2-D and 3-D normalization are presented in Ercegovac and
Lang (1987, 1988b), Tu (1990), Ercegovac and Tu (1991), Ercegovac and Lang
(1999), and Huang and Ercegovac (2001).

9.7 Bibliography
Bajard, J. C., J. Duprat, S. Kla, and J.-M. Muller (1994). Some operators for

on-line radix 2 computations. Journal of Parallel and Distributed Computing,
22(2):336-45.

Brackert, R. H. (1988).Design and Implementation of Recursive Filters Using On-line
Arithmetic. PhD thesis, University of California, Los Angeles.

Brackert, R. H., M. D. Ercegovac, and A. N. Willson (1989). Design of an on-line
multiply-add module for recursive digital filters. In Proceedings of the 9th
IEEE Symposium on Computer Arithmetic, pages 34-41.

Bruguera, J., and T. Lang (1995). 2-D DCT using online arithmetic. In Interna-
tional Conference on Acoustics, Speech, and Signal Processing, volume 5, pages
3275-78.

Chen, I. N., and R. Willoner (1979). An o(n) parallel multiplier with bit-sequential
input and output. IEEE Transactions on Computers, C-28(10):721-27.

Dadda, L. (1989). On serial input multipliers for two's complement numbers.
IEEE Transactions on Computers, 38:1341-45.

Bibliography 543

Danielsson, E E. (1984). Serial/parallel convolvers. IEEE Transactions Computers,
C-33(7):652-67.

Daumas, M., J.-M. Muller, and A. Tisserand (1997). Very high radix on-line
arithmetic for accurate computations. In 15th IMACS Worm Congress on
Scientific Computation, Modelling and Applied Mathematics, Berlin, Germany.

Daumas, M., J.-M. Muller, and J. Vuillemin (1994). Implementing on-line arith-
metic on PAM. In 4th International Worksho p on Field-Programmable Logic
and Applications.

Denyer, P., and D. Renshaw (1985). VLSI Signal Processing: A Bit-SerialApproach.
Addison-Wesley, Reading, Massachusetts.

Dimmler, M. (1999). Digital Control of Micro-Systems Using On-line Arithmetic.
PhD thesis, Ecole Polytechnique Federal de Lausanne.

Dimmler, M., A. Tisserand, U. Holmbeg, and R. Longchamp (1999). On-line
arithmetic for real-time control of microsystems. IEEE/ASME Transactions
on Mechatronics, 4(2):213-17.

Duprat, J., M. Fiallos, J.-M. Muller, and H. J. Yeh (1991). Delays of on-line
floating-point operators in borrow-save representation. In IFIP Worksho p on
Algorithms and Parallel VLSI Architectures.

Ercegovac, M. D. (1975). A General Hardware-Oriented Method for Evaluation of
Functions and Computations in a Digital Computer. PhD thesis, Department of
Computer Science, University of Illinois at Urbana-Champaign. (Technical
Report UIUCDCS-R-750.)

Ercegovac, M. D. (1977). A general hardware-oriented method for evaluation
of functions and computations in a digital computer. IEEE Transactions on
Computers, C-26(7):667-80.

Ercegovac, M. D. (1978). An on-line square rooting algorithm. In 4th IEEE Sym-
posium on Computer Arithmetic. IEEE Computer Society Press, Los Alamitos,
California.

Ercegovac, M. D. (1984). On-line arithmetic: An overview. In Proceedings of the
SPIE, Real Time Signal Processing VII, pages 86-93.

Ercegovac, M. D. (1991). On-line arithmetic for recurrence problems. In Pro-
ceedings of the SPIE: Advanced Signal Processing Algorithms, Architectures, and
Implementations H.

Ercegovac, M. D., and T. Lang (1987). On-line scheme for computing rotation
factors. In Proceedings of the 8th IEEE Symposium on Computer Arithmetic,
pages 196-203.

544 c N APT E R 9 Digit-Serial Arithmetic

Ercegovac, M. D., and T. Lang (1988a). On-line arithmetic: A design methodology
and applications. In R. W. Brodersen and H. S. Moscovitz, editors, VLSI
Signal Processing, III, Chapter 24. IEEE Press, New York.

Ercegovac, M. D., and T. Lang (1988b). On-line scheme for computing rota-
tion factors. Journal of Parallel and Distributed Computing, Special Issue on
Parallelism in Computer Arithmetic (5).

Ercegovac, M. D., and T. Lang (1990). Redundant and on-line CORDIC: Appli-
cation to matrix triangularization and SVD. IEEE Transactions on Computers,
39(6):725-40.

Ercegovac, M. D., and T. Lang (1992). Fast arithmetic for recursive computa-
tions. In Proceedings of the IEEE Worksho p on VLSI Signal Processing, pages
14-28.

Ercegovac, M. D., and T. Lang (1999). On-line scheme for normalizing a 3-D
vector. In Proceedings of the 33rd Asilomar Conference on Signals, Systems and
Computers, pages 1460-64.

Ercegovac, M. D., and P. K. G. Tu (1991). Application of on-line arithmetic
algorithms to the SVD computation: preliminary results. In Proceedings of
the 10th IEEE Symposium on Computer Arithmetic, pages 246-55.

Fernando, J. S. (1993). Design Alternatives for Recursive Digital Filters Using On-line
Arithmetic. PhD thesis, University of California, Los Angeles.

Fernando, J. S., and M. D. Ercegovac (1994). Conventional and on-line arith-
metic designs for high-speed recursive digital filters. Journal of VLSI Signal
Processing, 7:189-97.

Fernando, J. S., and M. D. Ercegovac (1997). A method of eliminating oscilla-
tions in high-speed recursive digital filters. IEEE Transactions on Circuits and
SystemsmlI: Analog and Digital Signal Processing, 44(10):861-64.

Galli, R., and A. F. Tenca (2001). Design and evaluation of on-line arith-
metic for signal processing applications on FPGAs. In Proceedings of the
SPIEmAdvanced Signal Processing Algorithms, Architectures, and Implementa-
tions XI, volume 4474, pages 134-44.

Girau, B., and A. Tisserand (1996). On-line arithmetic-based reprogrammable
hardware implementation of multilayer perceptron back-propagation. In
Proceedings of the 5th International Conference on Microelectronics for Neural
Networks and Fuzzy Systems. MicroNeuro'96, pages 168-75.

Gnanasekaran, R. (1985). A fast serial-parallel binary multiplier. IEEE Transac-
tions on Computers, C-34:741-44.

Bibliography 545

Gorji-Sinaki, A. (1981). Error-Coded Algorithms for On-line Arithmetic. PhD thesis,
University of California, Los Angeles.

Guyot, A., Y. Herreros, and J.-M. Muller (1989). Janus, an on-line multiplier/
divider for manipulating large numbers. In Proceedings of the 9th IEEE Sym-
posium on Computer Arithmetic, pages 106-11. IEEE Computer Society Press,
Los Alamitos, California.

Hartley, R., and P. Corbett (1990). Digit-serial processing techniques. IEEE Trans-
actions on Circuits and Systems, 37(6):707-19.

Hartley, R., and K. K. Parhi (1995). Digit-Serial Computation. Kluwer Academic
Publishers.

Huang, Z., and M. D. Ercegovac (2001). FPGA implementation of pipelined
on-line scheme for 3oD vector normalization. In IEEE Symposium on Field-
Programmable Custom Computing Machines, pages 1-4.

Ienne, P., and M. A. Viredez (1994). Bit-serial multipliers and squarers. IEEE
Transactions Computers, 43(12): 1445-50.

Irwin, M. J. (1977). An Arithmetic Unit for On-line Computation. PhD thesis, De-
partment of Computer Science, University of Illinois at Urbana-Champaign.
(Technical Report UIUCDCS-R-77-873.)

Irwin, M. J., and R. M. Owens (1983). Fully digit on-line networks. IEEE Trans-
actions on Computers, C-32(4):402-6.

Irwin, M. J., and R. M. Owens (1987). Digit-pipelined arithmetic as illustrated by
the Paste-up system: a tutorial. IEEE Computer, 20(4):61-73.

Irwin, M. J., and R. M. Owens (1989). Design issues in digit-serial signal processors.
In Proceedings oflSCAS'89, volume 1, pages 441-44.

Irwin, M. J., and R. M. Owens (1990). A case for digit serial VLSI signal processors.
Journal of VLSI Signal Processing, 1(4):321-34.

Kla, S., C. Mazenc, X. Merrheim, and J.-M. Muller (1991). New algorithms for
on-line computation of elementary functions. In Proceedings of the SPIE:
Advanced Signal Processing Algorithms, Architectures, and Implementations II,
volume 1566, pages 275-85.

Knowles, S. C., R. F. Woods, J. McWirther, and J. McCanny (1989). Bit-level
systolic architectures for high-performance IIR filtering. Journal of VLSI
Signal Processing, 1(1):9-24.

Lin, H., and H. J. Sips (1987). A novel floating-point on-line division algo-
rithm. In Proceedings of the 8th IEEE Symposium on Computer Arithmetic,
pages 188-95.

546 CMAPTER g Digit-Serial Arithmetic

Lin, H., and H. J. Sips (1990). On-line CORDIC algorithms. IEEE Transactions
on Computers, 39(8):1038-52.

Lynch, T., and M. J. Schulte (1995). A high radix on-line arithmetic for credible
and accurate computing. Journal of Universal Computer Science, 1 (7):439-53.

Lyon, R. F. (1976). Two's complement pipeline multipliers. IEEE Transactions on
Communication, pages 418-25.

McIlhenny, R. D. (2002). Complex Number On-line Arithmetic for Reconfigurable
Hardware: Algorithms, Implementations, and Applications. PhD thesis, Univer-
sity of California, Los Angeles.

McQuillan, S., and J. V. McCanny (1995). A systematic methodology for the design
of high performance recursive digital filters. IEEE Transactions on Computers,
44(8):971-82.

Muller, J.-M. (1994). Some characterizations of functions computable in on-line
arithmetic. IEEE Transactions on Computers, 43(6):752-55.

Nielsen, A. M. (1997). Number Systems and Digit Serial Arithmetic. PhD the-
sis, Department of Mathematics and Computer Science, Odense University,
Denmark.

Oklobdzija, V. G., and M. D. Ercegovac (1982). An on-line square root algorithm.
IEEE Transactions on Computers, C-31:70-75.

Oppenheim, A. V., R. W. Schafer, and J. R. Buck (1999). Discrete-Time Signal
Processing. Prentice-Hall, Upper Saddle River, New Jersey.

Osorio, R. R., E. Antelo, J. D. Bruguera, J. Villalba, and E. L. Zapata (1995). Digit
on-line large radix CORDIC rotator. In Proceedings ofASAP-95 (Strasbourg,
France), pages 246-57.

Owens, R. M. (1980).Digit On-line Algorithms for Pipeline Architectures. PhD thesis,
Department of Computer Science, Pennsylvania State University, University
Park. (Technical Report CS-80~

Owens, R. M., T. P. Kelliher, M. J. Irwin, M. Vishwanath, R. S. Bajwa, and
W.-L. Yang (1993). The design and implementation of the Arithmetic Cube
II, a VLSI signal processing system. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 1(4):491-502.

Rajagopal, S., and J. R. Cavallaro (2001). On-line arithmetic for detection in
digital communication receivers. In Proceedings of the 15th IEEE Symposium
on Computer Arithmetic, pages 257-65.

Sips, H. J. (1984). Bit-sequential arithmetic for parallel processors. IEEE Trans-
actions on Computers, C-33(1):7-20.

Bibliography 547

Smith, S. G., and P. Denyer (1988). Serial-Data Computation. Kluwer Academic
Publishers.

Tenca, A. F. (1998). Variable Long-Precision Arithmetic (VLPA) for Reconfigurable
Coprocessor Architectures. PhD thesis, University of California, Los Angeles.

Tenca, A. E, and M. D. Ercegovac (1999). On the design of high-radix on-line
division for long precision. In Proceedings of the 14th IEEE Symposium on
Computer Arithmetic, pages 44-51.

Tenca, A. F., M. D. Ercegovac, and M. E. Louie (1999). Fast on-line multiplication
units using LSA organization. In Proceedings of the SPIE Advanced Signal
Processing Algorithms, Architectures, and Implementations IX, volume 3807,
pages 74-83.

Tenca, A. F., and S. U. Hussaini (2001). A design of radix-2 on-line division using
LSA organization. In Proceedings of the 15th IEEE Symposium on Computer
Arithmetic, pages 266-73.

Tisserand, A., P. Marchal, and C. Piguet (1999). FPOP: field-programmable
on-line operators. In Proceedings of the SPIE Advanced Signal Processing
Algorithms, Architectures, and Implementations IX, volume 3807, pages 31-42.

Trivedi, K. S., and M. D. Ercegovac (1977). On-line algorithms for division and
multiplication. IEEE Transactions on Computers, C-26(7): 161-67.

Trivedi, K. S., and J. G. Rusnak (1978). Higher radix on-line division. InProceed-
ings of the 4th IEEE Symposium on Computer Arithmetic, pages 164-74.

Tu, P. K.-G. (1990). On-line Arithmetic Algorithms for Efficient Implementations.
PhD thesis, University of California, Los Angeles.

Tu, P. K.-G., and M. D. Ercegovac (1989). Design of on-line division unit. In
Proceedings of the 9th IEEE Symposium on Computer Arithmetic, pages 42-49.

Tu, P. K.-G., and M. D. Ercegovac (1991). Gate array implementation of on-line
algorithms for floating-point operations. Journal of VLSI Signal Processing,
3(4):307-17.

Tullsen, D. M., and M. D. Ercegovac (1986). Design and implementation of an
on-line algorithm. In Proceedings of the SPIE Real Time Signal Processing IX,
volume 698, pages 92-99.

Watanuki, O. (1981). Floating-Point On-line Arithmetic for Highly Concurrent
Digit-Serial Computation: Application to Mesh Problems. PhD thesis, Uni-
versity of California, Los Angeles.

Watanuki, O., and M. D. Ercegovac (1983). Error analysis of certain floating-point
on-line algorithms. IEEE Transactions on Computers, C-32:352-58.

Function Evaluation

The evaluation of functions is an important part of many numerical compu-
tations. The set of functions we consider includes logarithm, exponential, and
various trigonometric functions. The computation of these functions can be per-
formed in software, using the standard floating-point instructions. For this, there
are libraries that are suitable for particular processors. On the other hand, these
functions can be computed by hardware/firmware implementations. These im-
plementations might be specific for one particular function or for a set of functions.
Since the hardware/firmware implementations can customize the primitives used
and different types of parallelism can be available, the algorithms suited for this
type of implementation might be different than those used for evaluation by soft-
ware. In this chapter we concentrate on hardware/firmware implementations.

In general, these functions cannot be computed exactly with a finite number
of arithmetic operations. Consequently, they have to be approximated. Moreover,
the argument, coefficients, intermediate variables, and result are represented by
finite-precision digit vectors. Therefore, the accuracy is determined by the error
of the approximation and by the roundofferrors that occur during the evaluation
of the approximation.

The choice of a method and a particular implementation depends on the
requirements, such as delay, throughput, area, and energy. Of particular sig-
nificance are the number of bits of the argument and the result, as well as the
accuracy required. In this respect, requirements vary widely, from low-precision
fixed-point representations to double-precision or quad-precision floating-point
representations. Later we give comments on the domain of applicability of each
method.

In particular for floating-point representations, as discussed in Chapter 8, the
IEEE Standard specifies four rounding modes for the basic operations. No such
requirement is specified for the functions because of the difficulty in obtaining cor-
rectly rounded results; this difficulty is described as the Table Maker's Dilemma.

549

550 c H A PT E R 10 Function Evaluation

However, as we comment later, for limited precision, such as single-precision
representation, it is possible to have practical implementations that produce cor-
rectly rounded results. Moreover, in several applications it is convenient to have
other numerical properties, such as monotonicity.

Usually, approximation methods are applicable only for a limited domain
of the argument. Consequently, it is typical to include an initial step of domain
reduction and a final step of reconstruction.

The most-direct evaluation method is a table lookup; this traditional method
has become more practical recently because of the possibility of building larger
tables. As a consequence, it might be the most-effective method for precisions of
up to, say, 12 bits. For larger precisions, the resulting table is too large for practical
implementation so that other methods have to be used.

Implementation of suitable approximation algorithms should utilize only
basic operations, such as additions, multiplications, and table lookups. Because
of this, the approximations we consider fall into two classes. The first class uses
an approximating polynomial and can be used for any continuous function. We
discuss variations of this method that reduce the degree of the polynomial by
incorporating also table lookup. An interesting recent approach is to use only tables
and adders. The second class consists in forming a recurrence that converges to the
value of the function. 1 This recurrence depends on the function being evaluated;
as a consequence, this approach is only useful for some functions. To have a simple
implementation, the operations in the recurrence are limited to multiplication by
the radix (shifts), multiplication by a radix-r digit, additions, and table lookups.
Because of this, these are called shift-and-add algorithms, although for high radices
a rectangular multiplier is also required.

In some instances a rational approximation that consists of the quotient of
two polynomials can be used. The curve-fitting ability of a rational approximation
consisting of polynomials of degree M and N roughly corresponds to that of a
polynomial of degree M + N. Moreover, the two polynomials can be evaluated
in parallel, reducing the evaluation time. Rational approximations are preferable
to polynomial approximations for functions with a pole, such as tan(x), or an
asymptote, such as arctan(x). On the other hand, the drawback is the division
required.

1. Algorithms of this type have been considered in Chapter 7 for reciprocal, reciprocal
square root, and square root.

Correct Rounding and Monotonicity 551

t 0 . 1

1 0 . 2

Argument Range Reduction
Approximation methods can usually be applied only for a limited range of the
argument. Consequently, before applying the approximating algorithm it is nec-
essary to perform a transformation that reduces the range of the argument. More-
over, after obtaining the approximation another transformation produces the final
value. The specific transformations depend on the function and on the approxi-
mating method.

Callingxr the reduced argument, the most-used reduction methods are either

�9 additive, in which Xr = X -- k C . This type is used, for instance, for
trigonometric functions, where C = yr/4.

�9 multiplicative, in which Xr = X C k. This is used, for example, for the
logarithm function.

In the case of floating-point representations, the reduction is applied to the
representation consisting of sign, exponent, and significand. For instance: e

�9 For the logarithm (base 2) function, there is no need to perform explicit
range reduction, since it is possible to approximate directly the significand
and then add the exponent. A reduction step is performed only for zero
argument exponent, to avoid leading zeros that result in a loss of accuracy.
For the exponential (base 2) function with floating-point argument with
exponent E and significand M, the reduction step results in

Mr -- M x 2 E - [M x 2EJ Er = [M x 2EJ 10.1

In general, the reduction step should not result in a loss of accuracy. This might
require that Xr be represented with additional precision. 3

Correct Rounding and Monotonicity
The rounding modes for the basic floating-point operations are defined in Chap-
ter 8. Moreover, methods for obtaining correctly rounded results are described for
addition, multiplication, and division. In particular, the methods for division 4 are

2. For additional details see Schulte and Swartzlander (1994).
3. For details see Muller (1997) and Daumas et al. (1995).
4. And other algebraic functions, such as square root and reciprocal square root.

552 C H A P T E R 10 Function Evaluation

based on the calculation of the remainder produced by the rounded approxima-
tion. These methods are not applicable for nonalgebraic functions, such as those
discussed in this chapter. For these functions, the following approaches have been
used:

�9 For implementations using table lookup only, the correctly rounded values
can be stored. As indicated, these implementations are practical for
low-precision cases.

~ For implementations based on piecewise interpolations, the coefficients can
be tuned so as to produce correctly rounded results. Since the tuning is done
by exhaustively examining all argument values (or at least all values of the
significand), this method is practical for medium-precision cases. 5

�9 As discussed in Chapter 8, the cases that are problematic for rounding
correspond to those in which the infinite-precision result has a large
number of consecutive zeros or ones after the rounding bit. Consequently,
if a bound p on the maximum number of zeros (or ones) is known, for
correct rounding to bit n, the approximation should be computed with an
error less than 2 -(n+l+e) . Although in general these bounds are not known,
they have been obtained for some values of n by selective searches. 6

When the result is not correctly rounded, it is convenient to preserve some prop-
erties of the function, such as monotonicity. This preservation means that if
f (x + ulp) > f (x) , then the approximation F should satisfy F (x + ulp) >
F (x), and similarly if f (x + ulp) < f (x) . For the basic elementary functions
sin, tan, arctan, log2, and exp, monotonicity is preserved (in specific intervals) if
the approximation has an additional accuracy of a few bits. 7

1 0 , 3 Polynomial Approximations and Interpolations
The approximation of a function by a polynomial has the advantages of being
general, since any continuous function can be approximated in this way, and
that the implementation consists of multiplications and additions. Because of

5. For details see Schulte and Swartzlander (1994).
6. For details see Muller (1997).
7. For details see Ferguson and Brightman (1991).

Polynomial Approximations and Interpolations 553

1 0 , 3 , 1

this, the implementation can accommodate a family of functions, where only the
polynomial coefficients determine which function is being computed.

Different types of polynomials are possible. The most appropriate depends
on the domain of the function, the error objective, and the implementation re-
quirements. With respect to the error there are methods to obtain the optimal
polynomial to minimize the maximum absolute error (called minimax approxi-
mation) or the average error (called least-squares approximation). 8 For hardware
implementation usually the minimax case is considered, or an easily implemented
(although not optimal) approximation is used and the required error is obtained
by adapting the degree of the polynomial. The total error is obtained by the ap-
proximation error plus the roundofferrors arising from the use of finite-precision
arithmetic in the evaluation.

For high accuracy and for a large argument domain, a high-degree polyno-
mial is required. Two related alternatives are used to reduce the degree of the
polynomial:

1. Partition into subranges and perform piecewise interpolation. This requires
table lookup in addition to the polynomial evaluation.

2. Range reduction, polynomial approximation, and range recovery. This also
requires table lookup and is suitable only for some functions, in which the
recovery is simple.

We consider these alternatives now.

Polynomial Approximations
The most direct polynomials that can be used to approximate a function are ob-
tained from a truncated Taylor or Maclaurin series. Although, these polynomials
are effective to approximate a function in one point, they do not produce the
minimum error for approximation in a range. Consequently, they are used when
the range is small (maybe as part of a piecewise interpolation or together with
range reduction).

The Taylor series of f (x) about x0 is given by
oo

f (x) = f(xo) + ~ f(i)(x~ (x -xo) i 10.2
it

i = 1

8. See, for example, Davis (1990).

554 e X A P T E R 40 Funct ion Evaluation

where f(i) (x 0) is the i th derivative of f (x) evaluated at x 0- The Maclaurin series

is the special case for x0 = 0.
These series converge for an interval of values of x, which depends on the

function. The absolute error (also called the Lagrange remainder) when the series

is truncated at term k (that is, all terms for i > k are omitted) is

f(k+l) (a) (x - x0)k+ 1
10.3

Ek(X) -- (k + 1)T

where a is an unknown value such that x0 < a < x.

EXAMPLE 10,1 1 with an absolute error Consider the evaluation of y - sin x for 0 <_ x <

less than 2 -32. The Taylor series expansion about x - 0 is

x 3 x 5 x 7
sinx -- x - m + __ _ m + . . . 10.4

3T 5T 7T

Because of the alternating signs, a bound for the error when using a k- term

approximation is

x 2 k + 1

I~k(X) I ~ 10.5
(2 k + 1)t

1 Consequently, This error is max imum for x = 3"

2-(2k+1)
< 2 -32 10.6

(2 k + 1)!

which is satisfied for k - 5.
A better approximation is obtained if the expansion is about the middle

point of the interval. However, in such a case the approximation includes all

powers of x, so it might be more expensive to evaluate. �9

For a polynomial of the same degree, a significantly smaller maximum error than

that of using a truncated Taylor series is obtained by using Chebyshev polynomials

of the first kind. For details, see the references at the end of the chapter.

Another method to obtain a polynomial approximation is by interpolation.

In this method, a polynomial of degree N is obtained by making its value coincide

with the function at N + 1 points (breakpoints). The most direct way to obtain

Polynomial Approximations and Interpolations 555

the coefficients cj is to solve the set of N + 1 linear equations

N

j=0
0 < i < N 10.7

where (Xi, Yi) are the N + 1 breakpoints. The resulting polynomial is then

N
p N (x) = ~ c j x j

j=0
10.8

Instead of solving these equations, there are several direct methods to obtain the
coefficients (see the references at the end of the chapter).

I m p l e m e n t a t i o n

The evaluation of the polynomial approximation computation requires the coeffi-
cients, which can be hardwired or stored in memory, and multiplier/accumulator
units.

The scheduling of the operations depends on the characteristics and the
number of multiplier/accumulator units.

If one nonpipelined unit is available, a sequential algorithm is required. For
this, it is convenient to factor the polynomial as follows (called Horner's rule):

p N (X) - - CO -~- -~'(C1 -]- ~'(C2 -~- X (. . . X (C N _ l -~- X C N) . . .))) 10.9

Then the evaluation of the polynomial results in the following recurrence:

R[i - 1] - c i _ 1 "+" x R[i], i -- N , . . . , 1 10.10

with the initial condition R[N] -- c 2v and the result p N(x) = R[0]. The execution
time corresponds to N multiply/adds.

The presented approach is not the best when the multiplier/accumulator
unit is pipelined or when several units are available, since in those cases a par-
allel algorithm is required. For instance, for a polynomial of degree 7, we can
write

pT(x) = xa(x2(c7 x ~- c6) -]- c5x -{- c4) + x2(c3 x -[- c2) -~- (el x -~- co) 10.11

This can be performed in three multiply/accumulate steps as shown in Figure
10.1. An implementation is illustrated in Figure 10.2. It requires four multiplier/
accumulator units and one squarer.

556 C H A P T E R ~O F u n c t i o n E v a l u a t i o n

Begin)

1
(A=x*x) (B=c7x+c6)

1 i
(C=c5x+c4) (D=c3x+c2) (E=ClX+Co)

I

I

(En)
F I G U R E 10.1 Concurrent execution graph for P 7 (x) .

Step 3
Step 2

Step l I
kl ~ 0

x ~ Il l 121
Pl ~ 112 122 ~

P0 ~ 113 123 =

/11 O1 02

Ir E

I ,,
kl k2

x ~ Ill 121

P3 - - " 112 122

P2 ~ 113 123 ~

M2 O1 02
D G

' - 112 122 ~

�9 ! 0 ~ 113 123 %

' M 3 O1 02

1

x .= 111 121
P5 ~ 112 122 -=
P4 ~ 113 123 =

M4 01 02

Module: Computation steps and outputs produced:
if k 1 = 1 then O1 = I11" 112 + I13 Step 1: A, B, C, D, E
if k 2 = 1 then 0 2 = 121" 122 + 123 Step 2: F, G, H

Step 3: PF(X)
Modules M1 and M3 can be simplified

F I G U R E 10.2 Implementation for parallel evaluation of P7(x).

kl 1 ~ k2

x = 111 121 ~
P7 = 112 122 -=
'~ 113 123

Ms 01 O2

~x~

Polynomial Approximations and Interpolations 557

Cycle

Stage 1
Stage 2
Stage 3

1

A1

2

B1
A2

3

C1
B2
A

4

D1

C2
B

5

E1
D2
C

6

F1
E2
D

7

G1
F2
E

8

H1
G2
F

9

P1
H2
G

10

P2
H

F I G U R E 10.3 Evaluation of P7(x) on a three-stage pipelined multiplier/accumulator.

11

P

For a polynomial of degree N, the number of steps is [log 2 N + 1] and the
number of multiplier/accumulator units is (N + 1)/2.

The operations can also be scheduled on a pipelined multiplier/accumulator.
For instance, a scheduling for a three-stage unit is shown in Figure 10.3. In this
unit, Stages 1 and 2 perform partial product reductions, producing a redundant
product, and Stage 3 performs the accumulation.

If some of the polynomial coefficients are zero, a different decomposition
might be preferable. For instance, if in p7(x) the ci are zero for i even, we can
get

p7(x) --C7 x7 +C5 x5 +C3 x3 "[- ClX --'X4(X2(C7 x) --]- C5X) +X(X2C3-{- el)

10.12

The accuracy of the result depends on the error of the approximation and the
error introduced by the finite-precision coefficients, intermediate variables, and
result.

1 0 . 3 . 2 Piecewise I n t e r p o l a t i o n

An alternative to fitting a polynomial of degree N through N + 1 breakpoints is to
have different polynomials (of lower degree) through subsets of the breakpoints.
This is called piecewise interpolation. So, if the breakpoints are sufficiently close,
it might be accurate enough to do a linear interpolation, fitting a straight line
between adjacent points. The polynomial for the linear interpolation between
breakpoints i and i + 1, illustrated in Figure 10.4, is

Yi+l--Yi
P(i)(x) -- Yi + (x - Xi) 10.13

1 X i + l _ Xi

Consequently, for each breakpoint two values are required, namely, Yi and

(Y i + l - Y i) / (X i + l - X i) .

558 C H A P T EFt IO Function Evaluation

EXAMPLE 10 .2

f (x)

p~(x)
. . . .

v

xi x xi+l

F I G U RE lo .4 Linear piecewise interpolation.

1 Consider an approximation of f (x) - - x 1/3 in the domain ~ < x < 1 by

piecewise interpolation with linear interpolation. As an illustration we only
1 consider four intervals, namely, Xi - g + (1/8)i with i = 0, 1, 2, 3. The

following table contains the required constants:

Yi (Y i + l - Y i) / (X i + l - X i)

0 0.7937

1 0.8550

2 0.9086

3 0.9564

0.4904

0.4288

0.3824

0.3488

For instance, for x -- 0.788 we obtain i = 2 and

p(x) = 0.9086 + 0.3824(0.788 - 0.75) = 0.9231

Implementation

If the Xi are equally spaced and are multiples of 2-k, for an n-bit argument x we
can write

x - - X i + Xr 2-k 10.14

with Xr integer. That is, Xi is obtained as x truncated at fractional bit k. Moreover,

the rest ofx corresponds to (x - Xi). Consequently, for an x ofn bits, f of which

Polynomial Approximations and Interpolations 559

n n- fx ik l l x / TABLE

f - k x - X i

Yi nl /i

D i n2
/

Di = (Yi+ 1 - Yi)2 k

n

/" "~ Pl(X) "" f (x)

k, nl and n2 are determined by desired accuracy of the result

F ! a U R E 10.5 A generic implementation of linear interpolation.

are fractional, X i has n - f + k bits and x - X i has f - k bits. The corresponding
implementation consists of

�9 a module (table) that stores the function values Yi. The input to this module

has n - f + k bits (or one less ifx is normalized so that its most-significant

bit is always 1). Moreover, it could store the values (Yi+l - Yi)/2-k, or this

difference can be computed.

�9 a multiply-add unit. The multiplier has f - k bits.

The value k and the width of the table and of the multiplicand depend on the

accuracy required.

A generic implementation is shown in Figure 10.5.

Error

The error is composed of the error of the interpolation and of the error due to the
roundoff of the intermediate values that are formed during the evaluation. The
first component depends on the particular function as well as on the number and
position of the breakpoints. For equally spaced breakpoints, their number deter-
mines the number of inputs to the module storing the values (the size of the table).

To reduce the error it is possible to use higher-degree polynomials and/or
more breakpoints. Although this requires more constants because of the reduced

error, for the same accuracy it requires smaller tables than the linear interpolation.

However, it requires more multiplication-adds. Special attention has been given

recently to hardware implementations of second-order (quadratic) interpolation. 9

An implementation of a quadratic interpolation is illustrated in Figure 10.6.

9. For details see Cao et al. (2001).

560 CHAPTER IO Function Evaluation

1 0 , 3 , 3

..] TABLE
"-I (y/' Yi+I) Y/+I

I TABLE
"- B

-I

I -- NEI
[s

ai = Yi+l- Yi

NET
A

and
C

ai

-I

r

ai+ sibi'- I MUL r-

 IADD
-I

P2(x)

bi = Yi+l- 2ym + Yi

Ci = (Yi+l + Yi-bi)12

Ym function value at
subinterval's midpoint

e2(x) = si(a i + s i bi) + c i

F I G U R S 10.0 Implementation of a quadratic interpolator. Adapted from Cao et al. (2001).

Reduction, Approximation, and Reconstruction

This method is a variation of the piecewise interpolation method and also uses

table lookup in addition to the polynomial evaluation. Since the approximation

by a polynomial is more accurate for smaller domains, this method reduces first

the domain,]~ then performs the approximation, and finally reconstructs the

approximation of the function. It consists of a series of N breakpoints Xi and a

table storing approximations of f (X i) . To compute f (x) the method consists of

the following three steps:

1. Reduction: Select the breakpoint Xi closest to x and apply the reduction

transformation producing r such that

r - R(x, Xi)

The function R is chosen so as to simplify the remaining steps.

10. This is a second-level reduction, which is applied in addition to the initial range reduction,
discussed before.

Polynomial Approximations and Interpolations 561

2. Approximation: Calculate an approximation to g (r) by using a polynomial
p(r).

3. Reconstruction: The value f (x) is obtained from g(r) and Yi "~ f (X i) by
the function

f (x) -- S(g(r), Yi)

The location of the breakpoints is selected so that the reconstruction function is
simple. Consequently, the location of these points is different for each function.
Also the method might not be applicable to functions for which the reconstruction
is complicated.

| X A M P L | + 0 , 3 Compute In(x) on [1, 2].

1. Reduction: Find the breakpoint Xi = 1 + i/64, i = 0, 1, . . . , 64 such
that Ix - Xi I < 1/128. Obtain

r = 2(x - Xi) / (x + Xi), Iri < 1/128

2. Approximation: Approximate ln(x /Xi) by a polynomial p(r). Since

(~ i) (1 - 2-1r) In = In
1 + 2 - 1 r

the polynomial is of the form

p(r) - r +par3 + p2r 5 + . . . + pNr2U+l

3. Reconstruction: Reconstruct ln(x) using the following relations

In(x) - In(X/) + ln(x /Xi)

In(X/) + p(r)

~ Yi + p (r)

where Yi ~ ln(Xi), i = 0, 1, . . . , 64 are stored in a table.

As in the piecewise interpolation method the error depends mainly on the number
ofbreakpoints and on the degree of the polynomial, ll

ll.For additional examples and error analysis see Tang (1991).

562 c H A pT E R le Function Evaluation

n,j
REDUCTION

r = R(x, X i) 1
|

APPROXIMATION

RECONSTRUCTION

f (x) = S (g (r) , Yi)

TABLE

Yi - f (Xi)

F I G U R E 10.7 Block diagram of reduction, approximation, and reconstruction.

Implementation
As for piecewise approximation the implementation consists of a table and a
polynomial evaluator. However, since the domain is first reduced to a common
subdomain, only one polynomial is required. On the other hand, additional mod-
ules are required for the reduction and reconstruction, and these depend on
the function being computed. Moreover, as indicated above, the locations of the
breakpoints also depend on the function, and this influences the bits of the argu-
ment used to access the table. Figure 10.7 illustrates implementation of reduction,

approximation, and reconstruction.

1 0 , 4 Bipartite and Multipartite Table Method
This method uses table lookup and additions and therefore reduces the size of
required table(s), with respect to the table-only method. Moreover, it does not

require the multipliers used in the polynomial methods.

Bipartite and Multipartite Table Method 563

A bipartite formula to approximate f (x) is obtained as follows. Split the
n-bit argument x into three parts 12 as

X - - X l "-]- X2 2 - k + X3 2-2k 10.15

w h e r e k - n / 3 a n d 0 < x i < 1 - 2 -k.
The Taylor series expansion of f (x) at x 1 -~ x 2 2-k is

f(x) = f (x l + x22-k) + x32-2kf(1)(x1 + x22-k) + E 1 10.16

where

1
E1 -- -~x22-4k f (2) (Or)

and o~ E [x 1 + x22 -k, x].

The derivative f(1)(x 1 + x22 -k) is approximated by f(1)(xl) , resulting in

f (x) -- f (x l + x22 -k) + x32-2k f(1)(xl) + E1 + E2

where E2 -- x2x32-3kf(2)(~) and ~ E [Xl, Xl + x22-k].

Therefore, the bipartite formula is

f (x) ~ Fo(xl, x2) -]- Fl(Xl, x3)

with an error E ~ ~-3k F(2)
"" J max"

10.17

10.18

10.19

1 0 , 4 . 1 Implementation
F0 and F1 are precomputed and stored in tables TO and T1. As illustrated in
Figure 10.8, for an input x the corresponding values are obtained from the tables
and added to produce the approximation of f (x) .

The TO table stores a value of the function on the domain segments defined
by (Xl, x2), while table T1 stores the "offset" values defined by (Xl, x3) to be
added to the segment values. This is illustrated in Figure 10.9. To minimize the
error, the values in table TO are at the middle points of the segment.

12. In general, the split need not be into equal parts.

564 c H A P T E ~ Ir Function Evaluation

Xl x2 x3

t ' k k

i'l i
Table TO Table T1

Fo(Xl, x2)l I El(X1, x3)

. L _ _ ,
I I

' Adder ' I I
I I

Approximation of f(x)

F I G U R E 1 0 . 8 Bipartite method.

segment offsets: FI(X 1, x3)

�9 -I - I - - -

"I"- ~ ~ ~ - , i

" l ' - - - - J - - ~ l ~ I I I
T - - - - ' _ , J ' ' '
"1" 7~ I I I
/ . / I i I I

T 77 ' , : : ',
~ " = ~ : I I I I I I

I g ~ I I I I
I / I I I I
" l " -- ~ I I I I
/ / ' ' I '
/ ~ ' ' ' I
I t I I I I

- I ~ I I I I
I I I I . ~

F I G U R E 1 0 . 9 Segment and offset values.

Bipartite and Multipartite Table Method 565

Xl] x2 ~i'"iXm
'k ~k

k = n/m

1 0 ~ 1 7 6

Table TO Table T1 ooo Table T(m-1)

f0(Xl , X2) ~] fl(Xl ' X3)
. __U- 1___
i i
i , Multioperand adder ',
! i

Approximation off(x)

I fm_l(Xl Xm)

F I G U R E 10.10 Multipartite method of function approximation.

Comparison
For an argument ofn bits, an approximation using a single table requires 2 n words,

while a bipartite method requires two tables of 22n/3 words each- -a significant

saving. For example, for n = 16, a bipartite method uses two tables of 21] words

compared to a direct method using one table of 216 words. Note that since the offset

is small (many leading zeros), the width of the second table is also small. Moreover,

the output of the two tables corresponds to a carry-save representation of the sum,

so that no carry-propagate adder is required if this carry-save representation can

be used in the operations that follow.

Multipartite Table Approach
The bipartite table approach can be generalized by subdividing x into m parts

(Xl, x2, . . . , Xm) and having one offset for each pair (Xl, xp), p -- 2, . . . , m. As

shown in Figure 10.10, this results in a reduction in the total number of table bits,

but requires more additions. 13

13.For additional details see Stine and Schulte (1999) and Muller (1999).

566 C H A P T E R re Function Evaluation

1 0 . 5 Rational Approximation
Any continuous elementary function can be approximated by a polynomial of

degree L, PL(x), or by a rational function

PM(X)
RM,N(X) = 10.20

ON(X)
As mentioned before, in many instances rational approximations are more accu-

rate than the polynomial approximations using the same number of coefficients.

Moreover, rational functions have a higher degree of parallelism in execution. A

disadvantage is the need for a divider.

The coefficients of a rational approximation RM,N(X) for a function f (x)
are determined so as to minimize the maximum relative error

[RM, N(X) -- f(x)] 10.21
max[a,/,] f (x)

over an interval [a, b]. Such an approximation is unique. The coefficients can be

obtained using methods discussed in the literature. 14

EXAMPLE 10.4 The following rational function 15 approximates tan(Zx) in the interval x

[0, 1] with an absolute error less than 10 -8 (not including roundoff errors):

tan ,~ x R1,2(x 2) -- x
4

Pl(x 2) pl x2 -i- po
Q2(x 2) q2 x4 -+- qlx 2 + q 0

10.22

The coefficients of the P and Q polynomials are

Pl ----0.125288887278448 • 102

P 0 - 0.211849369664121 X 103

q2 -- 1.0 • 101

ql - --0.714145309347748 x 10 2

q0 -- 0.269735013121412 x 103

10.23

14. For example, consult Hart et al. (1978).
15. From Hart et al. (1978), pages 119 and 216, TAN 4142.

Rational Approximation 567

In comparison, a polynomial approximation of tan(4 x) in the same in-
terval with a similar absolute error 16 is

(4) tan x ~ x P6 (x - - x (c 6x 12 .+. C5X 10 .~_ C4X 8 _~_C3X6 _~_ C2X4 _~. ClX2 +CO)

10.24
where the coefficients are

c6 = 0.4443199695 • 10 -3

c5 = 0.951307678 • 10 -4

C4 = 0.2931842304 • 10 -2

c3 = 0.97543639755 • 10 -2 10.25

c2 = 0.398891627332 x 10 -1

c 1 = O. 1614868943266

co = 0.7853982781345

The computational graphs of these two approximations are illustrated in
Figure 10.11. The rational approximation requires four multiplications, two
multiply-adds, one addition, and one division. If implemented with three
multiply-add units, an adder, and a divider, the critical path corresponds,
roughly, to multiplication, multiply-add, addition, and division operation.
On the other hand, the polynomial approximation requires six multiply-adds
and four multiplications. Implemented with four multiply-add units, it has
a critical path of two multiplications and three multiply-adds. The choice of
the method depends on the number and relative delays of functional units as
well as on the design objectives. �9

10~5ol M S D F P o l y n o m i a l / R a t i o n a l F u n c t i o n E v a l u a t o r

We now discuss an approach for evaluation of polynomial and rational func-
tions suitable for hardware implementation. The approach is also of interest
since it eliminates the use of explicit division in evaluation of certain rational
functions. The approach uses most-significant-digit-first (MSDF) serial arith-
metic, discussed in Chapter 9.

16. See Hart et al. (1978), pages 119 and 215, TAN 4225.

568 C H A P T E R lO Function Evaluation

(a=x*x)(~-~,x)(~-~oX)
1 I '

~= "A) (E=B*A+ C) (F=qlx2+qo)

xPI(X2I
] Q2(x 2)

(H= EIG) 4 multiplications
2 multiply-adds
1 addition
1 division

tan((~4)x)

(a)

(a:x,x)

~= "A) (C=c5A+c4) (D=caA+c2) (E=clA+Co)

(F = B * ~ (G=c6B+ ~ (H=DB+E)
I ~ 1 ~ I

P6 (x2)

(~-,x)
xP6 (x)

tan((~4)x)

(b)

4 multiplications
6 multiply-adds

F ! 6 U R E 10.11 Computational graphs for computing tan(4x)" (a) Rational approximation.

(b) Polynomial approximation.

Rational Approximation 569

To introduce the method we illustrate a correspondence between a solution
to a system of linear equations and a rational function. Consider the system

yl - - po + x " ye

ye = Pl - q l �9 y l -Jr- x �9 Y3

Y3 = P2 -- q2 �9 Yl + x �9 Y4

Y4 = --q3 " Yl

Solving for y l, we obtain

10.26

p2 x2 + p l x -+" PO 10.27
Y l ' - 2

q3 x3 + q2x + q l x + 1

or, Yl = R2,3 (x) . That is, a rational function R can be evaluated by solving a

system of linear equations similar to system (10.26).
Clearly, solving the system (10.26) by a direct method such as the Gaussian

elimination, would not be attractive. Instead, we solve the system iteratively
using MSDF serial arithmetic. The coefficients p's, q's and the argument x
are in parallel form while y~s are produced and used digit-by-digit in MSDF

manner. Each Yk of system (10.26) is evaluated on a separate module that uses
digit • digit-vector multiplication, addition, and output digit selection to perform
MSDF multiply-add operation. To obtain one digit of each Yk per iteration step,
the coefficients and the argument x are bounded as discussed later. The solution
is in the (-1 , 1) range, i.e., the MS digit of each Yk is 0, to allow initialization
of the iterative process. In step j the network of modules produces the j + 1-st
d i g i t d k j + l of each Yk using d i g i t s d k j produced in the previous step. Into steps,
the result ofm radix-r digits is obtained. In other words, the iterative method
used is linearly convergent. Note that division required by the rational function
is not explicitly performed. As discussed shortly, the iterative method used is a
generalization of a scalar digit-recurrence division to a vector by matrix division.
The network for solving system (10.26) is shown in Figure 10.12. The result
in digit-parallel form can be obtained during the computation using on-the-fly

conversion.
We now give a general formulation of the MSDF method for evaluating

polynomials and rational functions. 17 As mentioned above, the corresponding

17. Details of the method are in Ercegovac (1977).

570 CNAPTER 10 Function Evaluation

x PO x Pl ql x P2 q2 x 0 q3

dlj

Oen'ntvh:-;I ~ ~ P a r a l l e l < S e r i a l

g2,3(x)

FIGURE 10.12 MSDF network for evaluation of rational function R2,3(x).

implementations have a delay linearly proportional to the number of digits in the

result. The approach is (1) to transform a polynomial or a rational function into

a system of linear equations, and (2) to solve the system using digit-recurrence

division generalized to matrices and vectors in which the coefficient matrix corre-

sponds to the divisor and the right-hand side vector to the dividend. The quotient

is the solution vector. The elements of the solution vector are, as expected, obtained

starting with the most-significant digits. Like in scalar division, redundancy in

the quotient and residual representation is used to reduce the delay and simplify
the selection of result digits.

In the following discussion boldface letters denote matrices and vectors.
First, map a function f(x) (rational function or a polynomial)

f(x) =:> L : A . y = b 10.28

such that y 1 -- f (x).

For example, a rational function R2,3(x), discussed above (10.26) is mapped
to the matrix/vector form as follows:

1 - x 0 0 Yl P0

ql 1 - x 0 Y2 _ Pl

q2 0 1 - x Y3 P2

q3 0 0 1 y4 0

10.29

Rational Approximation 571

Solving the system produces y such that

Yl = R 3 , 2 (x) - -
p2 x2 + plx + po

q3 x3 "Jr q2 x2 -+-qlx "+" 1
10.30

Similarly, a polynomial P3(x) is mapped to the following system

1 - x 0 0 yl P0

0 1 - x 0 y2 __ Pl

0 0 1 - x y3 P2

0 0 0 1 y4 P3

10.31

such that yl "- P3(x) = p3 x3 + p2 x2 + plx + Po
Then, as mentioned above, the system L is solved by a digit recurrence

division algorithm applied to a divisor that is a matrix (A) and a dividend (b)

that is a vector. The solution vector y is computed most-significant digit first,

producing m significant digits in m steps.

b
y - - m

A
10.32

In general, for a solution to exist, the matrix A must be nonsingular. Moreover, for a

digit recurrence method to be applicable, the matrix must be diagonally dominant.

That is, for each row, the sum of absolute values of off-diagonal coefficients must

be smaller that the diagonal element. Since the matrices considered here have 1 s

on the diagonal, a necessary condition for convergence is

Z] a i , j [< 1 10.33

For radix r and the quotient-digit selection by rounding, the condition (10.33) is
more restricted and requires prescalingNas in the high-radix division with selec-
tion by rounding. 18 For simplicity we consider here only radix 2. The algorithm

for radix 2 is summarized in Figure 10.13.

In the algorithm we use the following notation:

�9 Matrices and vectors of elements are in boldface: the coefficient matrix A of

order N; the solution vector y - (y l, . . . , YN); the right-hand side vector

b - - (b l , . . . , bN) .

18. Ercegovac (1975, 1977).

572 C H ~ P T E R ~O Function Evaluation

where

1. [Initialize]

w[0] = b; d[0] = 0;

2. [Recurrence]

f o r j = 0 . . . m - 1

v[j] = 2(w[j] - A d 0]);

d o + 1] +--SEL(~j]) ;

w[j + 1] +--v[j];

Yl[j + 1] ~--CONVERT(yl[j],SEL(v~j]))

end for

3. [Result]

yl[m] ~ f (x)

Each residual is in redundant form, represented by the pseudosum WS and
stored-carry WC bit-vectors. For simplicity, we use wk[j] in the description.
m is the precision in bits.
SEL is the digit selection function

dkj = SEL(vk[j l) -- 0

- 1

where vk[j] is the estimate of vk[j] - 2(w k [J] - d kj - q i d 1 j + x d (k + 1)j)
truncated to one fractional bit.

A

if vk[j] > 0.5

if -0 .5 < vk[j] < 0

if wk[j] < - 1

F I G U R E 10.13 Radix-2 MSDF algorithm for evaluating polynomial and rational functions.

The residual vector at step j :

w[j] = (wl[j] , . . . , wN[j])

The result digit-vector at step j :

d [j] - - (d l j , . . . , d N j)

where digit dkj E { - 1, 0, 1 } is the j th digit of
m

Yk -- ~ dkj 2- j
j= l

10.34

10.35

Rational Approximation 573

EXAMPLE 10.5

Note that the multiplications in the term A • d[j] are implemented as digit-vector

by digit multipliers.
The convergence of the algorithm requires the following conditions to be

satisfied:

lyil ~ 1
3

max Ibi I < - 10.36
i - - 4 () 1

max ~ l a i j l <
j =fii - - -~

The mapping onto a linear system L in the case of rational functions requires

that q0 = 1. This may require recalculation of the coefficients by dividing P and

Q byq0.

We present an implementa t ion for evaluation of the rational function R3,4(x)
as an approximat ion to s inh(x) . 19

To satisfy the bounds (10.36) and to havea 1,1 = 1, the original coefficients

are divided by q0. Moreover, we restrict the a rgumen t x to [0, 1] and divide
3 all normal ized coefficients of P by 2 to make them < ~. This scaling requires

one addit ional iteration.

We illustrate the a lgor i thm for m = 12. The normal ized coefficients,

rounded to 12 bits, are shown in hexadecimal:

P3 = 0.0d8

P2 = 0.000

Pl = 0.800

P0 = 0.000

q4 = 0.007 10.37

q3 = 0.000

q2 = -O.Ofa

ql = 0.000

q o = 1.000

19. The coefficients are obtained from rational function approximation of sinh(x) in the
interval x E [0, 1] with a relative error less than 10-13; see Hart et al. (1978), pages 104 and
182, SINH 2002.

574 C H A P T E R 10 Function Evaluation

x 0 X Pl O x Oq2

I [oi,,I Ii~ I
On-the-fly
Converter ~ Parallel

R3,g(X)

xP30

Module 4

0 q4

Module 5

< Serial

F ! G O R S IO. 14 Implementation of rational function evaluator for R3,4(x). (The initial values

correspond to the rational approximation for sinh(x).)

As shown in Figure 10.14, there are five modules performing the follow-
ing residual recurrences:

w l [j + 1] = 2 (w l [j] - d l j + x .d2 j)

w2[j + 1] = 2(w2[j] - d 2 j - q l . d l j + x .d3 j)

w3[j + 1] = 2 (w 3 [j] - d 3 j - q 2 . d l j + x .d4 j) 10.38

w4[j + 1] = 2(w4[j] - d4j - q3 " d lj + x �9 d5j)

w 5 [j --]- 1] = 2 (w 5 [j '] -- d 5 j - q 4 " d l j)

The digits d kj are selected using the selection function defined in Figure
10.13. The initial residuals are

(w 1[0], w 2[0], w 3[0], w 4[0], w 5[0]) - (0, p 1, 0, p 3, 0)

A parallel form of the result can be obtained using on-the-fly conversion.
The evaluation of R3,4(x) for x -- 0.000110100001 with 12-bit preci-

sion, showing nonredundant next residual v 1 (for simplicity), is illustrated in
Table 10.1. Other residuals are not shown. �9

Implementation

An implementation consists of one module per row of the system L" the number
of rows (the order of the system) N -- max(degree(P), degree(Q)) + 1. In a

Rational Approximation 575

5

6

7

8

9

10

11

12

v lU]

0.000000000000

0.001101000010

0.011010000100

0.110100001000

-0.010111110000

-0.101111100000

0.100001000000

-0.111110000000

0.000100000000

0.001000000000

0.011101000010

0.111010000100

-0.011000111010

d lj+]

0

0

0

1

0

- 1

1

1

0

0

0

1

0

d 2j+1

1

0

0

0

0

0

0

0

0

1

0

- 1

1

d 3j+l

0

0

0

0

0

1

- 1

0

0

1

- 1

1

0

d 4j+ 1

- 1

1

1

1

0

d 5j+ 1

0

0

0

0

0

0

0

0

0

0

0

0

- 1

y l [j + 1]*

0.000000000000

0.000000000000

0.000000000000

0.001000000000

0.001000000000

0.000110000000

0.000111000000

0.000110100000

0.000110100000

0.000110100000

0.000110100100

0.000110100010

0.000110100010

T A a L S 10.1 Evaluation of sinh(0.10197) using rational approximation and radix-2 general-

ized division algorithm. The error] sinh(x) - y 1[13]) I < 2-lZ. y 1[13] is computed to compensate

for the initial scaling of p coefficients by 2.

radix-2 implementation for a rational function, a module, shown in Figure 10.15,

has a [4:2] adder, four registers, two multiplexers with complementers, and a

digit selection. The modules for row 1 and row N are simpler, using a [3:2]

adder, three registers, and one multiplexer. The modules are initialized in a

bit-parallel manner. Dur ing the evaluation steps, only single digits are passed

between the modules. The result produced serially by Module 1 is converted into

a conventional bit-parallel form using an on-the-fly converter. In the case of a

polynomial evaluation, all modules but the last one use [3:2] adders. The module

corresponding to the last row simply shifts out serially the coefficient p N-1.

The delay for a rational function evaluation implementation is

T - - (l s e l Jr tMUX + t[4:2] -b tR~o)m 10.39

Comparison with a conventional implementation for evaluating a rational func-

tion consisting of multiply-add modules and a divider is left as Exercise 10.11.

576 CHAPTER 10 Function Evaluation

Argument x 1

Reg x

I Complement

d(k+l)j ~l SELECTOR[dlj

Itialized with 1
coefficient qk-1

I Reg q

.J "-I SELECTOR

I
Complement

ADDER

ms bits vk[j] l l Initialized with
. coefficient Pk-1

dkj+l

I 11
wk[jl

~ - - Parallel ~ Serial

SEL block produces estimate and
performs selection

M block performs subtraction of dkj
(register control signals not shown)

F I G U R E 10.15 Implementation of MSDF module used in evaluation of rational functions.

IO.6 Linear Convergence Method
In this method a sequence of approximations is constructed that converge to the

function. To control the sequence, an auxiliary sequence is used, which converges

either to one or to zero. In the first case, the method is called multiplicative
normalization, 2~ and in the second additive normalization.

20. Note that the term "normalization" is used with a different meaning in Chapter 8.

Linear Convergence Method 577

10+6.1

In Chapter 7, muhiplicative normalization has been used for reciprocal and
for square root. In that case, the main primitive operation is multiplication and the
convergence is quadratic. Here we consider algorithms with linear convergence.
This replaces full multiplications by multiplication by one digit and also allows
the computation of some functions, such as logarithm, because the recurrences
include functions that are difficult to compute, but can be stored in tables of
reasonable size for the case of linear convergence.

In these linear convergence algorithms the primitives are multiplication by
powers of the radix (shifts), multiplication by a radix-r digit, and additions.
Because of this, this class of algorithms is called shift-and-add, although for high
radices rectangular multipliers are also needed.

Multiplicative Normalization

This approach has been used for several functions, such as reciprocal, division,
square root, reciprocal square root, and logarithm. In all cases, there is a sequence
that converges toward one, and this controls the convergence of another sequence
toward the result. Because of this, we first consider the convergence of the first
sequence and then apply this to the logarithm function.

Multiplicative Convergence toward One

The iterative algorithm consists of determining a sequence P [j] such that the
sequence x [j] converges to one, where

x[j + 1] = x[j]P[j] 10.40

with x [0] = x. For linear convergence we make

P [j] = (1 + Sj r--J) 10.41

where r is the radix of the algorithm and sj is a radix-r digit. Note that the
multiplicative normalization produces a continued product representation of the
reciprocal of x, that is,

1 I ~ I~ (- ~ P[j] = 1 -~- S i r -i) 10.42
x j =0 j =0

That is, this normalization can be used to produce an approximation of the
reciprocal function.

578 CMAPTER 10 Function Evaluation

Selection Function and Residual

The specific selection function depends on the radix, the digit set, and the rep-

resentation of x [j]. The design of a selection function follows the same method

as discussed for division and square root (Chapters 5 and 6). With respect to the

radix, since the selection function now depends only on one variable (instead of

on w[j] and d as in division), higher radices, such as radix 16, are practical. In

addition, because of the convergence toward one, selection by rounding is possible
and might be appropriate for high radices. 21

As for digit recurrence division, we can have restoring and nonrestoring

algorithms (with nonredundant digit set). Also possible is to use a redundant digit

set. Moreover, in this latter case, it is possible to use a nonredundant adder (CPA)

or a redundant adder (CSA or signed-digit adder). Since the use of a redundant

digit set and a redundant adder results in a faster iteration, we concentrate on

that case.

To simplify the selection, we define a (scaled) residual

w [j] = r J (1 - x [j]) 10.43

and since x [j + 1] = (1 + s jr - j) x [j], we obtain the recurrence

w[j + 1] = r (w [j] - x [j] s j) = r (w [j] - s j + s j w [j] r - j) 10.44

with initial condition

w [0] = 1 - x 10.45

The digit sj is selected so that the residual is bounded. Calling B[j] the upper
bound in iteration j , and using a signed-digit set - a ~ sj ~ a , from the
recurrence we get

B[j + 1] = r(B[j] - a + B[j]ar - j) 10.46

The solution to this recurrence is complicated. Assuming that B[j + 1] = B[j]

(which is not the case), we get

rp
B[j] -- 10.47

1 + pr-J+l

21. See Chapter 9.

Linear Convergence Method 579

If this bound is used, we get w[j + 1] = B[j], which makes the algorithm
converge since w[j + 1] < B[j + 1].

Similarly, for the lower bound (assuming the bound is independent of j) we
get

rp
B [j] = - 1 0 . 4 8

1 - p r - J +1

However, in this case using this bound the algorithm would not converge since
we get [w[j + 111 > [B[j + 1]. A solution is to use

rp
B[j] = -

1 - pr -(j +2)

The selection interval ofw[j] is then 22

U k
B~" + 1] + r k

r(1 + k r - J)

p + k (1 + pr -J)

(1 + pr -J) (1 + k r - J)

10.49

10.50

- P + k(1 - pr-(j+3))

Lk = (1 - pr -(J +3)) (1 + k r -J)

For the case of carry-save representation of the residual and an estimate cor-
responding to the assimilation up to fractional bit t, the selection function is
described by the selection constants ink, such that

max(L k) < m k ~ min(U k_ 1) 1 0 . 5 1

where
A A

Lk = [Lk ~t U k - 1 - - L U k - 1 - - 2 - t i t 10.52

1 1] . E x A M P t t 1 0 . 6 We describe a radix-2 multiplicative normalization algorithm for x ~ [3,
The recurrence becomes

w[j + 1 1 - 2 (w [j] - s j + w [j l s j 2 - j) 10.53

The selection intervals (p -- 1, j > 1) become

1 + (1 + 2 - j) - 1 + (1 - 2 -(j+3))
- - > 1.11 L1 = < -0 .04

U1 - (1 + 2-J)(1 + 2-J) - (1 + 2-(j+3))(1 + 2-J)

22. See Chapter 5 for definitions and detailed method.

580 CHA P T ~ 10 Function Evaluation

1 - 1
u 0 - > 0 . 6 6 L 0 = < - 1

1 + 2-J - 1 - 2-(J +3) -

1 - (1 + 2-J) - 1 - (1 - 2 -(j+3))
U_I = > - 0 . 6 7 L - 1 = < - - 4 . 1

(1 + 2-J)(1 -- 2-J) -- (1 -- 2-(J+3))(1 -- 2-J) --

For j = 0, the selection intervals are defined as for j > 1 except that

L-1 and U-1 are not defined. Since s 0 =fi - 1 , this presents no problem.
I f t - 2 we get

A A

min(U0) -- L l . l l - 0 . 2 5 J 2 - 0.75 max(L1) = r - 0 . 0 4 1 2 - 0

A A

m i n (U _ l) - l - 0 . 6 7 - 0 . 2 5 1 2 - - 1 max(L0) = r - 1] z - - - 1

The corresponding selection constants are

m 1 m 0 , m 0 = - - 1 1 0 . 5 4

This selection function produces s 0 = 1, which is a valid choice for the range

o f l / x . �9

An implementation of multiplicative normalization for radix 2 is illustrated in
Figure 10.16. Note the variable shifter required for this algorithm.

] MUX

i Reg WS
,, Reg WC

_1 SH,FTER I...J
-I r
E I

[4:21 I

w[j + 1]

F I G U R E 10. lS An implementat ion of multiplicative normalization.

Linear Convergence Method 581

Selection by Rounding for (Very) High Radices

Convergence to 1 permits selection by rounding and therefore a high-radix al-
gorithm. However, in the first iterations selection by rounding is not possible, so
that an initial approximation of 1/x by other means is required. This can be done
by table lookup or by a linear approximation (see Section 7.1.3).

In selection by rounding, the digit is obtained by rounding the carry-save
residual (truncated to fractional bit t). Calling this truncated residual G[j], we
get

The next residual is then

Since

L lj s s - U]+j

(L 1j) w [j + l] - - r w [j] - ~ [j] + ~ +sjw[j]r -j

1 (L < w [j] - G[j]
2 -

1 + < ~ + 2 -t

the worst case is the upper bound. Since for selection by rounding

10.55

we get

10.56

10.57

1
w[j] < a + - 10.58

2

(1 ta 1) _ j) w [j + l] < r ~ + 2 - t + a + ~ r

Making a = (r - 1) for simplicity, there is convergence if

10.59

(r -- 1) 2) 1
2 -t < ~ (1 -- 2/r -- 1/r = + E 10.61

2r
resulting in t > 2.

Consequently, there is convergence for j > 3. The sj digits for j -- 1 and
j -- 2 can be obtained from an approximation of the reciprocal of x using only
its most-significant bits.

In such a case, for j > 3,

(r - 1) - j+ l~
2 -t < ~ (1 -- 2r-J+2 _ r j 10.60

2r

582 c M ApT E ~ 10 Function Evaluation

Actually, instead of obtaining an approximation corresponding to the first

two digits, the algorithm converges if the approximation has h fractional bits

with log2(r) < h < 2 log2(r) (that is, more than one radix-r digit but less than

two). This reduces the requirement on the precision of the approximation and

simplifies the calculation of the initial residual using a rectangular multiplier, as

discussed now.
The algorithm is then as follows: 23

1. Obtain an initial approximation of the reciprocal with h fractional bits.
Call this approximation A and

P [- 1] - - A 10.62

2. Obtain the initial values as follows:

w [0] = 2 h (1 - P [- 1Ix) requires an h + 1 by n rectangular multiplication

y[0] - P [- I]
10.63

3. Begin iteration

End iteration

w[j + 1] - r (w [j] - s j +sjw[j]2-hr -~)

P[j] = (1 + s j2-hr - j)

y~" + 1] = yb']P~']

10.64

EXAMPLE 10.7 We now give a numerical example. For simplicity, we use a nonredundant
representation of the residual (which makes t = 0) and the relatively low
radix 16. We give the result of the execution in radix-16 representation.

Consider the calculation of the reciprocal ofx -- (O.A3B6)16 '~ 0.639510.

1. Initial approximation of reciprocal with h = 6 fractional bits:

A = 1.1001002 -- 1.9016 = 1.562510

23. The algorithm computes the values P [j] as well as the approximation to the reciprocal
y [j]. For the application in function evaluation the sequence P [.1.] is used.

Linear Convergence Method 583

.

,

In i t ia l values:

I te ra t ions :

so - - 0

P [O] - 1

P [- I] - 1.90

w[0] -- 26(1 -- O.ffcc 60) - - O.Oce 8

y[O] = 1.90

w[1] = 16(0 .0ce 8) = O.ce 8

y[1] = 1.90

s 1 = 1

P[1] = (1 + 2 -1~) = 1.004

w[2] = 16(0 .ce 8 - 1 + O.ce 8 x 2 -10) - - - 3 . 1 4 c 6

y [2] = 1.90(1.004) = 1.9064

s 2 = - - 3

P[2] -- (1 - 3 x 2 -14) -- O.fff4

y[3] = 1.9064 x O.fff4 = 1.90513b5

1/x ~ (1.9050100) 16

Input Domain

T h e reciprocal of x is represen ted by the p roduc t of the P [j]. Consequen t ly for

a digit set s j E { - - a , . . . , a },

1 1
< x < 10 .65 m (- - i ~ ~ m

Hi=0 1 + a r) Hi=0(1 - a r - i)

For instance, for r -- 2 (e l iminat ing the factor for i - 0 in the r ight product)

the d o m a i n is 0.21 < x < 3.45, and f o r r - 4 a n d a = 2 the d o m a i n is

0.19 < x < 2.38.

584 CHAPTER 10 Function Evaluation

Logarithm

We want to compute y -- In(x). Since the multiplicative normalization produces

we get

m m

- "~ H P[j]-- I - I (1 +sj 2-j) X j =0 j =0

10.66

m m

In(x) ~ - ~ In P [j] -- - s In (1 +s j2 -j) 10.67
j =0 i =0

Consequently, the s i obtained from the multiplicative normalization are used to

obtain In(1 + s j 2 - j) from a table and these values are then added. So, in addition

to the recurrence for multiplicative normalization, we have the recurrence

y[/" + 1] - y [j] - ln (P[j]) 10.68

The result is y [m + 1] ~ y [0] + In(x).

Error

The absolute error 24 is

E - - l n (x) - y [m + 1] 10.69

However,

() t x m) Pb'] In(x) = In x - In H P[J] - ~-~ln(P[J])
1-I P b] i=0 i=0

= ln(x[m + 1]) + y[m + 1] 10.70

resulting in

E -- ln(x [m + 1]) 10.71

Since the power series expansion of In(z) is

(z - 1) 2
In(z) - - (z - 1) -

2
+ . . . (0 < z < 2) 10.72

24. This error is produced by the convergent algorithm. In a particular implementation, the
contributions due to finite-precision representations have to be included.

Linear Convergence Method 585

making z = x [m + 1], the error is bounded by

IEI _%< Ix[m + 1] - 11 +
(x[m + 1] - 1) 2

10.73

From this expression we see that a more accurate approximation than (10.68) is
obtained as

In(x) ~ y [m + l] + x [m + l] - I 10.74

The resulting error is bounded by

(x[m + l]-- l) 2
IEI _< 10.75

2

For instance, if the approximation of 1/x has an error bound of 2 -n , then the basic

algorithm would also have an error of 2 -n , whereas the modified approximation
would have an error bound of 2 -2n-1. However, this reduced error might result

in an increased computation cost since x [m + 1] has to be computed, while for
the basic algorithm only w[j] is required.

Since the power series expansion used is valid for 0 < x [m + 1] < 2, the
1 analysis is valid for x > 3"

Algorithm for ln (x)

We summarize in Figure 10.17 the radix-2 algorithm for computing In(x) with

multiplicative normalization, using the approximation In(x) ~ y[m + 1] with
an absolute error of 2 -m .

The evaluation of ln(0.631) with 12-bit precision showing nonredundant
residuals (for simplicity) is illustrated in Table 10.2.

Implementation

As shown in Figure 10.18, the overall implementation requires two variable
shifters, one [4:2] adder, one [3:2] adder, one CPA, the selection function module,
two multiplexers, a module with a table for generating Lj constants, and four
registers.

The delay is

TLN = [max((max(tsel, tshift) + t4-2), (tsel + t~able + tcsa)) + tReo]m + tcea

10.76

586 CHAPTER IO Function Evaluation

,

[Initialize]

y[0] = 0; w[0] = 1 - x

[Recurrence]

f o r j = 0 . . . m

s j = SEL(w [j]) ;

w[j + 1] +-- 2 (w b] - s j +s jw[j]2 -J)

Yb + 1] ~ y [j] - L~

end for

[Result]

y[m 4- 1] ~, ln(x)

where

�9 The residual is in redundant form, represented by the pseudosum WS and

stored-carry WC bit-vectors. For simplicity, we use w[j] in the description.

�9 m is the precision in bits.

�9 SEL is the continued-product digit selection function defined by / A
1 if w [j] > 0

s j =SEL(w[j]) = 0 i f - l _ < w [j] _ < 0 . 2 5

-1 i f w [j] < - 0 . 7 5

where w [j] is an estimate of the residual w [j] with t = 2 fractional bits.
�9 The constants Lj are defined as

Lj -"

In(1 + 2-J)

In(1 - 2-J)

0

s j2-J

i f s j = l a n d j < m / 2

i f s j = - l a n d j < m / 2

i f s j = 0 a n d j < m / 2

i f j > m / 2

and the constants Lj -- In(1 4- 2-J) are stored in a table.

F I G U R E 10 .17 Radix-2 algorithm for ln(x),x E [1/2, 1).

Linear Convergence Method 587

J

0

1

2

3

4

5

6

7

8

9

10

11

12

13

w [j] sj

0.010111100111 1

-0.100001100010 0

-1.000011000101 - 1

0.011011011001 1

-1.000010011000 - 1

0.000011100100 1

-1.111000101010 - 1

-1.101101100011 - 1

-1.011001011000 - 1

-0.110010000100 0

-1.100100000111 - 1

-1.001000000010 - 1

-0.001111111111 0

-0.011111111110

Lj

0.101100010111

0.000000000000

-0.010010011010

0 . 0 0 0 1 1 1 1 0 0 0 1 0

- 0 . 0 0 0 1 0 0 0 0 1 0 0 0

0 . 0 0 0 0 0 1 1 1 1 1 1 0

- O. 0 0 0 0 0 1 0 0 0 0 0 0

-0.000000100000

- 0 . 0 0 0 0 0 0 0 1 0 0 0 0

0.000000000000

-0.000000000100

-0.000000000010

0.000000000000

Y[j]

0.000000000000

--0.101100010111

--0.101100010111

--0.011001111101

--0.100001011111

--0.011101010110

--0.011111010101

--0.011110010100

--0.011101110100

--0.011101100100

--0.011101100100

--0.011101100000

--0.011101011110

--0.011101011110

TABLE 10.2 Evaluation of 1n(0.631) using radix-2 multiplicative normalization. The error
] 1n(0.631) -y[13])l < 0.0001 < 2 -12.

where m is the number of iterations. The table L contains m / 2 • 2 constants.

The access to the table can be removed from the critical path (see Exercise 10.18).

I O , 6 , 2 Exponential by Additive Normalization

The function y -- e x can be computed by an additive normalization. To do this

we obtain a sequence of {bj } so that

m

x - ~ ln(bj) --+ 0 (normalizes to 0) 10.77
j = l

Then
m

x I-I e ,~ bj 10.78
j = l

Al though the method allows unrestricted values for b j , to have an implementat ion

with only additions and multiplications with a one-digit multiplier, the bj are

588 CMAPTER 10 Function Evaluation

I MUXl

I Reg WS I
Reg WC

I w[j+l]

,1
I eoYS I Reg YC y[j]l L_~

y[j+ 1]

ln(x)

sj j

'TABLE '
! i
, L ,
I I

F I G U R E 10. Is Implementation of radix-2 algorithm for computing In(x).

restricted to be of the form

bj -- 1 + s jr - j

with s j a radix-r digit. This also permits the use of a table lookup for ln(bj) .

As in other digit recurrence algorithms, a residual is defined as

w [j] - - r J (x - - ~ l n (l + s j r - J))
i=1

resulting in the recurrence

10.79

w[j + 1] - r (w [j] - r j ln(1 + s j r - J)) 10.80

The exponential is obtained by the recurrence

y[j + 1] - y[j](1 + s j r - j) 10.81

where y [0] - 1.

Linear Convergence Method 589

Selection Function

The selection function is determined in the same manner as for logarithm. For

sj E { - a , . . . , a }, the convergence bound is

o ~ o ~

rJ E l n (1 - - a r -i) < w[j] < r j E l n (l + a r -i) 10.82
i=j+l i=j+l

We give next a selection function for radix 2 and leave the derivation as an exercise

(see Exercise 10.20):

1 if ~ ' ~] > 0 . 5

S j = S E L (~]) -- 0 if - 0 . 5 < w[j] < 0.25 10.83

-1 if w [j] < - 0 . 7 5

where w[j] is an estimate of the residual w[j] (in carry-save form) with t - 2

fractional bits.

Algorithm for e x

Figure 10.19 summarizes the radix-2 algorithm for computing e x using additive

normalization. Let the input argument bex ~ (- In(2), ln(2)).25 Since L0 > U-I

for j -- 0, an additional transformation is applied to allow the use of the same

selection function in all steps. This initial transformation makes y [0] - e-~ and

w[0] - x + 2 -1. Since the residual is in carry-save form, no addition is needed

to initialize w[0].

E X A M P L E 10.8 T h e evaluation o f e x p (- 0 . 4 3 7) with 12-bit precision, showing n o n r e d u n d a n t

residuals (for simplicity), is i l lustrated in Table 10.3. �9

25. This range is obtained from an argument Xin by using the transformation

eXin __ e Xin(log2e)(loge 2) . _ _ e(I+ f) In(2)

where I is an integer and -1 < f < 1. Therefore,

eXin - - e l l n (2) e f l n (2) _ _ 2Ie x

where x = f In(2) ~ (- In(2), In(2)).

590 c H APT E R 1o Function Evaluation

.

[Initialize]

y [0] = e-~ w [0] -- x + 0.5

[Recurrence]

for j - - 0 . . . m

s j -- SEL(w[j]);

w [/ + 1] <-- 2 (w b '] - Lj2i)

Yb" + 1] <--- y[/'] + yb']sj2-J

end for

. [Result]

y[m + 1] ~ e x

where

The residual is in redundant form, represented by the pseudosum WS and
stored-carry WC bit-vectors. For simplicity, we use w[j] in the description.
m is the precision in bits.
SEL is the continued-sum digit selection function defined by

A

expression (10.83). w[j] is the estimate of the residual truncated to two
fractional bits.
The constants Lj are defined as

In(1 + 2-J)

Lj -- In(1 - 2-J)
0

s j2 - j

where constants Lj = In(1 4- 2-J) are stored in a table.

i f s j = l a n d j < m / 2
i f s j = - l a n d j < m / 2

i f s j = 0 a n d j < m / 2
if j > m / 2

F I G U R E 1 0 . 1 9 Radix-2 algorithm for eX,x ~ (- ln(2), ln(2)).

Implementation

As shown in Figure 10.20, the overall implementation is similar to that of
In(x): it uses two variable shifters, one [4:2] adder, one [3:2] adder, and one CPA,
the selection function module, one multiplexer, a module for generating the Lj

Linear Convergence Method 591

J

0
1

2
3
4
5
6
7
8
9

10

11

12

13

w[j]

0.000100000010
0.001000000100

0.010000001000

0.100000010000

-0.111000001100

0.010011111110

0.100111111111

-0.101111000110

0.100001110100

-0.111100011000

0.000111010000

0.001110100000

0.011101000000

0.111010000001

sj

n

1

1

1

1

Lj

0.000000000000
0.000000000000

0.000000000000

0.000111100010

-0.000100001000

0.000000000000

-0.000000111111

-0.000000100000

0.000000010000

- 0.000000001000

0.000000000000

0.000000000000

0.000000000000

Y[j]

0.100110110100
0.100110110100

0.100110110100

0.100110110100

0.101011101011

0.101000111100

0.101000111100

0.101001100101

0.101001010000

0.101001011010

0.101001010101

0.101001010101

0.101001010101

0.101001010101

T A B L E 10.3 Evaluation of exp(-0.437) using radix-2 additive normalization. The error
I exp(-0.437) - y[13])l < 2 -13.

I MUX I

Reg WC

5

I

' TABLE ! I

i Lj2 J+l

[3:21 I

I w[j+ll

Table L* stores shif ted constants .

I Reg YS
Reg YC

y[J]
I

_l I.

.__1

y[j + II 1

exp(x)

F I G U R E 10 .20 Implementation of radix-2 algorithm for computing exp(x).

592 c N ApT E R Io Function Evaluation

constants, and four registers. The table stores shifted constants Lj2 j+l. I f the

table is to be shared with implementa t ion for In(x), a left shifter is used.

The delay is

Tpxe -- [max((max(tsel, tsh~) + t4-2), (tsel + ttable + tcsA)) + tREG]m + tCeA

10.84

where m is the number of iterations. The table L contains m / 2 • 2 constants.

Error

The error in the approximat ion

m

eX ~ H bi -- y[m + 1]
i=1

where

Since 26

we have that

Eexp- le x - y [m + 1] l - y[m + 1]]e x[m+l]

m

x[m + 1] - - x -- ~ l n (b /)
i=1

le x[m+l]- 11 < Ix[m + 1]le Ix[m+l]l

Eexl, < Ix[m + 1]]elX[m+llly[m -+ 1]

The linear additive normal izat ion guarantees that

m

[x[m + 1]1 - - I x - ~ l n (b i) l < r
i=1

10.85

10.86

10.87

10.88

10.89

26.Note thate xlm+ll - 1 = x[m + 1] + x[m + 112/2 +
x[m + 1](1 + x[m + 1]/2 + x[m + 112/6 + . . .) < x[m + 1]e x[m+il.

Concluding Remarks 593

Consequently, e Ix[m+l]l < e r-" < 1 + r --m "JI- r -2m. Therefore,

Eexp " - l e x - y [m + 1]l < r - m (1 + r -m + r -2m)y[m + 1] ~ r - m y [m -+- 1]

10.90

Since y [m + 1] is a close approximation to e x, we have

e x 2
y[m + 1] < <

1 - - r - m - - 1 - - r - - m

for x < ln(2). Therefore,

10.91

y[m + 1] < 2(1 + r -m)

and

Eexp < 2r --m _~ 0 (r --2m) 10.92

t 0 ~ T r i g o n o m e t r i c a n d Inve r se T r i g o n o m e t r i c F u n c t i o n s

Implementation of these functions using the linear convergence technique is
commonly based on the CORDIC method described in Chapter 11.

10o7 Concluding Remarks
In this chapter we presented several methods for evaluation of functions that are
suitable for implementation in hardware. These include general polynomial and
rational function approximations, and linear convergence methods based on shift-
and-add algorithms applicable to particular functions. The methods discussed
require lookup tables of varying sizes, some of the standard components such as
adders, multipliers, and dividers, and special components such as variable shifters
and digit-by-vector multipliers. In general there is a tradeoffbetween complexity
of tables and of computation involved. As the VLSI technology progresses, the use
of increasingly larger tables is becoming feasible and attractive. We also discussed
general issues such as argument range transformations and rounding. Hardware-
oriented evaluation of functions is also covered in other chapters (reciprocal in

594 r H A P T E R 10 Function Evaluation

Chapter 5 and square root in Chapter 6). As mentioned above, trigonometric and

inverse trigonometric functions are discussed in Chapter 11.

1 0 . 8

10.1

10 .2

10 .3

Exercises
Argument Range Reduction
Apply the reduction described in expression (10.1) to the floating-point argu-
ment x = 1.5325 • 2 22. Describe the reconstruction required after obtaining an

approximation Ofyr - - e X r "

Rounding
Develop a table for a correctly rounded to nearest y = sin(x) for 6-bit x and y

and 0 < x < rr/4.

Polynomial Approximation and Interpolations
Using a Taylor series expansion, show an implementation of an approximation
of the function sin x for - r r < x < Jr with operand and result of 16 bits in two's

complement representation and an absolute error of less than one ulp. Determine
the width of each variable and the latency and throughput. Show the execution

for the computation of sin(1.25).
Consider the following three cases:

(a) Use one nonpipelined multiplier-accumulator and store the coefficients

of the polynomial in a table. The access to the table plus a multiply-

accumulate takes four cycles.

(b) Use one pipelined multiplier-accumulator with four stages and store the

coefficients in a table. The access to the table takes one cycle and each stage

of the multiplier accumulator corresponds to one cycle. Show the

scheduling of the operations.

(c) Use as many multiplier accumulators as required for minimum latency.
Pipeline these modules for increased throughput. The coefficients are

hardwired. Determine the width of each multiplier accumulator.

Exercises 595

10 .4

10 .5

10 .6

10 .7

10 .8

10 .9

1 0 . 1 0

Determine an interpolating polynomial of degree 4 for the function tan(x) for
0 < x < yr/4. Obtain an approximation of tan(0.5) with 16 bits and compare
with that produced by a Taylor series expansion of the same degree.

Piecewise Interpolation
1 Show an implementation of a piecewise interpolation of x 1/3 for ~ < x < 1,

16-bit input and output. Use four intervals and linear interpolation.
Determine the degree of the polynomial based on Taylor series required for

the same error.

Obtain a formula for a polynomial for quadratic piecewise interpolation. Show an
implementation and compare with the implementation for linear interpolation.

Reduction, Approximation, and Reconstruction

Show an implementation for the computation of log(x) according to the proce-
dure described in Example 10.3.

Bipartite Table Method

Develop the tables required for the computation of an approximation of 1/x for
! < x < 1 with 9-bit precision using the bipartite table method. Use the tables 2 -
to compute an approximation of the reciprocal of 0.100110010.

For the approximation of a function using an operand of 16 bits, compare the
implementation using piecewise interpolation with that of using the bipartite
table method. Consider the modules required, the latency, and the possibility of
pipelining.

MSDF Polynomial and Rational Function Evaluation

Evaluate the following polynomial using the algorithm in Figure 10.13:

P2(x) -- -0.39x 2 + O.15x + 0.18

for x -- 0.23 and m = 8.

596 C H A P T E R 10 Function Evaluation

10.11

10 .12

10 .13

Show an implementation and compare it with a corresponding conventional
parallel polynomial evaluation with respect to cost and delay.

Compare the cost and delay of a rational evaluation MSDF scheme and a conven-
tional scheme using multiply-add and a radix-4 divider. Compare delays assuming
similar costs.

Modify the algorithm in Figure 10.13 to accept the argument x MSDF serially.

Show that the solution of the following linear system satisfies yi - " x5--i, i =
1, . . . , 4:

1 - x 0 0 yl 0

0 1 - x 0 y2 0

0 0 1 - x y3 0

0 0 0 1 y4 x

1 0 . 1 4

10 .15

1 0 . 1 6

10.17

10 .18

Determine the cost and delay for m = 24 and radix 2. Compare this scheme
for generating integer powers ofx with a corresponding conventional implemen-
tation with respect to cost and delay.

Convergence Methods

Compute an approximation of the reciprocal of x = (0.10101111) 2 using the
radix-2 multiplicative normalization algorithm (with carry-save adder).

Develop a radix-4 multiplicative normalization algorithm for reciprocal.

Compute an approximation of the reciprocal of x = (0.AF636456)16 using a
radix-16 multiplicative normalization algorithm with selection by rounding and
carry-save adder. For j < 2 compute a suitable initial approximation.

Compute a 12-bit approximation ofy = ln(0.625) usingthe radix-2 multiplicative
normalization algorithm. Use the table of In(1 + 2 - j) given in the Appendix.

Consider reducing the delay of the implementation of the radix-2 algorithm for
computing In(x). For this, design a network for generating the constants Lj such

Exerc ises 597

1 0 . 1 9

1 0 . 2 0

10 .21

1 0 . 2 2

1 0 . 2 3

1 0 . 2 4

1 0 . 2 5

that the access to the table is not in the critical path. Compare the delay with the
implementation described in the text.

An algorithm to compute

y -- log2(x) -- ~ Y j 2 j

j=0

is as follows:

w [n] = x

w [n - j - 1] - - w [n - j]2 -yk-d 2k-J

Y k - J -- 1 if w [n - j] > 22~-j

Show that the algorithm is correct. Determine k for x integer. Compute y =
log2(0.625) with n = 8 bits precision.

Compare the implementation of this algorithm with that of linear multi-
plicative normalization.

Derive the selection function for exponential additive normalization algorithm
in radix 2 defined by expression (10.83).

Calculate y - e ~ with 12 fractional bits using a radix-2 algorithm (with carry-

save adder). Determine the error of the resulting approximation.

General exponentiation can be described as y = x v - - (e l n (x)) v m e ~ In(x). Show
an implementation using normalization. Compute y -- 0.75125 with 12 bits.

Describe an implementation ofy -- x v with v positive integer using the operations
of squaring and multiplication.

Show an algorithm for the computation of reciprocal square root and square root
by linear multiplicative normalization.

Compare the computation of In(x) and of e x by Taylor series expansion and

by normalization methods. Give expressions for the delay and list the modules
required. Give some reasonable conclusions.

598 CHAPTER 10 Function Evaluation

10o9 Further Readings
Books and Surveys

The theoretical foundations and algorithms for evaluation of mathematical func-
tions suitable for hardware design are covered in a comprehensive manner
in Muller (1997). Approximation theory useful in deriving algorithms is dis-
cussed in standard books on numerical methods such as Dahlquist and Bjorck
(1974) and Mathews (1992). Cheney (1966) and Davis (1990) are classics on
the function approximation theory. Early work on approximations for soft-
ware implementation is found in Hart et al. (1978). Practical polynomial and
rational approximations are surveyed in Cody (1970) and Cody and Waite
(1980).

Argument Reduction

A comprehensive discussion of several methods for reducing argument range is
presented in Muller (1997) (Chapter 9). Specifc reduction methods are described in
Tang (1991), Daumas et al. (1994), Schulte and Swartzlander (1994), and Ferguson
(1995).

Correct Rounding and Monotonicity

Problems and approaches to correct rounding are considered in Schulte and
Swartzlander (1993, 1994), Muller (1997), and Lef&re et al. (1998). A tech-
nique for obtaining approximations with monotonicity property for some tran-
scendental functions is introduced in Ferguson and Brightman (1991). How
to get some transcendentals correctly rounded in double-precision is shown
in Lef~vre et al. (1998). An analysis of worst cases for correct rounding in
double precision for elementary functions is described in Lefevre and Muller
(2001).

Hardware Polynomial Evaluators

Pipelined combinational networks for polynomial evaluation are developed in
Tung and Avizienis (1970). Ercegovac (1977) describes an MSDF scheme for

Further Readings 599

polynomial evaluation. A pipelined scheme for evaluating elementary functions
with Chebyshev polynomials is presented in Hwang et al. (1987). Duprat and
Muller (1988) and Corbaz et al. (1991) propose hardware polynomial evalua-
tors. An online polynomial evaluation scheme is discussed in Merrheim et al.
(1993). Schemes for parallel and MSDF evaluation suitable for FPGA imple-
mentation are presented in Ercegovac et al. (1995). Ercegovac and Muller (1998)
propose a MSDF scheme for polynomial evaluation at regularly spaced points.
Burleson (1990) proposes a scheme for polynomial evaluation using distributed
arithmetic.

Lookup Tables and Interpolation

An overview of table-based function evaluation methods is presented in Muller
(1998). Methods using small table lookups followed by polynomial/rational ap-
proximation evaluation suitable for general-purpose systems are presented in
Tang (1989, 1990, 1991, 1992). Approaches based on interpolating polynomials
using table lookups and multipliers have been frequently considered with the
aim of reducing sizes of tables and multipliers. Noetzel (1989) presents the de-
sign of an interpolating memory for evaluation of function approximations with
Lagrange interpolating polynomials. An error analysis is also given. This ap-
proach is followed later by Lewis (1994) among others. Jain and Lin (1995, 1997)
describe an interpolation technique based on matched interpolating polynomials
for double-precision computation of reciprocals, square root, sine, and arctangent
functions. Das Sarma and W. Matula (1997) discuss the use of interpolation in
reciprocal tables. Das Sarma and Matula (1994) present an analysis of accuracy
in ROM tables for reciprocals. Cao et al. (2001) describe a design for evaluation
of functions in single precision using interpolation with second-order polynomi-
als and optimized tables. A VLSI implementation of second-order polynomial
interpolation with unequal subintervals for sine/cosine evaluation is presented
in Paliouras et al. (2000). Farmwald (1981) describes a design for evaluation of
functions based on the Taylor series implemented with large tables and fast
multipliers. Wong and Goto (1994) present a technique based on the evalu-
ation of the Taylor series using a difference method. It is implemented with
adders and large tables. Lef&re and Muller (1999) describe a table-based method
for evaluating the exponential function in double precision. A table lookup

600 e N ApT E R io Function Evaluation

method for 100-bit precision is described in Daumas et al. (2000). A method for
evaluating functions using tables and small multipliers is described in Ercegovac
et al. (2000).

Bipartite and Multipartite Table Methods

Introduced in Das Sarma and Matula (1995), the bipartite tables and their vari-
ations have been reported on frequently. Symmetric bipartite tables are dis-
cussed in Schulte and Stine (1997a, 1997b, 1999) and Stine and Schulte (1999).
Muller (1999) discusses a generalization to multipartite tables. De Dinechin and
Tisserand (2001) present a unified approach to the previously reported bipartite
and multipartite tables leading to smaller tables. Hassler and Takagi (1995) present
a function evaluation using table lookup and addition similar to the bipartite
method.

Rational Function Evaluation

Koren and Zinaty (1990) develop a coprocessor implementation for evaluating
rational approximations in extended double-precision format. An MSDF ap-
proach to rational function evaluation without explicit division is introduced in
Ercegovac (1975, 1977).

Linear Convergence Method

Specker (1965) and Linhardt and Miller (1969) discuss multiplicative and ad-
ditive algorithms of the shift-and-add type for computing logarithm, exponen-
tial, and trigonometric functions. A systematic study of radix-2 shift-and-add
algorithms with {-1, 0, 1} digit set and nonredundant residuals is presented
in DeLugish (1970). A radix-16 extension of DeLugish's approach with digit
selection using rounding is reported in Ercegovac (1973). The use of higher
radix 2k and predictive techniques in the multiplicative normalization has been
considered by Baker (1973, 1975). Further developments of this type of algo-
rithms are discussed in Zurawski (1980) and Rodrigues et al. (1981). The com-
putation of log and exp are related to the CORDIC algorithm, which is also

Bibliography 601

of the shift-and-add type, described in the next chapter; see references there,
especially for very-high-radix algorithms and implementations. Chen (1972)
provides another approach to function evaluation resulting in shift-and-add
algorithms.

Complex Function Hardware Evaluation

Bajard et al. (1994) discuss a shift-and-add method for function evaluation in the
complex domain.

Function Evaluation in Processors

Agarwal et al. (1986) discuss scalar and vector elementary functions for the IBM
System 370. Markstein (1990) describes computation of elementary functions on
the IBM RISC system/6000 processor. Rauchwerger and Farmwald (1990) discuss
evaluation of polynomials on a multiple floating-point coprocessor architecture.
Transcendental function evaluation for Intel IA-64 is described in Harrison et al.
(1999) and Story and Tang (1999), and for AMD K5 processor in Lynch et al.
(1995).

10=10 Bibliography
Agarwal, R. C., J. C. Cooley, E G. Gustavson, J. B. Shearer, G. Slishman,

and B. Tuckerman (1986). New scalar and vector elementary functions for
the IBM system/370. IBM Journal of Research and Development, 30(2):126-
44.

Bajard, J.-C., S. Kla, and J.-M. Muller (1994). BKM: A new hardware algo-
rithm for complex elementary functions. IEEE Transactions on Computers,
43(8):955-63.

Baker, P. W. (1973). Predictive algorithms for some elementary functions in radix
2. Electronics Letters, 9(21):493-94.

Baker, P. W. (1975). Parallel multiplicative algorithms for some elementary func-
tions. IEEE Transactions on Computers, C-24(3):321-24.

602 e ~ ApT E N ~O Function Evaluation

Burleson, W. E (1990). Polynomial evaluation in VLSI using distributed arith-
metic. IEEE Transaction on Circuits and Systems, 37(10):1299-304.

Cao, J., B. W. Y. Wei, and J. Cheng (2001). High-performance architectures for
elementary function generation. In Proceedings of the 15th IEEE Symposium
on Computer Arithmetic, pages 136-44.

Chen, T. C. (1972). Automatic computation of exponentials, logarithms, ratios,
and square roots. IBM Journal of Research and Development, pages 380-89.

Cheney, E. W. (1966). Introduction to Approximation Theory. International Series
in Pure and Applied Mathematics. McGraw Hill, New York.

Cody, W. J. (1970). A survey of practical rational and polynomial approximation
of functions. SIAM Review, 12(3):400-423.

Cody, W. J., and W. Waite (1980). Software Manual for the Elementary Functions.
Prentice-Hall, Englewood Cliffs, New Jersey.

Corbaz, G., J. Duprat, B. Hochet, and J.-M. Muller (1991). Implementation of
a VLSI polynomial evaluator for real-time applications. In Proceedings of
ASAP91, pages 13-24.

Dahlquist, G., and A. Bjorck (1974). Numerical Methods. Prentice-Hall, Engle-
wood Cliffs, New Jersey.

Das Sarma, D., and D. W. Matula (1994). Measuring the accuracy of ROM recip-
rocal tables. IEEE Transactions on Computers, 43(8):932-40.

Das Sarma, D., and D. W. Matula (1995). Faithful bipartite ROM reciprocal
tables. In Proceedings of the 12th IEEE Symposium on Computer Arithmetic,
pages 17-28.

Das Sarma, D., and D. W. Matula (1997). Faithful interpolation in reciprocal
tables. In Proceedings of the 13th IEEE Symposium on Computer Arithmetic,
pages 82-91.

Daumas, M., C. Finot, and J.-M. Muller (2000). Table based implementation
of elementary functions for hundred-bit precision. In 16th IMACS Worm
Congress on Computational and Applied Mathematics.

Daumas, M., C. Mazenc, X. Merrheim, and J.-M. Muller (1994). Fast and accurate
range reduction for computation of the elementary functions. In Proceedings
of the 14th IMA CS Worm Congress on Computational and Applied Mathematics,
pages 1196-98.

Daumas, M., C. Mazenc, X. Merrheim, and J.-M. Muller (1995). Modular
range reduction: A new algorithm for fast and accurate computation of

Bibliography 603

the elementary functions. Journal of Universal Computer Science, 1(3):162-
75.

Davis, P. J. (1990). Interpolation and Approximation. Dover Publications, New
York.

de Dinechin, F., and A. Tisserand (2001). Some improvements on multipartite
table methods. In Proceedings of the 15th IEEE Symposium on Computer Arith-
metic, pages 128-35.

DeLugish, B. G. (1970). A Class of Algorithms for Automatic Evaluation of Cer-
tain Elementary Functions in a Binary Computer. PhD thesis, Department of
Computer Science, University of Illinois at Urbana-Champaign. (Technical
Report UIUCDCS-R-399.)

Duprat, J., and J.~M. Muller (1988). Hardwired polynomial evaluation. Journal
of Parallel and Distributed Computing, 5(3):291-309.

Ercegovac, M. D. (1973). Radixwl6 evaluation of certain elementary functions.
IEEE Transactions on Computers, Cw22(6):561-66.

Ercegovac, M. D. (1975). A General Hardware~Oriented Method for Evaluation of
Functions and Computations in a Digital Computer. PhD thesis, Department of
Computer Science, University of Illinois at Urbana~ (Technical
Report UIUCDCS~R~

Ercegovac, M. D. (1977). A general hardware-oriented method for evaluation
of functions and computations in a digital computer. IEEE Transactions on
Computers, C-26(7):667-80.

Ercegovac, M. D., T. Lang, J.-M. Muller, and A. Tisserand (2000). Reciprocation,
square root, inverse square root, and some elementary functions using small
multipliers. IEEE Transactions on Computers, 49(7):628-37.

Ercegovac, M. D., and J.~ Muller (1998). Fast evaluation of functions
at regularlyospaced points. In SPIE International Symposium on Op-
tical Science, Engineering, and Instrumentation, vol. 3461, pages 555-
66.

Ercegovac, M. D., J.wM. Muller, and A. Tisserand (1995). FPGA implementation
of polynomial evaluation algorithms. In SPIE Photonics East '95 Conference
Proceedings, vol. 2607, pages 177-88.

Farmwald, P. M. (1981). High bandwidth evaluation of elementary functions. In
Proceedings of the 5th IEEE Symposium on Computer Arithmetic, pages 139-
42.

604 r {~.~ ~.:~ T E R ~ 0 Function Evaluation

Ferguson, W. (1995). Exact computation of a sum or difference with applications to
argument reduction. In Proceedings of the 12th IEEE Symposium on Computer
Arithmetic, pages 216-21.

Ferguson, W., and T. Brightman (1991). Accurate and monotone approximations
of some transcendental functions. In Proceedings of the 10th IEEE Symposium
on Computer Arithmetic, pages 237-44.

Harrison, J., T. Kubaska, S. Story, and P. T. P. Tang (1999). The computation of
transcendental functions on the IA-64 architecture. Intel Technology Journal,
Q4.

Hart, J. F., E. W. Cheney, C. L. Lawson, H. J. Maehly, C. K. Mesztenyi, J. R. Rice,
H. G. Thacher, and C. WitzgaU (1978). Computer Approximations. Robert E.
Krieger Publishing Company, Florida.

Hassler, H., and N. Takagi (1995). Function evaluation by table look-up and
addition. In Proceedings of the 12th IEEE Symposium on Computer Arithmetic,
pages 10-16.

Hwang, K., H. C. Wang, and Z. Xu (1987). Evaluating elementary functions
with chebyshev polynomials on pipeline nets. In Proceedings of the 8th IEEE
Symposium on Computer Arithmetic, pages 121-28.

Jain, V. K., and L. Lin (1995). High-speed double precision computation of non-
linear functions. In Proceedings of the 12th IEEE Symposium on Computer
Arithmetic, pages 107-14.

Jain, V. K., and L. Lin (1997). Complex-argument universal nonlinear cell for
rapid prototyping. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 5(1): 15-27.

Koren, I., and O. Zinaty (1990). Evaluating elementary functions in a numerical
coprocessor based on rational approximations. IEEE Transactions on Com-
puters, 39(8):1030-37.

Lef~vre, V., and J. Muller (1999). Table methods for the elementary functions.
In SPIE Symposium on Optical Science and Technology, vol. 3807, pages
43-9.

Lefevre, V., and J.-M. Muller (2001). Worst cases for correct rounding of the
elementary functions in double precision. In Proceedings of the 15th IEEE
Symposium on Computer Arithmetic, pages 111-18.

Lef~vre, V., J.-M. Muller, and A. Tisserand (1998). Toward correctly rounded
transcendentals. IEEE Transactions on Computers, 47(11): 1235-43.

Bibliography 605

Lewis, D. M. (1994). Interleaved memory function interpolators with application
to an accurate Ins arithmetic unit. IEEE Transactions on Computers, 43(8):
974-82.

Linhardt, R. J., and H. S. Miller (1969). Digit-by-digit transcendental function
computation. RCA Review, 30:209-47.

Lynch, T., A. Ahmed, M. J. Schulte, T. Callaway, and R. Tisdale (1995). The
K5 transcendental functions. In Proceedings of the 12th IEEE Symposium on
Computer Arithmetic, pages 163-70.

Markstein, P. W. (1990). Computation of elementary functions on IBM RISC
System/6000 processor. IBM]ournal of Research and Development, pages 111-
19.

Mathews, J. H. (1992). Numerical Methods for Mathematics, Science, and
Engineering, Second Edition. Prentice-Hall, Englewood Cliffs, New
Jersey.

Merrheim, X., J.-M. Muller, and H. J. Yeh (1993). Fast evaluation of polynomials
and inverses of polynomials. In Proceedings of the llth IEEE Symposium on
Computer Arithmetic, pages 186-92.

Muller, J.-M. (1997). Elementary Functions, Algorithms and Implementation.
Birkhauser, Boston.

Muller, J.-M. (1999). A few results on table-based methods. Reliable Computing,
5(3):279-88.

Noetzel, A. S. (1989). An interpolating memory unit for function evaluation:
analysis and design. IEEE Transactions on Computers, 38(3):377-84.

Paliouras, V., K. Karagianni, and T. Stouraitis (2000). A floating-point pro-
cessor for fast and accurate sine/cosine evaluation. IEEE Transactions on
Circuits and Systems II: Analog and Digital Signal Processing, 47(5):441-
51.

Rauchwerger, L., and P. M. Farmwald (1990). A multiple floating point coproces-
sor architecture. In Proceedings of the 23rd Annual Worksho p and Symposium,
pages 216-22.

Rodrigues, M. R. D., J. H. E Zurawski, and J. B. Gosling (1981). Hardware
evaluation of mathematical functions. IEE Proceedings E (Computers and
Digital Techniques), 128(4):155-64.

Schulte, M. J., and J. E. Stine (1997a). Accurate function evaluation by sym-
metric table lookup and addition. In Proceedings of the IEEE International

606 C H A P T E R 10 Function Evaluation

Conference on Application-Specific Systems, Architectures and Processors, pages
144-53.

Schulte, M. J., and J. E. Stine (1997b). Symmetric bipartite tables for accurate func-
tion approximation. In Proceedings of the 13th IEEE Symposium on Computer
Arithmetic, pages 175-83.

Schulte, M. J., and J. E. Stine (1999). Approximating elementary functions
with symmetric bipartite tables. IEEE Transactions on Computers, 48(8):842-
47.

Schulte, M. J., and E. E. Swartzlander (1993). Exact rounding of certain ele-
mentary functions. In Proceedings of the 1 lth IEEE Symposium on Computer
Arithmetic, pages 138-45.

Schulte, M. J., and E. E. Swartzlander (1994). Hardware designs for exactly
rounded elementary functions. IEEE Transactions on Computers, 43(8):964-
73.

Specker, W. H. (1965). A class of algorithms for In(x), exp(x), sin(x), cos(x),
tan-l(x) and cot-l(x). IEEE Transactions on Electronic Computers, EC~
85-86.

Stine, J. E., and M. J. Schulte (1999). The symmetric table addition method for
accurate function approximation. Journal of VLSI Signal Processing, 21" 167-
77.

Story, S., and P. T. P. Tang (1999). New algorithms for improved transcendental
functions on IA-64. In Proceedings of the 14th IEEE Symposium on Computer
Arithmetic, pages 4-11.

Tang, P. T. P. (1989). Table-driven implementation of the exponential function in
IEEE floating-point arithmetic. A CM Transactions on Mathematical Software,
15(2):144-57.

Tang, P. T. P. (1990). Table-driven implementation of the logarithm function in
IEEE floating-point arithmetic. ACM Transactions on Mathematical Software,
16(4):378-400.

Tang, P. T. P. (1991). Table lookup algorithms for elementary functions and
their error analysis. In Proceedings of the 10th IEEE Symposium on Computer
Arithmetic, pages 232-36.

Tang, P. T. P. (1992). Table-driven implementation of the expml function in
IEEE floating-point arithmetic. ACM Transactions on Mathematical Software,
18(2):211-22.

Bibliography 607

Tung, C., and A. Avizienis (1970). Combinational arithmetic systems for the
approximation of functions. In AFIPS Conference Proceedings 1970 Spring
Joint Computer Conference, pages 95-107.

Wong, W. F., and E. Goto (1994). Fast hardware-based algorithms for elementary
function computations using rectangular multipliers. IEEE Transactions on
Computers, 43(3):278-94.

Zurawski, J. H. P. (1980). High Performance Evaluation of Division and Other
Elementary Functions. PhD thesis, University of Manchester, England.

c00,opToo. 1 1 CORDIC Algorithm
and Implementations

In this chapter we consider the CORDIC algorithm and its implementation. 1

This algorithm permits the realization of rotations, the calculation of trigono-

metric functions, such as sin and cosine, of the inverse trigonometric function
tan -1 (a / b) , and of x/a ~ + b 2. Moreover, it has been extended to hyperbolic func-

tions and multiplication and division. In addition, minor modifications allow the

calculation of other functions such as square root, exponential, and logarithm.

The algorithm is attractive because of its generality, as well as its efficiency for

some calculations, such as rotations. It has been used for applications in signal and

image processing, in robotics, and in 3D graphics. Application-specific versions

are being used for linear transforms, digital filters, and solution of linear systems.

The algorithm is based on the rotation of a vector on the planer As shown

in Figure 11.1, the vector (terminating in point) Xin, Yin is rotated by the angle 0,

producing the vector (terminating in) xR, yR. This rotation is described by the

expressions

XR ~" Min cOS(]~ -ql- O) • Xin COSO -- Yin SinO

YR = Min sin(/3 + 0) = Xin sin 0 + Yin COSO
11.1

where Min is the modulus of the vector and/3 is the initial angle. This rotation
can be expressed in matrix form as

ExR] [cos0
Y R sin 0

sin0]Ixin] ROT)[Xin 1
COS0 Yin Yin

11.2

1. This corresponds to the class of linear convergence algorithms discussed in Chapter 10.
2. It has been extended to more dimensions, but here we will restrict ourselves to the
two-dimensional case. Moreover, this description is for circular coordinates; the extension to
hyperbolic and linear coordinates is discussed in Section 11.5

609

610 C N ApT E R 11 CORDIC Algorithm and Implementations

y

\ \ (xR, Y R) /~ \ \ \ \ \

F I G U R E 11.1 Vector rotation.

(Xin, Yin)

X

This is called aperfect rotation (or just rotation) because the modulus of the vector

is preserved. Its direct implementation requires the evaluation of cos 0 and sin 0,

four multiplications, and two additions.

The CORDIC algorithm performs rotations by a sequence of (micro) rota-

tions by elementary angles. For this, define the sequence of elementary rotation

angles t~j and decompose the angle 0 as a sum of elementary angles 3

oo

0 --" E O ~ j 11.3
j=O

Consequently,
o o

ROT(O) = H ROT(aj)
j=O

and ROT(o~j) is described by the following equations: 4

11.4

XR[j + 11 = xR[j]cos(aj) -- yR[j]sin(aj)

YR[j + 1] -- xR[j] sin(otj) + yR[j]cos(aj)
11.5

3. Now we consider the theoretical case in which the number of microrotations is infinite and
later determine the error introduced in the function by performing a finite number.
4. We use the subscript R so as not to confuse with the x[j], y[j] of the CORDIC
microrotation introduced later.

CORDIC Algorithm and Implementations 611

This microrotation is still complex to implement since it requires multiplications.
The multiplications are avoided by the following:

1. Decomposing the rotation into a scaling operation and a rotation-extension
(also called a similarity) by factoring the term cos(cej). The result is

xR[j + 1] = COS(aj)(xR[j] - YR[j] tan(cej))
11.6

YR[j + 1] = cos(aj)(yR[j] + xR[j]tan(aj))

2. Choosing as elementary angles the sequence 5

a j - - tan-l(o' j(2-J)) - - o ' j tan-l(2 - j) 11.7

with crj E {-1, 1}.
With this choice the rotation-extension becomes

x[j + 1] - x [j] - crj2-Jy[j]
11.8

y[j + 1] -- y[j] + %2-~x[j]

which is implemented using only additions and shifts.
This rotation-extension scales the modulus M[j] so that

1
M[j + 1] - K [j l M [j] - ~ M [j] - (1 + a22-2j)1/2M[j]

COS ~ j

= (1 + 2 -2j) 1/2M[j] 11.9

The CORDIC algorithm consists in applying a sequence of rotation-
extensions. The total scaling factor is then

oo

K - H (1 + 2-2J) 1/2 ,~, 1.6468 11.10
j=0

Note that, because c~j E {-1, 1}, the scaling factor is constant, independent of
the angle being rotated.

Moreover, to decompose the angle 0 or to accumulate it, depending on the
operation mode as discussed later, the following third recurrence is used:

z[j + 1] -- z[j] - - o l j - - z[j] - - o ' j tan-l(2 - j) 11.11

5. This results in a radix-2 algorithm; the higher-radix case is considered in Section 11.5.

612 CNAPTER I~ CORDIC Algorithm and Implementations

X[j]
l

I SHIFTER ~--

1
X[j+I]

Add/sub module includes
conditional complementer

Y[j] Z[j]

I SHIFER ~

Y[j+I]

I TABLE ~--

I

Z[j + II

rsign(Z[j + 11) in rotation

cJj+] = "~Lsign(Y[j + 11) in vectoring

F ! G U R E 11 .= Implementation of one iteration.

T h e resulting iteration, called a C O R D I C microrotat ion, 6 is

x[j + 1] -- x [j] - ajZ-Jy[j]

y[j + 1] -- y[j] + aj2-Jx[j]

z[j + 1] -- z[j] - a j t an - I (2 - j)

11.12

An implementa t ion of one iteration is as shown in Figure 11.2. It consists of

shifters and adders and a table to contain the angles t a n -] (2 - J) . The signals

sign(Y) andsign(Z) are used to de termine the value o f a j , as discussed below.

1 I , I Rotation and Vectoring Modes
The C O R D I C algori thm is used in two modes: rotation and vectoring. We con-

sider these modes now.

1 1 , 1 , 1 Rotation Mode

In this mode, an initial v e c t o r (Xin , yin) is rotated by an angle ft. As shown in

Figure 11.3, to do this, the angle is decomposed into the primitive angles (using

the recurrence z) and the vector is rotated by these angles. To decompose the

6. Although this is a rotation-extension, to simplify the discussion it is called a microrotation.

Rotation and Vectoring Modes 613

(Xl, Yl)

Y / x x ~ (X3" Y~)

�9 (xf, yf)

Primitive angles

\\(Xin, Yin)

I* X

F I 6 U R E 11.3 Rotating a vector using microrotations.

angle, the initial value of z is made equal to fl, and crj (the direction of rotation)
is selected so that the final angle is zero. That is,

z[0] = 0

1 i f z [j] > 0
- - 11.13

O'j --1 if z[j] < 0

Then, this value of crj is used in the microrotation to produce x [j + 1], y [j + 1],
and z[j + 1]. The initial condition is

(X[0], y [0]) = (Xin , Yin) 11.14

The final values are 7

Xf = K(xin cos 0 - - Yin sin fl)

y f = K(xin sin fl + Yin COS 0) 11.15

z f = O

To obtain a perfect rotation it is necessary to compensate for the scaling factor K.
The methods for performing this compensation are discussed in Section 11.3.

7. We use the subscript f for the final values of the rotation-extension to contrast with the
subscript R for the rotation.

614 e H A P T E R ~ ~ CORDIC Algorithm and Implementations

EXAMPLE 11.1

J

0
1

2
3
4
5
6
7
8
9

10

11

12

13

z[j] % x[j] y[j]

1.1693

0.3839

-0.0796

0.1653

0.0409

-0.0214

0.0097

-0.0058

0.0019

-0.0019

0.0000

-0.0009

-0.0004

- 1

- 1

- 1

-1

-1

-1

1.0

O.875

0.3125

0.7031

0.5175

0.4193

0.4694

0.4445

O.457O

0.4508

O.4539

0.4524

0.4531

0.4535

0.125

1.125

1.1562

1.4843

1.5722

1.6046

1.5915

1.5988

1.5953

1.5971

1.5962

1.5967

1.5965

1.5963

r A B L E 11.1 Example of vector rotation.

Table 11.1 illustrates rotat ion of a v e c t o r (X i n - - 1, Yin = 0.125) by an angle

of 67 ~ using n -- 12 microrotat ions. T h e expected coordinates of the rotated

vector are xR - 0.2756, yR = 0.9693.
After pe r fo rming compensat ion of the scaling factor K -- 1.64676, the

coordinates are x[13]/K -- 0.2753 and y[13]/K = 0.9693, with errors

smaller than 2 -]2. �9

As a special case, to compute cos ~9 and sin ~9 the initial conditions are x [0] =

1/K and y [0] = 0. More in general, ifa and b are constants, a cos ~9 - b sin ~9 and

a sin ~9 + b cos ~9 are computed by setting the initial conditions to x [0] = a/K and

y[0] = b/K.

1 t . 1 . 2 V e c t o r i n g M o d e

In this mode, the initial vector (Xin, Yi,,) is rotated until the y component is zero.

Moreover, the corresponding rotation angle is accumulated in z. To accomplish

Rotation and Vectoring Modes 615

this rotation, for an initial vector in the first quadrant, the direction of rotation is

selected as

1 i f y [j] < O

ty j - - - 1 i f y [j] > 0
11.16

For the initial values (x[0], y[0]) - - (3 f in , Yin) and z[0] - - 2;in , the final values are

x f = K(xi2n + yi2n) 1/2

yf = 0 11.17

z f = Z i n + t a n - l (yi--~n) x i n

The compensation of the scale factor is again discussed in Section 11.3.

EXA.PLE 11.2 Table 11.2 illustrates the vectoring mode. A v e c t o r (X i n - - 0.75, Yin -- 0.43)

is rotated clockwise to force the y component to zero. We perform n - 12

J

0
1
2
3
4
5
6
7
8
9

10

11

12

13

y[j] ~. x[j] z[j]

0.43

-0.32

0.27

-0.065

0.1109

0.0224

-0.0219

0.0002

-0.0108

-0.0053

-0.0025

-0.0011

-0.0004

-1

1

1

1

1

1

1

1

1

1

1

1

1

0.75

1.18

1.34

1.4075

1.4156

1.4225

1.4232

1.4236

1.4236

1.4236

1.4236

1.4236

1.4236

1.4236

0.0

0.7853

0.3217

0.5667

0.4423

0.5047

0.5360

0.5204

0.5282

0.5243

0.5223

0.5213

0.5208

0.5206

T A B L E 11.2 Example of vectoring.

616 c H A P T E R 11 CORDIC Algorithm and Implementations

microrotations. The expected coordinates of the rotated vector are

x -- 0.0 XR = in -~- Yin2 = 0.8645, YR

and the rotated angle

z f = tan- l (O'43 ~ \ 0 - - ~ , / -- 0.5205

The accumulated angle z[13] = 0.5206. After performing compensation of
the scaling factor K -- 1.64676, we obtain x[13] /K -- 0.864. The errors are
smaller than 2 -12. �9

1t ,2 Convergence, Precision, and Range
In this section we check the convergence of the algorithm, determine the precision
obtained with n iterations, and the range of the rotation angle. We first consider

the rotation mode.

1 1 , 2 , . t C o n v e r g e n c e

The condition of convergence of the algorithm is that the residual angle to rotate
after iteration j is not greater than the maximum angle than can be rotated in
the remaining iterations. That is,

o ~

Izlj]l _< ~ tan-l(2 -i) 11.18
i=j

From this expression we obtain the maximum value of the rotation angle, namely,

o o

Omax - z[O]max -- ~ tan-l(2 - j) ~ 1.7433 (99.88 ~ 11.19
j=0

For this angle all crj = 1 and all z[j] > O.
Now consider an angle 101 < 0max. In this case, as shown in Figure 11.4,

there is an iteration i for which z[i] is negative. The maximum negative z[i]
occurs when z[i - 1] - 0. Since the rotation angle in the iteration to produce z[i]

Convergence, Precision, and Range 617

T
Y

~ - " " " ~ x

F ! G U R E 11.4 Convergence condition: the maximum negative case.

is tan-l(2 -~i-1~) we obtain

[z[i]] < tan -1 (2 -(i-1)) 11.20

Consequently, the convergence condition requires that
oo

tan -1 (2-(i-1)) < y ~ tan-l(2 - j)

j=i
11.21

which is equivalent to
OO

tan-l(2 -i) < ~ tan-l(2 - j)
j = i + l

11.22

Since this condition is satisfied for all i, the algorithm converges. 8 In conclusion,
the CORDIC algorithm converges as long as the rotation angle is not larger than

Omax �9

Since the maximum angle for convergence is somewhat larger than 7r/2, it
might be necessary to do a preprocessing (argument range reduction) to achieve
a larger angle. For instance, to achieve a range of [-yr, Jr], when the magnitude
of the angle is larger than 7r/2, an initial rotation by rr/2 is performed, which
consists in an interchange ofx and y and a sign change.

8. This is an instance of the more general condition, which states that an algorithm converges
if the bases satisfy 2c~j+l > otj.

618 c x A P T E • 11 CORDIC Algorithm and Implementations

11 .2o2 Range and Error for n Iterations and Truncation

Up to now we have considered the theoretical case in which the sequence of

iterations is infinite. In practice, of course, the sequence is finite. Moreover, all

variables are represented by a finite number of bits. This affects the range and

produces an error in the result.

As shown in (11.20), the residual angle after n iterations z[n] is bounded by

]z[n][< tan -1 (2 -(n-l)) 11.23

Moreover,

2 -n < tan -1 (2 - (n - I)) < 2- (n- l) 11.24

This means that the angle after n iterations has an error bound of 2 -(n-l) .

With respect to the maximum angle for convergence, the expression for n

iterations is

n - 1

{gmax(n) -- ~ t a n - l (2 - j) + 2 -n+l

j=O

11.25

where 2 -n+l is the maximum residual angle. Note that the maximum angle does

not change significantly with the number of iterations, after a reasonable number
of iterations.

For the vectoring mode we have tan-l(Yin/Xin) < Omax, and the conclu-
sions about the maximum angle, precision, and range remain the same as in the
rotation mode.

Truncation errors

The error bound of expression (11.24) assumes variables of infinite precision.

The representation with a finite number of bits requires roundoff (usually

truncation) and introduces additional errors. These errors are of two

(interrelated) types:

�9 Accumulation of the roundoff errors.

�9 Error in the determination of o's. This produces a rotation in the wrong

direction.

Compensation of Scaling Factor 619

11 =3

Error analysis have been performed to bound the total error. 9 This analysis is

used to determine the number of bits required to obtain a desired precision.

Compensation of Scaling Factor
If a perfect rotation is required (in rotation mode) or if the modulus is required
(in vectoring mode), it is necessary to compensate for the scaling factor K. The
following compensation methods have been proposed:

�9 The most direct method is to multiply by 1/K. Moreover, since K is a
constant, the multiplication can be simplified by taking advantage of the
zeros in the representation of 1/K. Recoding can be used to increase the
number of zeros. This method requires additional hardware to perform the
multiplication.

�9 Another method of compensation is to approximate 1 /K by a product of
factors of the form (1 4- 2 -i). For an acceptable approximation error, the
number of factors is between n/3 and n/4. This product can be
implemented by a sequence of scaling iterations of the form

Xs - - x -4- x(2 -i)

Consequently, these iterations can use the same hardware as the CORDIC
iterations.
A related method (which can be combined with scaling iterations) is to use
repetitions of CORDIC iterations, that is, to perform more than one
CORDIC iteration for some index values. This can be done without
changing the convergence condition (of course, in each iteration, the value
of cr has to be determined so that the algorithm converges). This is correct
since the condition

]z[i + 1]] _< tan-l(2 -i)

applies also for the case with repetitions.
Since the repetitions also produce a scaling of the modulus, they can be
used together with the scaling iterations to compensate for the original

9. For details see Hu (1992) and Antelo, Bruguera, et al. (1997).

620 c H APT E R 11 CORDIC Algorithm and Implementations

Scaling iterations (1) (+ 2) (- 5) (+ 1 0) (+ 1 6) (+ 1 9) (+ 2 2)
, ,

Scalings

+ repetitions

(--2)(+16)(+17)

1,3,5,6

TABLE 11.3 Scale-factor compensation for n = 24.

scaling factor. The problem consists then in finding the minimum number

of scaling iterations plus repetitions so that the scale factor is compensated.
For instance, for n = 24, Table 11.3 shows a set of scaling iterations and of
scaling plus repetitions.
Although for the n = 24 case there is no difference in the number of
iterations among both methods, in some cases (for instance, in the use of
redundant adders as described later) repetitions are necessary for
convergence. In such cases there is some flexibility in the position of these
repetitions. Consequently, they can be used also as part of the compensation
of the scaling factor.

The scale-factor compensation introduces additional errors because of the ap-
proximate method used and because of the truncations. These errors have to be
included in the total error.

Implementations
The implementation can be word-serial or pipelined. We describe these alterna-
tives now.

]] . 4 .] Word-Serial Implementation

In the word-serial implementation the hardware for one iteration is reused. Con-
sequently, this implementation is a sequential system in which each microrotation
corresponds to one clock cycle. This implementation is shown in Figure 11.5. Note
the variable shifters required for the multiplication by 2 - j in iteration j . The crit-
ical path delay is the sum of the delays of the shifter, the conditional complementer
(for the subtraction), the adder, and the register.

The same hardware is also used for the scale-factor compensation, for the
case in which the compensation is done by scaling iterations and the repetition

Implementations 621

x[o] 1

i s i-

ADD, UB I
X[j+I]~

xtj]l
6

j I
SH, II MU• I

i MUX I:, I
. . . . , . - ~
I ADD/SUB I--

~ Y[j+I]

IY[j]

sign(Y[j])
Add/sub module includes conditional complementer

z[o]

%

1 l
I Z[j+l]

REG Z

I Z[j]

~ sign(Z[j])
I MUX I

~ ~J= { sign(Z[j])in rotation

sign(Y[jl) in vectoring

F ! 6 u R E 11 .s Word-serial implementation.

of CORDIC iterations. Note the MUX required to implement the scaling
iterations.

1 1 . 4 . 2 Pipelined Implementation
In the pipelined implementation the iterations are unfolded so that each microro-
tation uses its own hardware (Figure 11.6). From the point of view of latency this
has the advantage that the shift amount in each iteration is constant, so that the
corresponding shifters are implemented just by the suitable wiring. Consequently,
the delay of one iteration is now only the sum of the delays of the conditional
complementer and the adder.

Additional hardware is required in this case for the scale-factor compen-
sation.

Moreover, because the iterations are unfolded, this allows the execution of
several CORDIC operations in a pipelined fashion, resulting in a high throughput.
In this case, the delay of the latches should be included in the latency.

622 c H APT E R 11 CORDIC Algorithm and Implementations

IJ 0

I~ 1

x [0]
l

=[A D D / S U B

X[1]

i ! , Wired shift ,
i i , (1) ,
t

. i !

A D D / S U B

X[21

Co

(~1

Y[O]

1
~1 A D D / S U B

Y[1]

z[o]

~176 ~1 A D D / S U B

1 .J I_. J . .
MUX T Z [1]

7 sign(61~ lsign(Z)

1 Ol
! , Wired shift ',
i i
, (1) ,
t

. - ~~1

A D D / S U B (3"1 ~ A D D / S U B

Y[2] -.~ _1 I_. -[.. MUX Z [2]
sign(61 ~ Isign(z)T

(~2 e o �9

(5

X[j] !

n , Wired shift :
' (j) ' I I

t l |

= ADD/SUB L

x[j+l]~

Y[j] z[j]

!

, Wired shift :

i u) ', !

sign(y~)l M X i;ign(Z). T

uj"+l �9 �9 �9

Add/sub module includes
conditional complementer

sign(Z[j]) in rotation

oj= { sign(Y[j]) in vectoring

F I 6 U R E 11 .s Pipelined implementation.

Extension to Hyperbolic and Linear Coordinates 623

1 1 . 5

11~5.1

y

/

xR' YR)

~ / ,'

n) ~ X

FIGURE 11.7 Rotation in hyperbolic coordinate system.

Extension to Hyperbolic and Linear Coordinates
The algorithm described in the previous sections is for circular coordinates. We

now consider its extension to hyperbolic coordinates and linear coordinates.

Hyperbolic Coordinates

Similarly as for circular coordinates, as shown in Figure 11.7, an hyperbolic

rotation by angle 0 is described by

[xR]_ [cosh0 sinho]Fxin] 11.26
YR sinh 0 cosh 0 k Y in

Notice the change in sign in the upper-right element with respect to the circular

case. Consequently, the corresponding CORDIC microrotation is

x[j + 1] = x[j] + a j2 -Jy[j]

y[j + 1] = y[j] + ~yj2-Jx[j "] 11.27

z[j + 1] -- z[j] -- o'j t anh- l (2 - j)

The scaling factor in iteration j is 10

Kh [j] = (1 -- 2 -2j) 1/2 11.28

10. We use the subscript h to differentiate with the factor K for circular coordinates.

624 c N A pT E R 11 CORDIC Algorithm and Implementations

Since tanh -1 2 o - c~ (and Kh [0] -- 0), for hyperbolic coordinates it is necessary

to begin from iteration j = 1.
Moreover, in this hyperbolic case, a complication is that the algorithm does

not converge with the sequence of angles tanh-l(2 - j) since

oo

Z tanh- 1 (2 - j) < tanh-1 (2-i) 11.29
j = i + l

A solution is to repeat some iterations. Since

oo oo

~ tanh-l(2-i~ < tanh-~(2-J~ < ~ tanh-~(2-i/+ ~anh -~ (2-~J+~'t
i = j + l i = j + l

11.30

repeating iterations 4, 13, 40, . . . , k, 3k + 1, . . . results in a convergent algorithm.

Including these repetitions, we get

Kh ~ 0.82816

Omax = 1.11817

For these coordinates we can also have the rotation and vectoring modes, with

the same expressions for the calculation of crj as in the circular coordinate case.

The final values are, for rotation mode,

X f = Kh (gin cosh 0 + yi, sinh 0)

y f -- Kh (xi,, sinh 0 + Yin cosh 0) 11.31

z f = O

and for vectoring mode,

x~ = K~ (x,2o - YiZn) 1/2
yf -- 0 11.32

z z+ tank (Y)xi
Similar considerations as those given for the circular mode with respect to errors

and to scale-factor compensation apply also to the hyperbolic case. Moreover, the

implementations of Figures 11.5 and 11.6 can be adapted, either to include both

types of coordinates or just for the hyperbolic case.

Extension to Hyperbolic and Linear Coordinates 625

Y

I

I

I

(X R, YR)

(Xin, Yin)

X

F I G U R E 1 1 . 8 Rotation in linear coordinate system.

1 1 . 5 . 2 Linear Coordinates

The rotation for linear coordinates is shown in Figure 11.8. That is,

X R ~ Xi n

Y R --- Yin "+" XinZin

11.33

Consequently, the elementary angles are of the form 2 -i, and the corresponding
microrotation is

x[j + 1] -- x[j]

y[j + 1] = y[j] + c r j 2 - J x [j]

z[j + 1] - z [j] - aj(2 - j)

The scaling factor is 1.
For the vectoring mode the final values are

11.34

X f m Xi n

Z f - - Z in "~- y i-'2-n
Xin

11.35

From the expressions we see that this linear mode can be used to perform multiply-
add and divide-add.

626 r N A p't" E R 11 CORDIC Algorithm and Implementations

1 1 . 5 . 3 Unified Description

From the previous development it is possible to describe the algorithm in the

three coordinate systems in a unified manner by defining the parameter m so that

�9 m = 1 for circular coordinates

�9 m = - 1 for hyperbolic coordinates

�9 m -- 0 for linear coordinates

In that case, the unified microrotation is ll

x [j + 11 = x [i] - m c r j 2 - J y [j]

yD + 1] - y[j] + aj2-Jx[j]

z [j] - c r j t an- l (2 - j) if m -- 1

z [j + l] - - z [j] - c r j t a n h -] (2 - j) if m - - - 1

z[/'] - a j (2 - J) if m - - 0

and the scaling factor is

Kin[j] -- (1 + m2 -2j) 1/2

Table 11.4 summarizes the two modes in the three coordinate systems.

11.36

11.37

1 1 . 5 . 4

1 1 . 6

Other Funct ions

The functions shown in Table 11.4 are obtained directly from the application

of the C O R D I C algorithm. Additional functions can be obtained with suitable

initial values; some of these functions are shown in Table 11.5.

Redundant Addition and High Radix
We now describe two of the many modifications that have been proposed for

the C O R D I C algorithm and its implementation. The main objective of these

modifications is to reduce the latency and/or to increase the throughput. The

modifications considered here are applicable to a unified implementation for

rotation and vectoring. Modifications that are applicable only to one mode are

discussed in the next section.

11. The z recurrence is also written as z[j + 1] = z[/] - cyjm -1/2 tan-l(ml/22-J).

Redundant Addition and High Radix 627

Coordinates

Rotation mode

~ = s i ~ z [j])

Vectoring mode

%. = - sign(y [j])

Circular (m = 1)
c~j = tan-1 (2-J)

Initial j = 0

j = 0 , 1 , 2 , . . . , n - 1

K1 ~ 1.64676

Omax ~ 1.74329

Linear (m = O)
O/j = 2 - j

Initial j = 0

j = 0 , 1 , 2 , . . . , n - 1

K 0 = I
Omax = 2 -- 2 -n

Hyperbolic (m = - 1)
0gj -- tanh-l(2 - j)

Initial j = 1

j -- 1, 2, 3, 4, 4, 5, . . . , 13,

1 3 , . . . , n
K-1 ~ 0.82816

Omax ~ 1.11817

X f -- Kl(xi cos(z/) -- Yi s in(z /))

y f = Kl(xi sin(z/) + Yi cos(z/))

z f = O

Xf = X i
Y f = Yi + xizi
z f = O

x f = Kl (x 2 + y2) 1/2

y f = O

z f = z i + t a n - l (Y - ~ i)

Xf ~ X i
y f = O
Zf =Zi -~-~

X f -- K - l (x i cosh(z i) + yi s inh(z i))

y f -- K- l (Xi s inh(z i) + yi cosh(z i))

z f = O

yi

xi

x f = K-I (x~ - y~)1/2

y f = O

z f - - z i + t a n h - l (Y ~ i)

Note:sign(a) = 1 ifa > 0, sign(a) = -1 ifa < O. x i , yi,zi are the initial values.

] 1 . 6 . 1

T A B L E 11.4 Unified CORDIC.

Although these modifications are applicable to both modes and all coordi-

nates, the details given here are limited to the circular case.

Redundant Representation

As can be seen from the description and evaluation of its implementation, the

main delay in the critical path of the CORDIC iteration is that of the adder, even

when a fast adder is used. An evident way of reducing this delay is to use one of

the redundant adders (see Chapter 2). This results in a redundant representation

of the variables.

628 c N A P T E R 11 C O R D I C A l g o r i t h m and Implemen ta t ions

Initial values Functions

m Mode x in Y in Z in XR YR or ZR

1

- 1

- 1

1

- 1

- 1

- 1

- 1

rotation

rotation

rotation

vectoring

vectoring

vectoring

vectoring

vectoring

1 0 0

1 0 0

a a 0

1 a zr/2

a 1 0

a + l a - 1 0
1 1 0

a + ~ a 4
a + b a - b 0

cos 0 YR = sin 0

cosh 0 YR = sinh 0

ae ~ YR = ae ~
Via 2 + 1 ZR - -co t - l (a)

Via 2 _ 1 z R = coth-1 (a)

2x/a- zR = 0.5 ln(a)
x /~ ZR -" ln (la)

2~a-b ZR = 0.5 In (~-)

Note: The final values x R and y R are obtained after compensation of the scale factor.

T,o, B L E 11.5 Some additional functions.

The main problem with this approach is the need to detect the sign to obtain

a j . This sign detection might be done by converting to a conventional represen-

tation, but this would defeat the purpose of using a redundant adder. It might

also be done by a sign detection module; however, the sign depends on all the
bits so that the sign detection delay is intrinsically of the same order as the con-
version. The solution to this, used in other digit recurrences such as division (see

Chapter 5), is to obtain r from an estimate of the sign. However, to assure con-
vergence some modification is required for the case in which the estimate is not

correct.

One possibility is to use a redundant digit set for Orj. In particular, use the
value 0 in addition to 4-1. This is the solution adopted for division. However, for

CORDIC it has the disadvantage that the introduction of 0 makes the scaling

factor variable, dependent on the angle. Two approaches have been proposed to

handle this situation:

Calculate the variable scaling factor and perform the corresponding

compensation. This can be done by evaluating the scaling factor using a

recurrence (and the compensation by a division), or by calculating the

logarithm of the scaling factor and then using an exponential function for

Redundant Addition and High Radix 629

the compensation (see Chapter 10 for the algorithms to compute logarithm
and exponential). Note that for the required precision, only the first half of
the a s affect the scaling factor.
Modify the recurrence to keep a constant scaling factor. The corresponding
iteration has been called a double rotation.

Another possibility is to maintain the digit set 4-1 to have a constant scale fac-
tor. The possibility of an incorrect estimate producing a nonconvergent algorithm
can be handled by the following proposals:

�9 Introduce additional CORDIC iterations (called correcting iterations) to
correct any possible error. To maintain the constant scaling factor it is
necessary to include these iterations at fixed points, irrespective of whether
an error occurred.

�9 Use two CORDIC modules, called the plus and the minus module.
Whenever an estimate is inconclusive, initiate the operation in both
modules and determine later which of the two is correct.

We now discuss at a hight level the double-rotation and the correcting-
iterations approaches.

Double-Rotation Approach

In this approach the set of values of aj is {-1 , 0, 1 }. To maintain the constant
scale factor the corresponding rotations are performed by a double rotation, as
follows:

�9 a j - 1. Both rotations are by angle tan-l(2-(J+l)) .
�9 aj = 0. The two rotations are by the angles tan-l(2 -~j+l)) and

-- tan-l(2-(J+l)) .

�9 aj -- --1. Both rotations are by the angle - t an - l (2 - (J+ l)) .

Consequently, the scaling factor is constant and has value

n

K -- H (1 + 2 -2j)
j=l

The elementary angles for this algorithm a r e 0/j ~ 2 tan-l(2 -(j+l)) (instead of
the tan- l (2-J) of the conventional CORDIC). The algorithm converges for these
elementary angles because 20~j+l >__ CCj.

630 e NA PTE• 1 ~ CORDIC Algorithm and Implementations

The double rotation is incorporated into a single iteration, resulting in the

following recurrences:

x[j + 1] -- x [j] - - q j 2 - J y [j] - pj2-2j-2x[j]
y[j + 1] - y[j] + qj2-Jx[j] - pj2-2j-2y[j] 11.38

z[j + 1] -- z [j] - qj(2 tan -1 (2-(J+l)))

The two control variables (qj, pj) take values (1, 1) for o'j = 1; (0, - 1) for
o'j = 0; and (-1 , 1) for o'j = - 1 . The value of aj is determined essentially from

an estimate of the sign of the corresponding variable (z[j] for rotation and y[j]
for vectoring); since the variable converges to 0, the estimate of the sign uses the

bits j - 1, j , and j + 1 of the carry-save representation ofz[j] .
As indicated, the algorithm uses a redundant representation and produces

a constant scaling factor. However, the recurrence is more complicated than the

conventional CORDIC because of the three terms required to produce x [.I' + 1]

and y[j + 1].

Correcting-Iterations Approach

In this approach the values ofo'j are kept as 4-1, which results in a constant scale

factor. However, because of the redundant representation, it is not possible to
determine accurately the sign of the corresponding variable. Consequently, an

estimate of the sign is obtained by examining a limited number of digits. In case
the sign estimation is incorrect, the rotation is in the incorrect direction so that the
algorithm might not converge. To assure convergence, some additional iterations
(called repetitions because they correspond to repeating the rotation with the same
elementary angle) are introduced at predetermined intervals.

The interval between these iterations depends on the maximum error com-
mitted when the estimation is incorrect, and this is influenced by the number of
digits used to estimate the sign. Consequently, there is a trade-off between the

complexity of the sign detection and the number of repetitions. It can be shown

that when m digits are used for the estimation, the distance between repetitions

is about m iterations for the rotation mode and m - 2 iterations for the vectoring
mode. 12

Since the scale factor of the required precision is affected only by the first
half of the o"s, for the second half it is possible to use the redundant digit set

12. For details see Takagi et al. (1991) and Lee and Lang (1992).

Redundant Addition and High Radix 631

{--1, 0, 1}, in which case no repetitions are needed in these iterations. Moreover,

beginning in n /4 the scale factor can be approximated by linear terms of the form
1 + 2 -2j- l , consequently, a constant scale factor is obtained when using the digit

set {-1 , 0, 1} if a scaling iteration is performed when crj = 0 (this is performed

with the same hardware of the CORDIC iteration). 13

In summary, in this approach the iteration is as in the conventional CORDIC,

but additional iterations are required to compensate the errors produced by using

an estimate of the sign in the f irstn/2 or n /4 iterations. As indicated before, these

correcting iterations can be combined with other CORDIC repetitions and with

scaling iterations to compensate the constant scaling factor.

1] o 6 o 2 Higher Radix
To reduce the number of iterations, it is possible to extend the algorithm to a

higher radix. The corresponding recurrence is

x [j + 1] - x[j] - crjr - jy[j]
y[j + 1] - y[j] + ~yjr-Jx[j "] 11.39

z[j + 1] -- z [j] - tan-l(crjr - j)

and the value of crj is a signed radix-r digit (nonredundant or redundant). Note

that the crj is now part of the argument of the elementary angle; this is in contrast

to the radix-2 case, in which the c~j has values 4-1, so that it just determines the

direction of rotation.
A selection function determines the value of o'j, this function is obtained

using a method similar to that of division (see Chapter 5). Because, as in di-
vision, the complexity of the selection function increases with the radix, direct
implementations are practical for radix 4.14

In the high-radix algorithm the scale factor is

K -- I - I (1 + 0"2r-2J) 1/2 11.40

Consequently, this scale factor is variable: it is necessary to compute it and then to

compensate. A method to do this is to compute the logarithm of the scale factor

13. In a pipelined implementation an additional wired shift of 2j + 1 positions is required.
14.For details see Antelo, Villalba, et al. (1997) and Villalba et al. (1998b).

632 c N APT E R 1 t CORDIC Algorithm and Implementations

and then to compensate by multiplying by the exponential of this logarithm. This
multiplication can be done with a recurrence similar to CORDIC, as described

in Chapter 10.
As stated before, the scale factor is affected only by the first half bits. Con-

sequently, a constant scale factor can be achieved if the first half is done radix-2

and the rest high radix. Of course, this increases the number of iterations with

respect to the case in which the whole algorithm is high radix.
The iteration can be performed using nonredundant or redundant adders.

As in division, the use of a redundant adder complicates somewhat the selection

function.

1 1 . 6 . 3 Example: 24-Bit Unit

We now describe the implementation of a 24-bit unit for circular coordinates,

using the enhancements described in this section. Specifically:

1. The iteration is performed using redundant adders. To be specific, we

select a signed-digit (radix-2) adder.

2. The scale factor is constant. This is achieved by the following:

�9 Iterations 0 to 6 use a o'j with values 4-1. The selection function uses
the four most-significant signed digits of the corresponding variable to
estimate the sign. This requires two correcting iterations for
convergence; the position of these iterations is determined so that they
also contribute to the scale-factor compensation (see below).

�9 Iterations 7 to 12 use a o'j with values - 1 , 0, 1. To maintain the
constant scaling factor, scaling by (1 + 2 -(2j+l)) is required when
orj = 0. The selection function is the same as for the first case, except

that aj -- 0 is selected when the value of the four digits is 0.

�9 Iterations 13 to 18 are radix 4. To simplify the implementation, crj is in

the set {-2, - 1 , 0, 1, 2}. The selection function is especially simple for

the rotation mode, since in these iterations tan-i(2 - j) can be

approximated by 2 - j .

3. The scale-factor compensation is by repetitions and scalings. The
repetitions are chosen so as to include those required for convergence and

to minimize the total number of iterations.

Application-Specific Variations 6 3 3

11 o7 Application-Specific Variations
In the previous sections we have considered a CORDIC unit applicable to all the
coordinates and operation modes. In some applications this is not required, so

that particular optimizations are possible. Moreover, in some cases a vectoring
operation is followed by a rotation, so that the rotation angle does not have to be
computed explicitly in conventional representation. We briefly summarize some
of these cases now. More details are given in the references at the end of the

chapter.

+++7++ Only Rotation

If only the rotation mode is required, then the following optimizations have been

considered:

Obtaining the crj Values Directly from the Angle

Especially when using redundant adders in a pipelined implementation, the crit-

ical path is affected by the delay of the selection of crj. In rotation mode, these crs

depend on the value of the angle to rotate. In fact, the set of crs is just a different
representation of the angle. Because of this, there have been attempts to obtain
the as directly from the conventional representation of the angle. This is direct
for small angles because in this case the tan -1 <9 can be approximated by ~9. More

precisely, from the Taylor expansion we get

3
X

t a n - 1 x ---- x - - - - - I - �9 �9 �9

3

Consequently, for a precision ofn bits and x < 2 -n/3 we have that

tan-l(2 -i) ~ 2 -i

This indicates that after the iteration with j = In/3] the as can be obtained
directly from z[[n/3]]. For the initial n/3 as the standard z iteration can be
performed. Alternatively, the following approaches have been proposed:

�9 Obtain the a s from a table, using as address some most-significant bits of

z[0].
�9 Obtain the a s directly as the most-significant bits of z[0]. Since an error is

produced, include correcting iterations.

634 c ~ A p~ ~ ~ t 1 CORDIC Algorithm and Implementations

t l o 7 o 2

1t o8

Rotation by Predefined Angles

Some applications, such as the computation of transforms (Fourier, cosine, etc.),
are performed by a sequence of rotations of predefined angles. In such cases, the
representation of the angles by as can be predetermined and the sequences of

cx s stored. Therefore, it is not necessary to perform the z iteration, resulting in a
reduction of the delay and the area.

However, in this case, since the rotation angles are known, the sine and cosine

can be stored and the rotation implemented by multipliers and adders.

Vectoring Followed by Rotation

In some applications, such as normalization, matrix triangularization, and SVD,
it is necessary first to compute an angle and then perform rotations by that angle.

In such cases, the angle can be computed by a vectoring (plus some other opera-

tions, such as additions) and then the angle is used for the rotation. Consequently,
the following improvements can be used:

�9 The angle can be kept in its representation by the cr s and used in this form
for the rotation. In this way, the z recurrences are avoided, both in the
vectoring and in the rotation.

�9 The rotation can be initiated as soon as the first o" is produced. That is, the

vectoring and the rotation can be overlapped, so that the overall delay is
essentially equal to that of the rotation.

Concluding Remarks
The CORDIC algorithm is part of the class of shift-and-add linear convergence
algorithms discussed in Chapter 10. In circular coordinates it can be used directly
to compute several trigonometric functions, such as cosine, sine, and arctan. How-

ever, its greatest potential is to compute directly functions of several variables,

such as the rotation of a vector by a specified angle (three variables), the modulus

of a vector, and arctan(y/x) (two variables each). This can compete favorably
with other multioperation algorithms for these functions.

The algorithm has been extended to hyperbolic and linear coordinates so that

the corresponding unified implementation is very versatile. Moreover, because

of its very regular nature, it can be pipelined for high-throughput applications.
This is particularly true when using low-latency redundant adders.

Exercises 635

Although the basic algorithm is radix 2, it has been extended to higher
radices. The most-direct extension is to radix 4, which results in half the number
of iterations as for radix 2. However, in the high-radix cases, the scaling factor
is not constant, so additional hardware is required to compute the scaling factor.
Consequently, an alternative approach is to perform the first iterations radix 2
and the last iterations radix 4, since the scaling factor is affected only by the first
iterations.

Very-high-radix implementations have been proposed using selection by
rounding (see the references at the end of the chapter). These implementa-
tions reduce the number of iterations, but require rectangular multipliers, larger
tables, and some special initial iterations.

Many other variations have been proposed, mainly to reduce the delay
and versatility of the implementations. Moreover, the implementations have
been adapted and combined with other modules for specific applications (see
Section 11.10).

The basic CORDIC algorithm and implementations are for fixed-point rep-
resentations. As for other algorithms, this limits the dynamic range of the operands
and result, requiring range reductions and adjustments to reduce loss of preci-
sion. To overcome these limitations, algorithms with floating-point representa-
tions have been proposed. If the operations, mainly additions, are performed in
floating point, the implementation is inefficient; however, it is possible to perform
the operations in fixed point and to add preprocessing and postprocessing steps
to convert from and to floating point. Additional complications occur if the angle
is represented in floating point (see the references at the end of the chapter).

t l o9

11,1

Exercises

Circular CORDIC" Rotation and Vectoring

Compute sin(30 ~ and cos(30 ~ to a precision of seven bits using the CORDIC
algorithm.

(a)
(b)

(c)

Utilize a datapath width of 7 fractional bits. Determine the error.
Utilize a datapath width of 10 fractional bits and truncate the final result
to 7 fractional bits. Compare the error with that of part (a).
Determine an angle for which the error difference between part (a) and
part (b) is large.

636 r ~ A P T E R ~| t C O R D I C Algor i thm and Implementat ions

1 1 . 2

1 1 . 3

1 1 . 4

1 1 . 5

1 1 . 6

11.7

Perform the rotation of the vector (X in , Y i n) - - (1, 1) by an angle 0 - 2zr/3
using the CORDIC algorithm. Perform a range reduction before the CORDIC
algorithm. Perform the scale-factor compensation by multiplication.

(a) Utilize a datapath width of 7 fractional bits. Determine the error.
(b) Utilize a datapath width of 10 fractional bits and truncate the final result

to 7 fractional bits. Compare the error with that of part (a).
(c) Determine an angle for which the error difference between part (a) and

part (b) is large.

Compute tan-l(2.13/3.25) and the modulus of the vector (3.25, 2.13), using the
CORDIC algorithm. Perform the scale-factor compensation by multiplication.

(a) Utilize a datapath width of 7 fractional bits. Determine the error.
(b) Utilize a datapath width of 10 fractional bits and truncate the final result

to 7 fractional bits. Compare the error with that of part (a).
(c) Determine a vector for which the error difference between part (a) and

part (b) is large.

Convergence, Precision, Range
Consider an algorithm that produces a variable A as a sum of the form

o o

A - - y~SiOl i
i=0

where the o~ i are the basis elements and $i E (0, 1}. Show that a recurrent
algorithm that producessi in iteration i converges if2c~i+l > cri.

Determine whether the same condition is valid for si E {-- 1, 1 }.
Apply this condition to the CORDIC algorithm.

Show the convergence of the CORDIC algorithm for vectoring mode.

Perform the rotation of (X in , Y i n) = (1.0, 1.0) by an angle of 2 radians using
the CORDIC algorithm directly, without argument range reduction. Does the
algorithm converge?

Compensation of Scaling Factor

Compute the value of 1/K obtained by performing the scalings and the repetitions
and scaling iterations indicated by Table 11.3.

Exercises 637

11 .8

11 .9

1 1 . 1 0

11.11

11 .12

1 1 . 1 3

1 1 . 1 4

1 1 . 1 5

1 1 . 1 6

Implementations

The CORDIC recurrences for x and y require the use of two shifters. Redefine
the recurrences in the vectoring mode so that only one shifter (possibly differ-
ent from the original one) is used. What are the implications of the modified
recurrences on the implementation? Why is this alternative not reasonable for

rotation?

Determine the value of i, for j > i, such that [tan-l(2 - j) - 2-Jl < 2 -n
(consider the Taylor series expansion). Indicate how this can be used to simplify
the implementation of the CORDIC algorithm.

Other Functions

Show that the functions described in Table 11.5 are obtained as indicated. Deter-
mine the range of the argument for convergence.

Compute 0.5e 0"76 using the CORDIC algorithm with a datapath width of eight

fractional bits. Perform six iterations and initialize so that no scale-factor com-
pensation is required.

Compute ln(0.17) using the CORDIC algorithm with a datapath of eight frac-
tional bits. Perform six iterations.

Compute tan(0.7) using two passes through a unified CORDIC unit. Use a
datapath of eight bits and perform six iterations in each pass.

Is it possible to use a radix-4 CORDIC module, without need of scale-factor
compensation?

Redundant Addition

Show that to compute a variable scaling factor with an error of 2 -n it is only
necessary to consider the crs for j < n/2.

Using the CORDIC implementation with redundant adder (signed digit) perform
the computation of sin(rr/4) with 8-bit precision. Use a selection function with
an estimate of the sign with two digits and introduce the required repetitions.

Compute the resulting scaling factor and compensate using a multiplication.

Repeat the previous exercise for vectoring of the v e c t o r (Xin , Yin) = (1 , 1).

638 c N A P T E R 11 C O R D I C A l g o r i t h m and I m p l e m e n t a t i o n s

1 1 . 1 7

Radix 4

Compute sin(Jr/4) with a radix-4 CORDIC algorithm using an implementation
with carry-save adders and the following selection function:

5 14 2 if g < ~ [0] < - g
3 4 1 if g < ~ [0] <

4 2 o'0-- 0 i f - g < ~ [0] < g
7 5 -1 i f - g <G[0]_< 8

_.1~ _< G[0] _< - ~ 2 if 1

and for j > 0,

21 2 if !~ < ~[j l < F
4 11 1 if g < ~ [j] < - g -

4 3 crj-- 0 i f - g < ~ [j] <
5 -1 if - ~ < ~[j] < - g

- 2 if - ~ < G [j] < _ __ 138

where w[j] = 2Jz[j] and ~[j] is the carry-save w[j] truncated to 3 fractional
bits.

Perform three iterations and determine the error. Determine the (variable)
scaling factor and perform the compensation by multiplication.

11 ='tO Further Readings
G e n e r a l

The CORDIC algorithm was first presented (for circular coordinates) in Voider
(1959) (see also Voider 2000) and extended to hyperbolic and linear coordinates
in Walther (1971) (see also Walther 2000), where there is also a discussion of the
conditions for convergence and of the variety of functions that can be performed.
Extensions to hyperbolic and linear coordinates are also described in Linhardt
and Miller (1969). Delosme (1989) presents a theory and further extensions.
Schmid (1974) discusses decimal CORDIC algorithms and implementations.

Further Readings 639

Scale-Factor Calculation and Compensation

The different techniques for the compensation of the constant scale factor are
discussed in Haviland and Tuszinsky (1980), Delosme (1986), Timmermann et al.
(1991a), and Villalba et al. (1998a).

Range Extension

Range extension of CORDIC algorithms is discussed in Hu et al. (1991) and Hahn
et al. (1994).

cr Prediction in Rotation Mode

To reduce the critical path in rotation mode, several authors have proposed meth-
ods to obtain the values of the rotation directions directly from the rotation
angle. Since this is not exact, especially for the first iterations, different correction
techniques are included (Baker 1976; Naseem 1984; Naseem and Fisher 1985;
Timmermann et al. 1992; Hu and Naganathan 1993; Antelo et al. 1995; Wang
et al. 1997; Kwak et al. 2000).

Redundant Representation

In the last decade several proposals have dealt with the reduction of the latency
by the use of redundant addition. Ercegovac and Lang (1990) propose to use the
digit set { 1, 0, - 1 }, resulting in a variable scaling factor; the computation of this
scaling factor as well as the compensation are done online. Two variations for
constant scaling factor are proposed for rotation in Takagi et al. (1991) and for
vectoring in Lee and Lang (1992). Redundant CORDIC is the subject of Lee
(1990). A branching algorithm is presented in Duprat and Muller (1993) and
extended in Phatak (1998a, 1998b), and the differential CORDIC algorithm in
Dawid and Meyr (1996). CORDIC with carry-save representation is considered
in Kunemund et al. (1990).

Online Algorithms

Online arithmetic (see Chapter 9) has been applied to the CORDIC algorithm. In
Ercegovac and Lang (1987) it has been used for the computation of cosine/sine,

640 c NApT ER l, CORDIC Algorithm and Implementations

and in Lin and Sips (1990) to perform the general CORDIC algorithm. In
Ercegovac and Lang (1990) the calculation of the variable scale factor and its
compensation is performed with online modules. An online large radix CORDIC
rotator is presented in Osorio et al. (1995).

High-Radix Algorithms

A combined radix-2 and radix-4 implementation, with the first half of the iter-
ations in radix 2 and the second half in radix 4, is used in Lee and Lang (1992);
this reduces the number of iterations but results in a constant scaling factor. This
method has been generalized to the unified CORDIC in Antelo et al. (1996).
Completely radix-4 algorithms are described in Antelo, Bruguera, et al. (1997)
and Villalba et al. (1998b). Radix 2k algorithms for some elementary functions
are proposed in Baker (1975). Recent work on higher-radix CORDIC includes

Antelo et al. (2000a, 2000b) and Lewis (1999).

Error Analysis

Error analysis of the CORDIC algorithm when implemented with finite-width
datapaths is presented in Hu (1992b) and Hu and Bass (1993). In Antelo, Bruguera,
et al. (1997), error in the argument is included and approaches are proposed to
reduce the overall error. Bekooij et al. (2000) deal with numerical accuracy of Fast
Fourier Transforms with CORDIC. The quantization effects are studied in Hu
(1992c). Numerical accuracy and hardware trade-offs are discussed in Kota and
Cavallaro (1993).

Multidimensional CORDIC

Multidimensional CORDIC has been presented in Delosme (1989). It is also in-
vestigated in Hsiao (1993). Its use is suggested for zeroing out several components
of a vector (multidimensional vectoring) and applying the corresponding as to
rotate other vectors. Alternative multidimensional algorithms are presented in
Delosme and Hsiao (1990), and Hsiao and Delosme (1995), and its application to
complex SVD in Hsiao et al. (2000). The use of the 3D CORDIC as part of an
algorithm for 3D rotation of rigid bodies is presented in Lang and Antelo (2001).

Further Readings 641

Floating-Point CORDIC
Floating-point applications in which the vector is in floating-point representa-
tion, but the CORDIC algorithm is in fixed-point representation, with prepro-
cessing and postprocessing stages, are discussed in Ercegovac and Lang (1990),
de Lange and Deprettere (1991), and Timmermann et al. (1994). This is extended
in Hekstra and Deprettere (1993) to the case in which the angle is also in floating-
point representation. A floating-point vectoring is discussed in der Kolk et al.
(2000). Cavallaro and Luk (1988a, 1988b) present floating-point CORDIC for
matrix computations. Floating-point CORDIC implementations are described
in Ahmed (1982), Metafas and Goutis (1995), and Hekstra (1998).

Extensions

The CORDIC algorithm has been modified so that other functions can be per-
formed. In particular for cos -1 and sin -i , see Mazenc et al. (1993), Krieger and
Hosticka (1996), and Lang and Antelo (2000). This latter has been generalized
to perform vectoring with an arbitrary target in Lang and Antelo (1998). An
extension to perform CORDIC for interval arithmetic is presented in Hormigo
et al. (1999).

Applications and Implementations

Applications and implementations of CORDIC have been frequently described
in the literature. We present here some of that work. CORDIC applications
fall roughly into signal processing, graphics, and robotics areas. Common to all
are the needs for fast and efficient evaluation of transcendental functions, ma-
trix computations, and operations on vectors and angles. Implementations are
typically application-specific, although there are several general CORDIC pro-
cessors, such as Haviland and Tuszinsky (1980), K6nig and B6hme (1990), and
Deprettere et al. (1990). Signal processing applications and implementations of
CORDIC are surveyed in Hu (1992a), which provides an extensive bibliography
up to 1992. Cavallaro and Luk (1988a, 1988b), Hu et al. (1993), and Hemkumar
and Cavallaro (1994) present a CORDIC approach to matrix computations.
Zou and Kornerup (1995) and Bruguera et al. (1996) deal with various trans-
forms. There are numerous discussions of various implementations of CORDIC

642 c ~ APTER ~ ~ CORDIC Algorithm and Implementations

algorithms for digital signal processing applications (Despain 1974; Ahmed et al.
1982; Deprettere et al. 1984; Wald and Despain 1984; Sung et al. 1986;
Timmermann et al. 1991b; Hekstra 2000). The literature contains many presenta-
tions of various aspects of the design and implementation of CORDIC processors
(Ahmed 1982; Cavallaro 1988; Harber 1989; Hu 1989; Wang 1998; Hekstra 1998;
Kwak 2000). A bit-serial floating-point CORDIC processor is described in Bass
et al. (1991). A radix-4 pipelined CORDIC processor is presented in Bruguera
et al. (1993). Mencer et al. (2000) discuss implementation of CORDIC with recon-
figurable arrays. Numerical accuracy and hardware trade-offs are discussed in
Kota and Cavallaro (1993). Graphics and robotics applications are the subject of
Yang et al. (1987), Yoshimura et al. (1989), Krieger and Hosticka (1996), and Lang
and Antelo (2001). CORDIC approach to decimal-binary conversion is presented
in Daggett (1959).

11 o t l Bibliography
Ahmed, H. M. (1982). Signal Processing Algorithms and Architectures. PhD thesis,

Stanford University.
Ahmed, H. M., J.-M. Delosme, and M. Morf(1982). Highly concurrent computing

structures for matrix arithmetic and signal processing. Computer, 15(1):65-82.
Antelo, E., J. D. Bruguera, T. Lang, and E. L. Zapata (1997). Error analysis

and reduction for angle calculation using the CORDIC algorithm. IEEE
Transactions on Computers, 46(11):1264-71.

Antelo, E., J. D. Bruguera, J. Villalba, and E. L. Zapata (1995). Redundant
CORDIC rotator based on parallel prediction. In Proceedings of the 12th
IEEE Symposium on Computer Arithmetic, pages 172-79.

Antelo, E., J. Bruguera, and E. Zapata (1996). Unified mixed radix-2-4 redundant
CORDIC processor. IEEE Transactions on Computers, 45(9):1086-73.

Antelo, E., T. Lang, and J. D. Bruguera (2000a). Very-high radix circular
CORDIC: vectoring and unified rotation/vectoring. IEEE Transactions on
Computers, 49(7):727-39.

Antelo, E., T. Lang, and J. D. Bruguera (2000b). Very-high radix CORDIC
rotation based on selection by rounding. Journal of VLSI Signal Processing
Systems, 25(2):141-54.

Bibliography 643

Antelo, E., J. Villalba, J. D. Bruguera, and E. L. Zapata (1997). High-performance
rotation architectures based on the radix-4 CORDIC algorithm. IEEE Trans-
actions on Computers, 46(8):855-70.

Baker, P. W. (1975). Parallel multiplicative algorithms for some elementary func-
tions. IEEE Transactions on Computers, C-24(3):321-24.

Baker, P. W. (1976). Suggestion for a fast binary sine/cosine generator. IEEE
Transactions on Computers, C-25(11): 1134-36.

Bass, S. C., G. M. Butler, R. L. Williams, F. Barlos, and D. R. Miller (1991).
A bit-serial, floating point CORDIC processor in VLSI. In Proceedings of
ICASSP-91, pages 1165-68.

Bekooij, M., J. Huisken, and K. Nowak (2000). Numerical accuracy of fast fourier
transforms with CORDIC arithmetic. Journal of VLSI Signal Processing Sys-
tems, 25(2):187-93.

Bruguera, J. D., E. Antelo, and E. L. Zapata (1993). Design ofa pipelined radix-4
cordic processor. Journal of Parallel Computing, 19(7):729-44.

Bruguera, J. D., N. Guil, T. Lang, J. Villalba, and E. Zapata (1996). CORDIC
based parallel/pipelined architecture for the Hough transform. Journal of
VLSI Signal Processing, pages 207-21.

Cavallaro, J. R. (1988). VLSI CORDIC Processor Architectures for the Singular
Value Decomposition. PhD thesis, CorneU University.

Cavallaro, J. R., and E T. Luk (1988a). CORDIC arithmetic for an SVD processor.
In Proceedings of the 8th IEEE Symposium on Computer Arithmetic, pages 113-
20.

Cavallaro, J. R., and E T. Luk (1988b). Floating-point CORDIC for matrix
computations. In Proceedings of the 1988 IEEE International Conference on
Computer Design, pages 40-42.

Daggett, D. H. (1959). Decimal-binary conversion in CORDIC. IRE Transactions
on Electronic Computers, EC-8(3):335-39.

Dawid, H., and H. Meyr (1996). The differential CORDIC algorithm: Constant
scale factor redundant implementation without correcting iterations. IEEE
Transactions on Computers, 45(3):307-18.

de Lange, A. A., and E. F. A. Deprettere (1991). Design and implementation of a
floating-point quasi systolic general purpose CORDIC rotator for high-rate
parallel data and signal processing. In Proceedings ofthe 10th IEEE Symposium
on Computer Arithmetic, pages 272-81.

644 c H A P T E R ~ ~ CORDIC Algorithm and Implementations

Delosme, J.-M. (1986). The matrix exponential approach to elementary opera-
tions. In Proceedings of the SPIE Advanced Algorithms and Architectures for
Signal Processing, volume 696, pages 188-95.

Delosme, J.-M. (1989). CORDIC algorithms: theory and extensions. In SPIE
Advanced Algorithms and Architectures for Signal Processing IV, volume 1152,
pages 131-45.

Delosme, J.-M., and S. H. Hsiao (1990). CORDIC algorithms in four dimensions.
In SPIE Advanced Signal-Processing Algorithms, Architectures and Implemen-
tations, volume 1348, pages 349-60.

Deprettere, E. E A., A. de Lange, and P. Dewilde (1990). The synthesis and
implementation of signal processing applications specific VLSI CORDIC
arrays. In Proceedings oflSCAS'90, pages 974-77.

Deprettere, E. E A., P. Dewilde, and R. Udo (1984). Pipelined CORDIC architec-
tures for fast VLSI filtering and array processing. In Proceedings oflCASSP
'84, pages 41.A.6.1-41.A.6.4.

der Kolk, K. J. V., J. A. Lee, and E. F. A. Deprettere (2000). A floating-point
vectoring algorithm based on fast rotations.Journal of VLSI Signal Processing
Systems, 25(2):125-40.

Despain, A. M. (1974). Fourier transform computers using CORDIC iterations.
IEEE Transactions on Computers, C-23(10):993-1001.

Duprat, J., and J.-M. Muller (1993). The CORDIC algorithm: New results
for fast VLSI implementation. IEEE Transactions on Computers, 42(2):168-
78.

Ercegovac, M. D., and T. Lang (1987). Fast cosine/sine implementation using on-
line CORDIC. In Proceedings of the 21st Asilomar Conference Signals, Systems,
Computers, pages 222-26.

Ercegovac, M. D., and T. Lang (1990). Redundant and on-line CORDIC: Appli-
cation to matrix triangularization and SVD. IEEE Transactions on Computers,
39(6):725-40.

Hahn, H., D. Timmermann, B. J. Hosticka, and B. Rix (1994). A unified and
division-free CORDIC argument reduction method with unlimited conver-
gence domain including inverse hyperbolic functions. IEEE Transactions on
Computers, 43(11):1339-44.

Harber, R. G. (1989). VLSI Design of Systems of CORDIC Processors. PhD thesis,
Purdue University.

Bibliography 645

Haviland, G. H., and A. A. Tuszinsky (1980). A CORDIC arithmetic processor
chip. IEEE Transactions on Computers, C-29(2):68-79.

Hekstra, G. J. (1998). CORDIC for High-Performance Numerical Computation.
PhD thesis, Technical University of Delft, The Netherlands.

Hekstra, G. J. (2000). Evaluation of fast rotation methods. Journal of VLSI Signal
Processing Systems, 25(2):113-24.

Hekstra, G. J., and E. E A. Deprettere (1993). Floating-point CORDIC. In Pro-
ceedings of the l lth IEEE Symposium on Computer Arithmetic, pages 130-37.

Hemkumar, N. D., and J. R. Cavallaro (1994). Redundant and on-line CORDIC
for unitary transformations. IEEE Transactions on Computers, 43(8):941-54.

Hormigo, J., J. Villalba, and E. L. Zapata (1999). Interval sine and cosine functions
computation based on Variable-precision CORDIC algorithm. In Proceedings
of the 14th IEEE Symposium on Computer Arithmetic, pages 186-93.

Hsiao, S.-E (1993). Multi-Dimensional CORDIC Algorithms. PhD thesis, Yale
University.

Hsiao, S.-E, and J.-M. Delosme (1995). Householder CORDIC algorithms. IEEE
Transactions on Computers, 44(8):990-1000.

Hsiao, S.-E, C.-Y. Lau, and J.-M. Delosme (2000). Redundant constant-factor im-
plementation of multi-dimensional CORDIC and its application to complex
SVD. Journal of VLSI Signal Processing Systems, 25(2):155-66.

Hu, X. (1989). A Silicon Compiler for Dedicated Mathematical Systems Based on
CORDIC Arithmetic Processors. PhD thesis, Purdue University.

Hu, X., and S. C. Bass (1993). A neglected error source in the CORDIC algorithm.
In Proceedings oflSCAS'93, volume 1, pages 766-69.

Hu, X., S. C. Bass, and R. G. Harber (1993). An efficient implementation of singu-
lar value decomposition rotation transformations with CORDIC processors.
Journal of Parallel and Distributed Computing, 17:360-62.

Hu, X., G. Harber, and S. Bass (1991). Expanding the range of the cordic algo-
rithm. IEEE Transactions on Computers, 40(1):13-21.

Hu, Y. H. (1992a). CORDIC-based VLSI architectures for digital signal pro-
cessing. IEEE Signal Processing Magazine, pages 16-35.

Hu, Y. H. (1992b). The quantization effects of the CORDIC algorithm. IEEE
Transactions on Signal Processing, 40(4):834-44.

Hu, Y. H. (1992c). The quantization effects of the CORDIC algorithm. IEEE
Transactions on Signal Processing, 40(4):834-45.

646 r NAPTER ~ ~ CORDIC Algorithm and Implementations

Hu, Y. H., and S. Naganathan (1993). An angle recoding method for CORDIC
algorithm implementation. IEEE Transactions on Computers, 42(1):99-102.

K6nig, D., and J. E B6hme (1990). Optimizing the CORDIC algorithm for
processors with pipeline architectures. In Signal Processing V: Theories and
Applications. Elsevier Science, Amsterdam, The Netherlands.

Kota, K., and J. R. Cavallaro (1993). Numerical accuracy and hardware tradeoffs
for CORDIC arithmetic for special-purpose processors. IEEE Transactions
on Computers, 42(7):769-79.

Krieger, C., and B. Hosticka (1996). Inverse kinematics computations with
modified CORDIC iterations. IEE Proceedings Computer Digital Techniques,
143(1):87-92.

Kunemund, R., H. Soldner, S. Wohlleben, and T. Noll (1990). CORDIC processor
with carry-save architecture. In Proceedings of the 16th European Solid-State
Circuit Conference, pages 193-96.

Kwak, J.-H. (2000). High Speed CORDIC Processor Design: Algorithms, Architec-
tures, and Applications. PhD thesis, University of Texas at Austin.

Kwak, J.-H., J. H. Choi, and E. E. Swartzlander (2000). High-speed CORDIC
based on an overlapped architecture and a novel a-prediction method.Journal
of VLSI Signal Processing Systems, 25(2):167-78.

Lang, T., and E. Antelo (1998). CORDIC vectoring with arbitrary target value.
IEEE Transactions on Computers, 47(7):736-49.

Lang, T., and E. Antelo (2000). CORDIC-based computation of ArcCos and
x/1 - t 2. Journal of VLSI Signal Processing, 25:19-38.

Lang, T., and E. Antelo (2001). High-throughput 3D rotations and normaliza-
tions. In Conference Record of the 35th Asilomar Conference on Signals, Systems
and Computers, volume 1, pages 846-51.

Lee, J.-A. (1990). Redundant CORDIC: Theory and Its Application to Matrix Com-
putations. PhD thesis, University of California, Los Angeles.

Lee, J. A., and T. Lang (1992). Constant-factor redundant CORDIC for angle
calculation and rotation. IEEE Transactions on Computers, 41 (8): 1016-25.

Lewis, D. (1999). Complex logarithmic number system arithmetic using high-
radix redundant CORDIC algorithms. In Proceedings of the 14th IEEE Sym-
posium on Computer Arithmetic, pages 194-203.

Lin, H., and H. J. Sips (1990). On-line CORDIC algorithms. IEEE Transactions
on Computers, 39(8):1038-52.

Bibliography 647

Linhardt, R. J., and H. S. Miller (1969). Digit-by-digit transcendental function
computation. RCA Review, 30:209-47.

Mazenc, C., X. Merrheim, and J.-M. Muller (1993). Computing functions cos -1
and sin -1 using CORDIC. IEEE Transactions on Computers, 42(1):118-22.

Mencer, O., L. Semeria, M. Morf, and J.-M. Delosme (2000). Application of
reconfigurable CORDIC architectures. Journal of VLSI Signal Processing,
24(2-3):211-21.

Metafas, D. E., and C. E. Goutis (1995). A floating-point advanced CORDIC
processor. Journal of VLSI Signal Processing, 10:53-65.

Naseem, A. (1984). Implementation of Parallel Computational Algorithms on a Mod-
ified CORDIC Arithmetic Logic Unit. PhD thesis, Michigan State University.

Naseem, A., and P. D. Fisher (1985). The modified CORDIC algorithm. In
Proceedings of the 7th IEEE Symposium on Computer Arithmetic, pages 144-
52.

Osorio, R. R., E. Antelo, J. D. Bruguera, J. Villalba, and E. L. Zapata, (1995). Digit
on-line large radix CORDIC rotator. In Proceedings ofASAP-95 (Strasbourg,
France), pages 246-57.

Phatak, D. S. (1998a). Comments on Duprat and Muller's branching CORDIC
paper. IEEE Transactions on Computers, 47(9):1037-40.

Phatak, D. S. (1998b). Double step branching CORDIC: a new algorithm for fast
sine and cosine generation. IEEE Transactions on Computers, 47(5):587-602.

Schmid, H. (1974).Decimal Computation. John Wiley & Sons, New York.
Sung, T. Y., Y. H. Hu, and H. J. Yu (1986). Doubly pipelined CORDIC array for

digital signal processing. In IEEE International Conference on ASSP, pages
1169-72.

Takagi, N., T. Asada, and S. Yajima (1991). Redundant CORDIC methods with
a constant scale factor. IEEE Transactions on Computers, 40(9):989-95.

Timmermann, D., H. Hahn, and B. J. Hosticka (1992). Low latency time
CORDIC algorithms. IEEE Transactions on Computers, 41 (8): 1010-15.

Timmermann, D., H. Hahn, B. J. Hosticka, and B. Rix (199 l a). A new addition
scheme and fast scaling factor compensation methods for CORDIC algo-
rithms. INTEGRATION, The VLSIJournal, 11:85-100.

Timmermann, D., H. Hahn, B. J. Hosticka and G. Schmidt (1991b). A pro-
grammable CORDIC chip for digital signal processing applications. IEEE
Journal of Solid-State Circuits, 26(9):1317-21.

648 r ~ I CORDIC Algorithm and Implementations

Timmermann, D., B. Rix, H. Hahn, and B. J. Hosticka (1994). A CMOS floating-
point vector-arithmetic unit. IEEE Journal of Solid-State Circuits, 29(5):634-
39.

Villalba, J., T. Lang, and E. L. Zapata (1998a). Parallel compensation of scale factor
for the CORDIC algorithm. Journal of VLSI Signal Processing, 19:227-41.

Villalba, J.,E. L. Zapata, E. Antelo., and J. D. Bruguera (1998b). Radix-4 vectoring
CORDIC. Journal of VLSI Signal Processing, 19:127-47.

Voider, J. (1959). The CORDIC computing techniquie. IRE Transactions on Elec-
tronic Computers, EC-8(3):330-34.

Voider, J. E. (2000). The birth of CORDIC. Journal of VLSI Signal Processing
Systems, 25(2): 101-5.

Wahher, J. S. (1971). A unified algorithm for elementary functions. In Proceedings
of the Spring Joint Computer Conference, pages 379-85.

Walther, J. S. (2000). The story of unified CORDIC. Journal of VLSI Signal
Processing Systems, 25(2): 107-12.

Wang, S. (1998).A CORDIC Arithmetic Processor. PhD thesis, University of Texas
at Austin.

Wang, S., V. Piuri, and E. E. Swartzlander (1997). Hybrid CORDIC algorithms.
IEEE Transactions on Computers, 46(11): 1202-7.

Wold, E. H. and A. M. Despain (1984). Pipeline and parallel-pipeline FFT
processors for VLSI implementations. IEEE Transactions on Computers,
C-33(5):414-26.

Yang, B., D. Timmermann, J. F. Bome, H. Hahn, B. J. Hosticka, G. Schmidt,
and G. Zimmer (1987). Special computers: graphics, robotics. In Proceedings
of VLSI Computer, COMPEURO, pages 727-30.

Yoshimura, H., T. Nakanishi, and H. Yamauchi (1989). A 50-MHz CMOS
geometrical mapping processor. IEEE Transactions on Circuits and Systems,
36(10):1360-63.

Zou, F., and P. Kornerup (1995). High speed DCT/IDCT using a pipelined
CORDIC algorithm. In Proceedings of the 12th IEEE Symposium on Computer
Arithmetic, pages 180-87.

Bibliography

Abu-Khater, I. S., A. Bellaouar, and M. I. Elmasry (1996). Circuit techniques for
CMOS low-power high-performance multipliers. IEEE]ournalofSolid-State
Circuits, 31 (10):1535-46.

Agarwal, R. C., J. C. Cooley, E G. Gustavson, J. B. Shearer, G. Slishman, and B.
Tuckerman (1986). New scalar and vector elementary functions for the IBM
system/3 70. IBM Journal of Research and Development, 30(2): 126-44.

Agarwal, R. C., F. G. Gustavson, and M. S. Schmookler (1999). Series approxima-
tion methods for divide and square root in the Power3 Microprocessor. In Pro-
ceedings of the 14th IEEE Symposium on Computer Arithmetic, pages 116-23.

Agrawal, D. P. (1979). High-speed arithmetic arrays. IEEE Transactions on Com-
puters, C-28(3):215-24.

Agrawal, D. P., and T. R. N. Rao (1978). On multiple operand addition of signed
binary numbers. IEEE Transactions on Computers, C-27(11): 1068-70.

Ahmed, H. M. (1982). Signal Processing Algorithms and Architectures. PhD thesis,
Stanford University.

Ahmed, H. M., J.-M. Delosme, and M. Morf (1982). Highly concurrent com-
puting structures for matrix arithmetic and signal processing. Computer,
15(1):65-82.

AI-Twaij ry, H. A. (1997).Area and Performance Optimized CMOS Multipliers. PhD
thesis, Stanford University.

Anderson, S. F., J. G. Earle, R. E. Goldschmidt, and D. M. Powers (1967). The
IBM 360/370 model 91: floating-point execution unit. IBM]ournal of Research
and Development, pages 34-53.

ANSI and IEEE (1985). IEEE standard for binary floating-point arithmetic.
ANSI/IEEE Standard, Std 754-1985, New York.

Antelo, E., J. D. Bruguera, T. Lang, and E. L. Zapata (1997). Error analysis
and reduction for angle calculation using the CORDIC algorithm. IEEE
Transactions on Computers, 46(11): 1264-71.

649

650 Bibliography

Antelo, E., J. D. Bruguera, J. Villalba, and E. L. Zapata (1995). Redundant
CORDIC rotator based on parallel prediction. In Proceedings of the 12th
IEEE Symposium on Computer Arithmetic, pages 172-79.

Antelo, E., J. Bruguera, and E. Zapata (1996). Unified mixed radix-2-4 redundant
CORDIC processor. IEEE Transactions on Computers, 45(9):1086-73.

Antelo, E., T. Lang, and J. D. Bruguera (2000). Very-high radix circular CORDIC:
vectoring and unified rotation/vectoring. IEEE Transactions on Computers,
49(7):727-39.

Antelo, E., T. Lang, and J. D. Bruguera (2000). Very-high radix CORDIC rotation
based on selection by rounding. Journal of VLSI Signal Processing Systems,
25(2):141-54.

Antelo, E., T. Lang, and J. D. Bruguera (1998). Computation of ~/-x/d in a very
high radix combined division/square-root unit with scaling. IEEE Transac-
tions on Computers, 47(2):152-61.

Antelo, E., J. Villalba, J. D. Bruguera, and E. L. Zapata (1997). High-performance
rotation architectures based on the radix-4 CORDIC algorithm. IEEE Trans-
actions on Computers, 46(8):855-70.

Atkins, D. E. (1968). Higher-radix division using estimates of the divisor and
partial remainders. IEEE Transactions on Computers, C-17(10):925-34.

Atkins, D. E. (1970). Design of the arithmetic units of ILLIAC III: Use of
redundancy and higher radix methods. IEEE Transactions on Computers,
C- 19(8):720-33.

Atkins, D. E. (1970). A Study of Methods for Selection of Quotient Digits during
Digital Division. PhD thesis, Department of Computer Science, University
of Illinois at Urbana-Champaign. Technical report UIUCDCS-R-397.

Atkins, D. E. (1970). Design of the arithmetic units of ILLIAC III: Use of
redundancy and higher radix methods. IEEE Transactions on Computers,
C- 19(8):720-33.

Atkins, D. E. (1975). Higher radix, non-restoring division: History and recent
developments. In Proceedings of the 3rd IEEE Symposium on Computer Arith-
metic, pages 158-60.

Atkins, D. E., and S. Ong (1979). Time-component complexity of two ap-
proaches to multioperand binary addition. IEEE Transactions on Computers,
C-28(12):918-26.

Avizienis, A. (1960). A Study of Redundant Number Representations for Parallel
Digital Computers. PhD thesis, University of Illinois, Urbana.

Bibliography 651

Avizienis, A. (1961). Signed digit number representations for fast paral-
lel arithmetic. IRE Transactions on Electronic Computers, EC-10(9):389-
400.

Avizienis, A. (1962). On flexible implementation of digital computer arithmetic.
In Proc. IFIP Congress, pages 664-70.

Avizienis, A. (1964). Binary-compatible signed-digit arithmetic. In Proc. Fall Joint
Computer Conference, pages 663-72.

Avizienis, A. (1966). Arithmetic microsystems for the synthesis of function gen-
erators. Proceedings of the IEEE, 54(12): 1910-19.

Avizienis, A. (1971). Digital computer arithmetic: A unified algorithmic speci-
fication. In Proceedings of the Symposium on Computers and Automata, pages
509-25, April 13-15.

Bajard, J.-C., J. Duprat, S. Kla, and J.-M. Muller (1994). Some operators for
on-line radix 2 computations. Journal of Parallel and Distributed Computing,
22(2):336-45.

Bajard, J.-C., S. Kla, and J.-M. Muller (1994). BKM: A new hardware algo-
rithm for complex elementary functions. IEEE Transactions on Computers,
43(8):955-63.

Baker, P. W. (1973). Predictive algorithms for some elementary functions in radix
2. Electronics Letters, 9(21):493-94.

Baker, P. W. (1975). Parallel multiplicative algorithms for some elementary func-
tions. IEEE Transactions on Computers, C-24(3):321-24.

Baker, P. W. (1976). Suggestion for a fast binary sine/cosine generator. IEEE
Transactions on Computers, C-25(11): 1134-36.

Bannon, P., and J. Keller (1995). Internal architecture of Alpha 21164 micropro-
cessor. In Digest of Papers COMPCON '95, pages 79-87.

Bass, S. C., G. M. Butler, R. L. Williams, E Barlos, and D. R. Miller (1991).
A bit-serial, floating point CORDIC processor in VLSI. In Proceedings of
ICASSP-91, pages 1165-68.

Baugh, C. R., and B. A. Wooley (1973). A two's complement parallel ar-
ray multiplication algorithm. IEEE Transactions on Computers, C-22:1045-
47.

Bayoumi, M. A., G. A. Jullien, and W. C. Miller (1983). An area-time efficient
NMOS adder. Integration, 1:317-34.

Beame, P., S. Cook, and H. Hoover (1986). Log depth circuits for division and
related problems. SIAM Journal on Computing, 15:994-1003.

652 Bibliography

Beaumont-Smith, A., N. Burgess, D. Lefrere, and C. C. Lim (1999). Reduced
latency IEEE floating-point standard adder architecture. In Proceedings of
the 14th IEEE Symposium on Computer Arithmetic, pages 35-42.

Bedrij, O. J. (1962). Carry-select adder. IRE Transactions on Electronic Computers,
EC- 11 (6):340-46.

Bekooij, M., J. Huisken, and K. Nowak (2000). Numerical accuracy of fast fourier
transforms with CORDIC arithmetic. Journal of VLSI Signal Processing Sys-
tems, 25(2):187-93.

Benschneider, B. J., W. J. Bowhill, E. M. Copper, M. N. Gavrielov, E E.
Gronowski, V. K. Maheshwari, V. Peng, J. D. Pickholtz, and S. Samudrala
(1989). A pipelined 50MHz CMOS 64-bit floating-point arithmetic processor.
IEEE Journal of Solid-State Circuits, SC-24(5): 1317-23.

Bewick, G. W. (1994). Fast Multiplication: Algorithms and Implementation. PhD
thesis, Stanford University.

Bickerstaff, K. C., E. E. Swartzlander, and M. J. Schulte (2001). Analysis of
column compression multipliers. In Proceedings of the 15th IEEE Symposium
on Computer Arithmetic, pages 33-39.

Bohlender, G., E Kornerup, D. W. Matula, and W. Walter (1991). Semantics for
exact floating-point operations. In Proceedings of the l Oth IEEE Symposium
on Computer Arithmetic, pages 22-26.

Booth, A. D. (1951). A signed binary multiplication technique. Quarterly Journal
of Mechanics and Applied Mathematics, 4(2):236-40.

Borovec, R. T. (1968). The logical design of a class of limited carry-borrow prop-
agation adders. Technical report no. 275, Dept. of Computer Science, Uni-
versity of Illinois.

Bose, B. K., L. Pei, G. S. Taylor, and D. A. Paterson (1987). Fast multiply and divide
for a VLSI floating-point unit. In Proceedings of the 8th IEEE Symposium on
Computer Arithmetic, pages 87-94.

Brackert, R. H. (1988).Design and Implementation of Recursive Filters Using On-line
Arithmetic. PhD thesis, University of California, Los Angeles.

Brackert, R. H., M. D. Ercegovac, and A. N. Willson (1989). Design of an on-line
multiply-add module for recursive digital filters. In Proceedings of the 9th
IEEE Symposium on Computer Arithmetic, pages 34-41.

Braun, E. L. (1963). Digital Computer Design. Academic Press, New York.
Brent, R. P. (1970). On the addition of binary numbers. IEEE Transactions on

Computers, C- 19(8):758-59.

Bibliography 653

Brent, R. P. (1973). On the precision attainable with various floating point number
systems. IEEE Transactions on Computers, C-22(6):601-7.

Brent, R. P., and H. T. Kung (1981). The area-time complexity of binary multi-
plication. Journal of the ACM, 28(3).

Brent, R. P., and H. T. Kung (1982). A regular layout for parallel adders. IEEE
Transactions on Computers, C-31 (3):260-64.

Briggs, W. S., and D. W. Matula (1993). A 17 • 69 bit multiply and add unit with
redundant binary feedback and single cycle latency. In Proceedings ofthe llth
IEEE Symposium on Computer Arithmetic, pages 163-71.

Brown, W. S., and P. L. Richman (1969). The choice of base. Communications of
the ACM, 12(10):560-61.

Bruguera, J., and T. Lang (1995). 2-D DCT using online arithmetic. In Interna-
tional Conference on Acoustics, Speech, and Signal Processing, volume 5, pages
3275-78.

Bruguera, J. D., E. Antelo, and E. L. Zapata (1993). Design ofa pipelined radix-4
cordic processor. Journal of Parallel Computing, 19(7):729-44.

Bruguera, J. D., N. Guil, T. Lang, J. Villalba, and E. Zapata (1996). CORDIC
based parallel/pipelined architecture for the Hough transform. Journal of
VLSI Signal Processing, pages 207-21.

Bruguera, J. D., and T. Lang (1999). Leading-one prediction with concur-
rent position correction. IEEE Transactions on Computers, 48(10):1083-
97.

Bruguera, J. D., and T. Lang (2000). Multilevel reverse-carry adder. In Proceedings
of the IEEE International Conference on Computer Design: VLSI in Computers
and Processors (ICCD'00) , pages 155-62.

Bruguera, J. D., and T. Lang (2001). Using the reverse-carry approach for double
datapathfloating-point addition. In Proceedings of the 15th IEEE Symposium
on ComputerArithmetic, pages 203-10.

Bryant, R. (1996). Bit-level analysis of an SRT divider circuit. In Proceedings of
the 33rd Design Automation Conference, pages 661-65.

Bucholz, W. (1962).Planninga New Computer System: Project STRETCH, Chapter
14, p. 210. Wiley and Sons, Inc., New York.

Burgess, N. (1991). Radix-2 SRT division with simple quotient digit selection.
Electronics Letters, 27(21): 1910-11.

Burgess, N. (1994). Prescaled maximally-redundant radix-4 SRT divider. Elec-
tronics Letters, 30(23):1926-28.

654 Bibliography

Burgess, N. (2001). Accelerated carry-skip adders with low hardware cost. In
Proceedings of the 35th Asilomar Conference on Signals, Systems and Computers,
pages 852-56.

Burgess, N., and S. Knowles (1999). Efficient implementation of rounding units.
In Conference Record of the 33rd Asilomar Conference on Signals, Systems, and
Computers, volume 2, pages 1489-93.

Burgess, N., and T. Williams (1995). Choices of operand truncation in the SRT
division algorithm. IEEE Transactions on Computers, 44(7):933-38.

Burks, A., H. H. Goldstine, and J. Von Neumann (1946). Preliminary discussion
of the logic design of an electronic computing instrument. Technical report,
Institute for Advanced Study, Princeton. Reprinted in C. G. Bell, Computer
Structures, Readings and Examples, McGraw-Hill, New York, 1971.

Burleson, W. E (1990). Polynomial evaluation in VLSI using distributed arith-
metic. IEEE Transaction on Circuits and Systems, 37(10):1299-304.

Bushard, L. B. (1983). A minimum table size result for higher radix nonrestoring
division. IEEE Transactions on Computers, C-32(6):521-26.

Callaway, T. (1996). Area, Delay, and Power Modeling of CMOS Adders and Multi-
pliers. PhD thesis, The University of Texas at Austin.

Callaway, T. K., and E. E. Swartzlander (1997). Power-delay characteristics of
CMOS multipliers. In Proceedings of the 13th IEEE Symposium on Computer
Arithmetic, pages 26-32.

Cao, J., B. W. Y. Wei, and J. Cheng (2001). High-performance architectures for
elementary function generation. In Proceedings of the 15th IEEE Symposium
on Computer Arithmetic, pages 136-44.

Cappa, M., and V. C. Hamacher (1973). An augmented iterative array for high-
speed binary division. IEEE Transactions on Computers, C-22(2):172-75.

Cappello, P. R., and K. Steiglitz (1983). A VLSI layout for a pipelined Dadda
multiplier. A CM Transactions on Computer Systems, 1 (2):157-74.

Cappuccino, G., G. Cocorullo, P. Corsonello, and S. Perri (1999). High speed
self-timed pipelined datapath for square rooting, lEE Proceedings--Circuits,
Devices and Systems, 146(1): 16-22.

Cappuccino, G., P. Corsonello, and G. Cocorullo (1998). High performance
VLSI modules for division and square root. Microprocessors and Microsys-
terns, 22(5):239-46.

Carter, T. M., and J. E. Robertson (1990). The set theory of arithmetic decompo-
sition. IEEE Transactions on Computers, C-39(8):993-1005.

Bibliography 655

Carter, T. M., and J. E. Robertson (1990). Radix-16 signed-digit division. IEEE
Transactions on Computers, C-39(12): 1424-33.

Cavallaro, J. R. (1988). VLSI CORDIC Processor Architectures for the Singular Value
Decomposition. PhD thesis, Cornell University.

Cavallaro, J. R., and E T. Luk (1988). CORDIC arithmetic for an SVD processor.
In Proceedings of the 8th IEEE Symposium on Computer Arithmetic, pages
113-20.

Cavallaro, J. R., and E T. Luk (1988). Floating-point CORDIC for matrix compu-
tations. In Proceedings of the 1988 IEEE International Conference on Computer
Design, pages 40-42.

Cavanagh, J. (1984). Digital Computer Arithmetic. McGraw-Hill, New York.
Chan, P. K., and M. D. E Schlag (1990). Analysis and design of CMOS Manchester

adder with variable carry-skip. IEEE Transactions on Computers, C-39(8):
983-92.

Chan, P. K., M. D. Schlag, C. D. Thomborson, and V. G. Oklobdzija (1992). Delay
optimization of carry-skip adders and block carry-lookahead adders using
multidimensional dynamic programming. IEEE Transactions on Computers,
41(8):920-30.

Chen, C., L.-A. Chen, and J.-R. Cheng (2001). Architectural design of a
fast floating-point multiplication-add fused unit using signed-digit addi-
tion. In Proceedings Euromicro Symposium on Digital Systems Design, pages
346-53.

Chen, I. N., and R. Willoner (1979). An o(n) parallel multiplier with bit-sequential
input and output. IEEE Transactions on Computers, C-28(10):721-27.

Chen, T. C. (1971). A binary multiplication scheme based on squaring. IEEE
Transactions on Computers, C-20:678-80.

Chen, T. C. (1972). Automatic computation of exponentials, logarithms, ratios,
and square roots. IBM Journal of Research and Development, pages 380-89.

Chen, Y.-A., E. Clarke, P.-H. Ho, Y. Hoskote, T. Kam, M. Khaira, J. O'Leary, and
X. Zhao (1996). Verification of all circuits in a floating-point unit using word-
level model checking. In Proceedings of International Conference on Formal
Methods in Computer-Aided Design (FMCAD '96), pages 19-33.

Cheney, E. W. (1966). Introduction to Approximation Theory. International Series
in Pure and Applied Mathematics. McGraw Hill, New York.

Cheng, E-C., S. H. Unger, and M. Theobald (2000). Self-timed carry-lookahead
adders. IEEE Transactions on Computers, 49(7):659-72.

656 Bibliography

Cherkauer, B. S., and E. G. Friedman (1997). A hybrid radix-4/radix-8 low power
signed multiplier architecture. IEEE Transactions on Circuits and SystemsmII:
Analog and Digital Signal Processing, 44(8):656-59.

Chow, C. Y., and J. E. Robertson (1978). Logical design of a redundant binary
adder. In Proceedings of the 4th IEEE Symposium on Computer Arithmetic,
pages 109-15.

Ciminiera, L., and R Montuschi (1990). Higher radix square rooting. IEEE Trans-
actions on Computers, 39(10): 1220-31.

Ciminiera, L., and R Montuschi (1996). Carry-save multiplication schemes
without final addition. IEEE Transactions on Computers, 45(9):1050-
55.

Clarke, E. M., S. M. German, and X. Zhao (1999). Verifying the SRT division al-
gorithm using theorem proving techniques. Formal Methods in System Design,
14(1):7-44.

Clouser, J., M. Matson, R. Badeau, R. Dupcak, S. Samudrala, R. Allmon, and
N. Fairbanks (1999). A 600-MHz superscalar floating-point processor. IEEE
Journal of Solid-State Circuits, 34(7): 1026-29.

Cocke, J., and D. W. Sweeney (1957). High speed arithmetic in a parallel device.
Technical report, IBM.

Cody, W. J. (1970). A survey of practical rational and polynomial approximation
of functions. SIAM Review, 12(3):400-423.

Cody, W. J. (1973). Static and dynamic numerical characteristics of floating-point
arithmetic. IEEE Transactions on Computers, C-22(6):598-601.

Cody, W. J. (1987). Analysis of proposals for the floating-point standard. Computer,
20(3):63-68.

Cody, W. J., J. T. Coonen, D. M. Gay, K. Hanson, D. Hough, W. Kahan, R.
Karpinski, J. Palmer, F. N. Ris, and D. Stevenson (1984). A proposed radix-
and-word-length-independent standard for floating-point arithmetic. IEEE
MICRO, 4(4):86-100.

Cody, W. J., and W. Waite (1980). Software Manual for the Elementary Functions.
Prentice-Hall, Englewood Cliffs, New Jersey.

Coonen, J. T. (1980). An implementation guide to a proposed standard for floating-
point arithmetic. Computer, 13(1):68-79.

Coonen, J. T. (1981). Underflow and the denormalized numbers. Computer,
14(3):75-87.

Bibliography 657

Corbaz, G., J. Duprat, B. Hochet, and J.-M. Muller (1991). Implementation of
a VLSI polynomial evaluator for real-time applications. In Proceedings of
ASAPgl, pages 13-24.

Cornea-Hasegan, M. A., R. A. Golliver, and P. Markstein (1999). Correctness
proofs outline for Newton-Raphson based floating-point divide and square
root algorithms. In Proceedings of the 14th IEEE Symposium on Computer
Arithmetic, pages 96-105.

Cornetta, G., and J. Cortadella (1999). A radix-16 SRT division unit with specu-
lation of the quotient digits. In Proceedings of the 9th Great Lakes Symposium
on VLSI, pages 74-77.

Cornetta, G., and J. Cortadella (2001). A multi-radix approach to asynchronous
division. In ASYNC 2001, Proceedings of the 7th International Symposium on
Asynchronous Circuits and Systems, pages 25-34.

Corsonello, P., S. Perri, and G. Cocorullo (2000). Performance comparison be-
tween static and dynamic CMOS logic implementations of a pipelined
square-rooting circuit. IEE ProceedingsnCircuits, Devices and Systems,
147(6):347-55.

Cortadella, J., and J. M. Llaberia (1992). Evaluation of A + B = K conditions
without carry propagation. IEEE Transactions on Computers, 41 (11): 1484-88.

Cortadella, J., and T. Lang (1993). Division with speculation of quotient digits.
In Proceedings of the l lth IEEE Symposium on Computer Arithmetic, pages
87-94.

Cortadella, J., and T. Lang (1994). High-radix division and square-root with
speculation. IEEE Transactions on Computers, 43(8):919-31.

Dadda, L. (1965). Some schemes for parallel multipliers.Alta Frequenza, 34:349-
56.

Dadda, L. (1976). On parallel digital multipliers.Alta Frequenza, 45:574-80.
Dadda, L. (1989). On serial input multipliers for two's complement numbers.

IEEE Transactions on Computers, 38:1341-45.
Dadda, L., and V. Piuri (1996). Pipelined adders. IEEE Transactions on Computers,

45(3):348-56.
Daggett, D. H. (1959). Decimal-binary conversion in CORDIC. IRE Transactions

on Electronic Computers, EC-8(3):335-39.
Dahlquist, G., and A. Bjorck (1974). Numerical Methods. Prentice-Hall, Engle-

wood Cliffs, New Jersey.

658 Bibliography

Danielsson, E E. (1984). Serial/parallel convolvers. IEEE Transactions Computers,
C-33(7):652-67.

Dantzig, T. (1954). The Number: The Language of Science. Free Press (Macmillan
Publishing Co.), New York.

Dao, H., and V. G. Oklobdzija (2001). Application of logical effort for speed
optimization and analysis of representative adders. In Proceedings of the 35th
Asilomar Conference on Signals, Systems and Computers, pages 1666-69.

Dao-Trong, S., and K. Helwig (1992). A single-chip IBM System/390 floating-
point processor in CMOS. IBM Journal of Research and Development,
36(4):733-48.

Darley, M., B. Kronlage, D. Bural, B. Churchill, D. Pulling, P. Wang, R. Iwamoto,
and L. Yang (1990). The TMS390C602A floating-point coprocessor for Sparc
systems. IEEE Micro, 10(3):36-47.

Das Sarma, D. (1995). Highly Accurate Initial Reciprocal Approximations for High
Performance Division Algorithms. PhD thesis, Southern Methodist University.

Das Sarma, D., and D. W. Matula (1994). Measuring the accuracy of ROM recip-
rocal tables. IEEE Transactions on Computers, 43(8):932-40.

Das Sarma, D., and D. W. Matula (1995). Faithful bipartite ROM reciprocal
tables. In Proceedings of the 12th IEEE Symposium on Computer Arithmetic,
pages 17-28.

Das Sarma, D., and D. W. Matula (1997). Faithful interpolation in reciprocal
tables. In Proceedings of the 13th IEEE Symposium on Computer Arithmetic,
pages 82-91.

Daumas, M., C. Finot, and J.-M. Muller (2000). Table based implementation
of elementary functions for hundred-bit precision. In 16th IMACS World
Congress on Computational and Applied Mathematics.

Daumas, M., C. Mazenc, X. Merrheim, and J.-M. Muller (1994). Fast and accurate
range reduction for computation of the elementary functions. In Proceedings
of the 14th IMA CS Worm Congress on Computational and Applied Mathematics,
pages 1196-98.

Daumas, M., C. Mazenc, X. Merrheim, and J.-M. Muller (1995). Modular range
reduction: A new algorithm for fast and accurate computation of the ele-
mentary functions. Journal of Universal Computer Science, 1 (3): 162-75.

Daumas, M., J.-M. Muller, and A. Tisserand (1997). Very high radix on-
line arithmetic for accurate computations. In 15th IMACS Worm Congress

Bibliography 659

on Scientific Computation, Modelling and Applied Mathematics, Berlin,
Germany.

Daumas, M., J.-M. Muller, and J. Vuillemin (1994). Implementing on-line arith-
metic on PAM. In 4th International Worksho p on Field-Programmable Logic
and Applications.

Davis, P. J. (1990). Interpolation and Approximation. Dover Publications, New
York.

Dawid, H., and H. Meyr (1996). The differential CORDIC algorithm: Constant
scale factor redundant implementation without correcting iterations. IEEE
Transactions on Computers, 45(3):307-18.

de Angel, E., and E. Swartzlander (1996). Low power parallel multipliers. In
Proceedings of the IEEE Worksho p on VLSI Signal Processing, pages 199-
208.

de Dinechin, F., and A. Tisserand (2001). Some improvements on multipartite
table methods. In Proceedings of the 15th IEEE Symposium on Computer Arith-
metic, pages 128-35.

de Lange, A. A., and E. F. A. Deprettere (1991). Design and implementation of a
floating-point quasi systolic general purpose CORDIC rotator for high-rate
parallel data and signal processing. In Proceedings ofthe 10th IEEE Symposium
on Computer Arithmetic, pages 272-81.

Deegan, I. (1971). Concise cellular array for multiplication and division. Electron-
ics Letters, 7(23):702-4.

Delosme, J.-M. (1986). The matrix exponential approach to elementary opera-
tions. In Proceedings of the SPIEmAdvanced Algorithms and Architectures for
Signal Processing, volume 696, pages 188-95.

Delosme, J.-M. (1989). CORDIC algorithms: theory and extensions. In SPIE
Advanced Algorithms and Architectures for Signal Processing IV, volume 1152,
pages 131-45.

Delosme, J.-M., and S. H. Hsiao (1990). CORDIC algorithms in four dimensions.
In SPIE Advanced Signal-Processing Algorithms, Architectures and Implemen-
tations, volume 1348, pages 349-60.

DeLugish, B. G. (1970). A Class of Algorithms for Automatic Evaluation of Cer-
tain Elementary Functions in a Binary Computer. PhD thesis, Department of
Computer Science, University of Illinois at Urbana-Champaign. (Technical
Report UIUCDCS-R-399.)

660 Bibliography

Dempster, A. G., and M. D. Macleod (1994). Constant integer multiplication
using minimum adders. IEE Proceedings Circuits Devices Systems, 141 (5):407-
13.

Dempster, A. G., and M. D. Macleod (1995). Use of minimum-adder multiplier
blocks in FIR digital filters. IEEE Transactions on Circuits and Systems--II:
Analog and Digital Signal Processing, 42(9):569-77.

Denyer, P., and D. Renshaw (1985). VLSI Signal Processing: A Bit-SerialApproach.
Addison-Wesley, Reading, Massachusetts.

Deprettere, E. E A., A. de Lange, and P. Dewilde (1990). The synthesis and
implementation of signal processing applications specific VLSI CORDIC
arrays. In Proceedings oflSCAS'90, pages 974-77.

Deprettere, E. E A., P. Dewilde, and R. Udo (1984). Pipelined CORDIC architec-
tures for fast VLSI filtering and array processing. In Proceedings oflCASSP
'84, pages 41 .A.6.1-41 .A.6.4.

der Kolk, K. J. V., J. A. Lee, and E. F. A. Deprettere (2000). A floating-point
vectoring algorithm based on fast rotations.Journal of VLSI Signal Processing
Systems, 25(2):125-40.

Despain, A. M. (1974). Fourier transform computers using CORDIC iterations.
IEEE Transactions on Computers, C-23(10):993-1001.

Deverell, J. (1975). Pipeline iterative arithmetic arrays. IEEE Transactions on Com-
puters, C-24(3):317-22.

Dimmler, M. (1999). Digital Control of Micro-Systems Using On-line Arithmetic.
PhD thesis, Ecole Polytechnique Federal de Lausanne.

Dimmler, M., A. Tisserand, U. Holmbeg, and R. Longchamp (1999). On-line
arithmetic for real-time control of microsystems. IEEE/ASME Transactions
on Mechatronics, 4(2):213-17.

Dobberpuhl, D. W., R. T. Witek, R. Allmon, R. Anglin, D. Bertucci, S. Brit-
ton, L. Chao, R. A. Conrad, D. E. Dever, B. Gieseke, S. M. N. Hassoun, G.
W. Hoeppner, K. Kuchler, M. Ladd, B. M. Leary, L. Madden, E. J. McLel-
lan, D. R. Meyer, and J. Montanaro (1992). A 200-MHz 64-b dual-issue
CMOS microprocessor. IEEE Journal of Solid-State Circuits, 27(11):1555-
64.

Doran, R. W. (1988). Variants of an improved carry-lookahead adder. IEEE
Transactions on Computers, C-37(9):1110-13.

Dormido, S., and M. A. Canto (1981). Synthesis of generalized parallel counters.
IEEE Transactions on Computers, C-30(9):699-703.

Bibliography 661

Dormido, S., and M. A. Canto (1982). An upper bound for the synthesis of gen-
eralized parallel counters. IEEE Transactions on Computers, C-31 (8): 802-5.

Duprat, J., M. Fiallos, J.-M. Muller, and H. J. Yeh (1991). Delays of on-line
floating-point operators in borrow-save representation. In IFIP Worksho p on
Algorithms and Parallel VLSI Architectures.

Duprat, J., and J.-M. Muller (1988). Hardwired polynomial evaluation. Journal
of Parallel and Distributed Computing, 5(3):291-309.

Duprat, J., and J.-M. Muller (1991). Writing numbers differently for faster cal-
culation. Technique et Science Informatiques, 10(3):211-24.

Duprat, J., and J.-M. Muller (1993). The CORDIC algorithm: New results for
fast VLSI implementation. IEEE Transactions on Computers, 42(2):168-78.

Efe, K. (1981). Multi-operand addition with conditional sum logic. In Proceedings
of the 5th IEEE Symposium on Computer Arithmetic, pages 251-55.

Eisig, D., J. Rotstain, and I. Koren (1993). The design of a 64-bit integer multi-
plier/divider unit. In Proceedings of the llth Symposium on Computer Arith-
metic, pages 171-78.

Ercegovac, M. D. (1973). Radix-16 evaluation of certain elementary functions.
IEEE Transactions on Computers, C-22(6):561-66.

Ercegovac, M. D. (1975). A General Hardware-Oriented Method for Evaluation of
Functions and Computations in a Digital Computer. PhD thesis, Department of
Computer Science, University of Illinois at Urbana-Champaign. (Technical
Report UIUCDCS-R-750.)

Ercegovac, M. D. (1977). A general hardware-oriented method for evaluation
of functions and computations in a digital computer. IEEE Transactions on
Computers, C-26(7):667--80.

Ercegovac, M. D. (1978). An on-line square rooting algorithm. In 4th IEEE Sym-
posium on Computer Arithmetic. IEEE Computer Society Press, Los Alamitos,
California.

Ercegovac, M. D. (1983). A higher radix division with simple selection of quotient
digits. In Proceedings of the 6th IEEE Symposium on ComputerArithmetic, pages
94-98.

Ercegovac, M. D. (1984). On-line arithmetic: An overview. In Proceedings of the
SPIE, Real Time Signal Processing VII, pages 86-93.

Ercegovac, M. D. (1991). On-line arithmetic for recurrence problems. In Pro-
ceedings of the SPIE: Advanced Signal Processing Algorithms, Architectures, and
Implementations H.

662 Bibliography

Ercegovac, M. D., L. Imbert, D. W. Matula, J.-M. Muller, and G. Wei (2000).
Improving Goldschmidt division, square root and square root reciprocal.
IEEE Transactions on Computers, 49(7):759-63.

Ercegovac, M. D. and T. Lang (1985). Digital Systems and Hardware/Firmware
Algorithms. John Wiley & Sons, Inc., New York.

Ercegovac, M. D., and T. Lang (1985). A division algorithm with prediction
of quotient digits. In Proceedings of the 7th IEEE Symposium on Computer
Arithmetic, pages 51-56.

Ercegovac, M. D., and T. Lang (1986). Alternative on-the-fly conversion
of redundant into conventional representations. Technical report CSD-
860027, Computer Science Department, University of California, Los
Angeles.

Ercegovac, M. D., and T. Lang (1987). Fast cosine/sine implementation using on-
line CORDIC. In Proceedings of the 21st Asilomar Conference Signals, Systems,
Computers, pages 222-26.

Ercegovac, M. D., and T. Lang (1987). On-line scheme for computing rotation
factors. In Proceedings of the 8th IEEE Symposium on Computer Arithmetic,
pages 196-203.

Ercegovac, M. D., and T. Lang (1987). On-the-fly conversion of redundant into
conventional representations. IEEE Transactions on Computers, C-36(7):895-
97.

Ercegovac, M. D., and T. Lang (1987). Simple radix-4 division with divisor scaling.
Technical report CSD-870015, Computer Science Department, University of
California, Los Angeles.

Ercegovac, M. D., and T. Lang (1988). On-line arithmetic: A design methodology
and applications. In R. W. Brodersen and H. S. Moscovitz, editors, VLSI
Signal Processing, III, Chapter 24. IEEE Press, New York.

Ercegovac, M. D., and T. Lang (1988). On-line scheme for computing rotation
factors. Journal of Parallel and Distributed Computing, Special Issue on Paral-
lelism in Computer Arithmetic (5).

Ercegovac, M. D., and T. Lang (1989). Binary counter with counting period of
one half adder independent of counter size. IEEE Transactions on Circuits and
Systems, 36(6):924-26.

Ercegovac, M. D., and T. Lang (1989). Fast radix-2 division with quotient-digit
prediction. Journal of VLSI Signal Processing, 2(1): 169-80.

Bibliography 663

Ercegovac, M. D., and T. Lang (1989). Radix-4 square root without initial PLA.
In Proceedings of the 9th IEEE Symposium on Computer Arithmetic, pages 162-
68.

Ercegovac, M. D., and T. Lang (1990). Fast multiplication without carry-
propagate addition. IEEE Transactions on Computers, 39(11):1385-90.

Ercegovac, M. D., and T. Lang (1990). Radix-4 square root without initial PLA.
IEEE Transactions on Computers, C-39(8): 1016-24.

Ercegovac, M. D., and T. Lang (1990). Redundant and on-line CORDIC: Appli-
cation to matrix triangularization and SVD. IEEE Transactions on Computers,
39(6):725-40.

Ercegovac, M. D., and T. Lang (1990). Fast multiplication without carry-
propagate addition. IEEE Transactions on Computers, C-39(11):1385-
90.

Ercegovac, M. D., and T. Lang (1990). Simple radix-4 division with operands
scaling. IEEE Transactions on Computers, C-39(9): 1204-7.

Ercegovac, M. D., and T. Lang (1991). Module to perform multiplication, division
and square root in systolic arrays for matrix computations.Journal of Parallel
and Distributed Computing, 11 (3):212-21.

Ercegovac, M. D., and T. Lang (1992). Fast arithmetic for recursive computations.
In Proceedings of the IEEE Worksho p on VLSI Signal Processing, pages 14-28.

Ercegovac, M. D., and T. Lang (1992). On-the-fly rounding. IEEE Transactions
on Computers, 41(12):1497-1503.

Ercegovac, M. D., and T. Lang (1994).Division and Square Root: Digit-Recurrence
Algorithms and Implementations. Kluwer Academic Publishers.

Ercegovac, M. D., and T. Lang (1996). On recoding in arithmetic algorithms.
Journal of VLSI Signal Processing, 14:283-94.

Ercegovac, M. D., and T. Lang (1997). Effective coding for fast redundant adders
using radix-2 digit set {0, 1,2, 3 }. In Proceedings ofthe 31st Asilomar Conference
on Signals, Systems and Computers, pages 1163-67.

Ercegovac, M. D., and T. Lang (1999). On-line scheme for normalizing a 3-D
vector. In Proceedings of the 33rd Asilomar Conference on Signals, Systems and
Computers, pages 1460-64.

Ercegovac, M. D., T. Lang, and R. Modiri (1988). Implementation of fast radix-4
division with operands scaling. In Proceedings of the ICCD '88 Conference,
pages 486-89, New York.

664 Bibliography

Ercegovac, M. D., T. Lang, and P. Montuschi (1993). Very high radix division
with selection by rounding and prescaling. In Proceedings of the l lth IEEE
Symposium on Computer Arithmetic, pages 112-19.

Ercegovac, M. D., T. Lang, and P. Montuschi (1994). Very-high radix divi-
sion with prescaling and rounding. IEEE Transactions on Computers, 43(8):
909-18.

Ercegovac, M. D., T. Lang, J.~ Muller, and A. Tisserand (2000). Reciprocation,
square root, inverse square root, and some elementary functions using small
multipliers. IEEE Transactions on Computers, 49(7):628-37.

Ercegovac, M. D., T. Lang, J. G. Nash, and L. P. Chow (1987). An area-time
efficient binary divider. In Proceedings of the ICCD '87 Conference, pages
645-48, New York.

Ercegovac, M. D., and J.-M. Muller (1998). Fast evaluation of functions at
regularly-spaced points. In SPIE International Symposium on Optical Science,
Engineering, and Instrumentation, vol. 3461, pages 555-66.

Ercegovac, M. D., J.-M. Muller, and A. Tisserand (1995). FPGA implementation
of polynomial evaluation algorithms. In SPIE Photonics East '95 Conference
Proceedings, vol. 2607, pages 177-88.

Ercegovac, M. D., and P. K. G. Tu (1991). Application of on-line arith-
metic algorithms to the SVD computation: preliminary results. In Pro-
ceedings of the 10th IEEE Symposium on Computer Arithmetic, pages 246-
55.

Estrin, G., B. Gilchrist, and J. H. Pomerane (1956). A note on high-speed digital
multiplication. IRE Transactions on Electronic Computers, page 140.

Even, G., and P.~ Seidel (2000). A comparison of three rounding algorithms
for IEEE floating-point multiplication. IEEE Transactions on Computers,
49(7):638-50.

Even, G., and W. J. Paul (2000). On the design of IEEE compliant floating-point
units. IEEE Transactions on Computers, 49(5):398-413.

Fandrianto, J. (1987). Algorithm for high-speed shared radixo4 division and radix-
4 square-root. In Proceedings of the 8th IEEE Symposium on Computer Aritho
metic, pages 73-79.

Fandrianto, J. (1989). Algorithm for high-speed shared radix-8 division and radix-
8 square root. In Proceedings of the 9th IEEE Symposium on Computer Arith-
metic, pages 68-75.

Bibliography 665

Farmwald, M. P. (1981). On the Design of High-Performance Digital Arithmetic
Units. PhD thesis, Stanford University.

Farmwald, P. M. (1981). High bandwidth evaluation of elementary functions. In
Proceedings of the 5th IEEE Symposium on Computer Arithmetic, pages 139-
42.

Feldstein, A., and R. Goodman (1982). Loss of significance in floating-point
subtraction and addition. IEEE Transactions on Computers, C-31:328-35.

Fenwick, P. M. (1987). A fast-carry adder with CMOS transmission gates. Com-
puter Journal, 30(1):77-79.

Ferguson, M. I., and M. D. Ercegovac (1999). A multiplier with redundant
operands. In Proceedings of the 33rd Asilomar Conference on Signals, Systems
and Computers, volume 2, pages 1322-26.

Ferguson, W. (1995). Exact computation of a sum or difference with applications to
argument reduction. In Proceedings of the 12th IEEE Symposium on Computer
Arithmetic, pages 216-21.

Ferguson, W., and T. Brightman (1991). Accurate and monotone approximations
of some transcendental functions. In Proceedings of the 10th IEEE Symposium
on Computer Arithmetic, pages 237-44.

Fernando, J. S. (1993).Design Alternatives for Recursive Digital Filters Using On-line
Arithmetic. PhD thesis, University of California, Los Angeles.

Fernando, J. S., and M. D. Ercegovac (1994). Conventional and on-line arith-
metic designs for high-speed recursive digital filters. Journal of VLSI Signal
Processing, 7:189-97.

Fernando, J. S., and M. D. Ercegovac (1997). A method of eliminating oscilla-
tions in high-speed recursive digital filters. IEEE Transactions on Circuits and
Systems--II: Analog and Digital Signal Processing, 44(10):861-64.

Ferrari, D. (1967). A division method using a parallel multiplier. IEEE Transac-
tions Electronic Computers, EC~ 16(4):224-26.

Flynn, M. J. (1970). On division by functional iteration. IEEE Transactions on
Computers, C- 19(8):702-6.

Flynn, M. J., K. Nowka, G. Bewick, E. M. Schwarz, and N. Quach (1995). The
SNAP project: towards sub-nanosecond arithmetic. In Proceedings of the 12th
Symposium on Computer Arithmetic, pages 75-82.

Flynn, M. J., and S. F. Oberman (2001). Advanced Computer Arithmetic Design.
John Wiley & Sons, Inc., New York.

666 Bibliography

Foster, C. C., and E D. Stockton (1971). Counting responders in an associative
memory. IEEE Transactions on Computers, C-20:1580-83.

Fowler, D. L., and J. E. Smith (1989). An accurate, high speed implementation
of division by reciprocal approximation. In Proceedings of the 9th IEEE Sym-
posium on Computer Arithmetic, pages 60-67.

Franklin, M. A., and T. Pan (1994). Performance comparison of asynchronous
adders. In Proceedings of the International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pages 117-25.

Freiman, C. V. (1961). Statistical analysis of certain binary division algorithms.
Proceedings of IRE, 49:91-103.

Fried, R. (1997). Minimizing energy dissipation in high-speed multipliers. In
Proceedings of 1997 International Symposium on Low Power Electronics and
Design, pages 214-19.

Gajski, D. D. (1980). Parallel compressors. IEEE Transactions on Computers, C-
29(5):393-98.

Galli, R., and A. E Tenca (2001). Design and evaluation of on-line arithmetic
for signal processing applications on FPGAs. In Proceedings of the SPIE
Advanced Signal Processing Algorithms, Architectures, and Implementations XI,
volume 4474, pages 134-44.

Gardiner, A. B., and J. Hont (1972). Cellular-array arithmetic unit with multi-
plication and division. Proceedings of the lEE, 119(6):559-60.

Garner, H. L. (1965). Number systems and arithmetic. In Advances in Computers,
volume 6, pages 131-94. Academic Press, New York.

Gaviland, J., and V. C. Hamacher (1973). High-speed multiplier/divider iterative
arrays. In 1973 Sagamore Computer Conference on Parallel Processing, pages
91-100.

Gazale, M. (2000). Number from Ahmes to Cantor. Princeton University Press,
Princeton, New Jersey.

Gerwig, G., and M. Kroener (1999). Floating-point unit in standard cell design
with 116 bit wide dataflow. In Proceedings of the 14th IEEE Symposium on
Computer Arithmetic, 266-73.

Gilchrist, B., J. H. Pomerene, and S. Y. Wong (1955). Fast carry logic for digital
computers. IRE Transactions on Electronic Computers, EC-4:133-36.

Girau, B., and A. Tisserand (1996). On-line arithmetic-based reprogrammable
hardware implementation of multilayer perceptron back-propagation. In

Bibliography 667

Proceedings oft he 5th International Conference on Microelectronics for Neural
Networks and Fuzzy Systems. MicroNeuro'96, pages 168-75.

Gnanasekaran, R. (1985). A fast serial-parallel binary multiplier. IEEE Transac-
tions on Computers, C-34:741-44.

Goldberg, D. (1991). What every computer scientist should know about floating-
point arithmetic. ACM Computing Surveys, 23(1):5-48.

Goldschmidt, R. E. (1964).Applications of Division by Convergence. Master's thesis,
Massachusetts Institute of Technology.

Gorji-Sinaki, A. (1981). Error-Coded Algorithms for On-line Arithmetic. PhD thesis,
University of California, Los Angeles.

Gosling, J. B. (1971). Design of large high-speed floating-point arithmetic units.
In IEE Proceedings, volume 118, pages 493-98.

Gosling, J. B. (1971). Review of high-speed addition techniques. Proceedings of
IEE, 118(1):29-35.

Gosling, J. B. (1980). Design of Arithmetic Units for Digital Computers. Springer-
Verlag, New York.

Greenley, D., et al. (1995). UltraSPARC: the next generation superscalar 64-bit
SPARC. In Digest of Papers. COMPCON '95. Technologies for the Information
Superhighway, pages 442-51.

Guedj, D. (1996). Numbers: The Universal Language. Harry B. Abrams, Inc., New
York.

Guild, H. H. (1969). Fully iterative fast arrays for binary multiplication and
addition. Electronic Letters, 5:263.

Guyot, A., Y. Herreros, and J.-M. Muller (1989). Janus, an on-line multiplier/
divider for manipulating large numbers. In Proceedings of the 9th IEEE Sym-
posium on Computer Arithmetic, pages 106-11. IEEE Computer Society Press,
Los Alamitos, California.

Guyot, A., B. Hochet, and J.-M. Muller (1987). A way to build efficient carry-skip
adders. IEEE Transactions on Computers, C-36(10).

Guyot, A., L. Montalvo, A. Houelle, H. Mehrez, and N. Vaucher (1995). Com-
parison of the layout synthesis of radix-2 and pseudo-radix-4 dividers. In
Proceedings of the 8th International Conference on VLSI Design, pages 386-91.

Guyot, A., M. Renaudin, B. El Hassan, and V. Levering (1996). Self timed division
and square-root extraction. In Ninth International Conference on VLSIDesign,
pages 376-81.

668 Bibliography

Hahn, H., D. Timmermann, B. J. Hosticka, and B. Rix (1994). A unified and
division-free CORDIC argument reduction method with unlimited conver-
gence domain including inverse hyperbolic functions. IEEE Transactions on
Computers, 43(11):1339-44.

Han, T., and D. A. Carlson (1987). Fast area-efficient VLSI adders. In Proceedings
of the 8th IEEE Symposium on Computer Arithmetic, pages 49-56.

Harata, Y., Y. Nakamura, H. Nagase, M. Takigawa, and N. Takagi (1987). A
high-speed multiplier using a redundant binary adder tree. IEEE Journal of
Solid-State Circuits, SC-22(1):28-34.

Harber, R. G. (1989). VLSI Design of Systems of CORDIC Processors. PhD thesis,
Purdue University.

Harris, D., S. F. Oberman, and M. H. Horowitz (1997). SRT division architectures
and implementations. In Proceeding of the 13th IEEE Symposium on Computer
Arithmetic, pages 18-25.

Harrison, J., T. Kubaska, S. Story, and P. T. P. Tang (1999). The computation of
transcendental functions on the IA-64 architecture. Intel Technology Journal,
Q4.

Hart, J. F., E. W. Cheney, C. L. Lawson, H. J. Maehly, C. K. Mesztenyi, J. R. Rice,
H. G. Thacher, and C. Witzgall (1978). Computer Approximations. Robert E.
Krieger Publishing Company, Florida.

Hartley, R., and P. Corbett (1990). Digit-serial processing techniques. IEEE Trans-
actions on Circuits and Systems, 37(6):707-19.

Hartley, R., and K. K. Parhi (1995). Digit-Serial Computation. Kluwer Academic
Publishers.

Hashemian, R. (1990). Square rooting algorithms for integer and floating-point
numbers. IEEE Transactions on Computers, C-39(8):1025-29.

Hassler, H., and N. Takagi (1995). Function evaluation by table look-up and
addition. In Proceedings of the 12th IEEE Symposium on Computer Arithmetic,
pages 10-16.

Haviland, G. H., and A. A. Tuszinsky (1980). A CORDIC arithmetic processor
chip. IEEE Transactions on Computers, C-29(2):68-79.

Hekstra, G. J. (1998). CORDIC for High-Performance Numerical Computation.
PhD thesis, Technical University of Delft, The Netherlands.

Hekstra, G. J. (2000). Evaluation of fast rotation methods. Journal of VLSI Signal
Processing Systems, 25(2):113-24.

Bibliography 669

Hekstra, G. J., and E. E A. Deprettere (1993). Floating-point CORDIC. In Pro-
ceedings of the llth IEEE Symposium on Computer Arithmetic, pages 130-
37.

Hemkumar, N. D., and J. R. Cavallaro (1994). Redundant and on-line CORDIC
for unitary transformations. IEEE Transactions on Computers, 43(8):941-54.

Hennessy, J. L. and D. A. Patterson, (1995). Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, San Francisco, 2nd edition.

Ho, I. T., and T. C. Chen (1973). Multiple addition by residue threshold functions
and their representation by array logic. IEEE Transactions on Computers,
C-22:762-67.

Hokenek, E., and R. K. Montoye (1990). Leading zero anticipator (LZA) in the
IBM Risc System/6000 floating-point execution unit. IBM Journal of Research
and Development, 34(1):71-77.

Hokenek, E., R. K. Montoye, and P. W. Cook (1990). Second-generation RISC
floating point with multiply-add fused. IEEE Journal of Solid-State Circuits,
25(5):1207-13.

Horel, T., and G. Lauterbach (1999). UltraSPARC-III: designing third-
generation 64-bit performance. IEEE Micro, 19(3):73-85.

Hormigo, J., J. Villalba, and E. L. Zapata (1999). Interval sine and cosine functions
computation based on Variable-precision CORD IC algorithm. In Proceedings
of the 14th IEEE Symposium on Computer Arithmetic, pages 186-93.

Hsiao, S.-E (1993). Multi-Dimensional CORDIC Algorithms. PhD thesis, Yale
University.

Hsiao, S.-F., and J.-M. Delosme (1995). Householder CORDIC algorithms. IEEE
Transactions on Computers, 44(8):990-1000.

Hsiao, S.-F., C.-Y. Lau, and J.-M. Delosme (2000). Redundant constant-factor im-
plementation of multi-dimensional CORDIC and its application to complex
SVD. Journal of VLSI Signal Processing Systems, 25(2):155-66.

Hu, X. (1989). A Silicon Compiler for Dedicated Mathematical Systems Based on
CORDIC Arithmetic Processors. PhD thesis, Purdue University.

Hu, X., and S. C. Bass (1993). A neglected error source in the CORDIC algorithm.
In Proceedings oflSCAS'93, volume 1, pages 766-69.

Hu, X., S. C. Bass, and R. G. Harber (1993). An efficient implementation of singu-
lar value decomposition rotation transformations with CORDIC processors.
Journal of Parallel and Distributed Computing, 17:360-62.

670 Bibliography

Hu, X., G. Harber, and S. Bass (1991). Expanding the range of the cordic algo-
rithm. IEEE Transactions on Computers, 40(1):13-21.

Hu, Y. H. (1992). CORDIC-based VLSI architectures for digital signal processing.
IEEE Signal Processing Magazine, pages 16-35.

Hu, Y. H. (1992). The quantization effects of the CORDIC algorithm. IEEE
Transactions on Signal Processing, 40(4):834-44.

Hu, Y. H., and S. Naganathan (1993). An angle recoding method for CORDIC
algorithm implementation. IEEE Transactions on Computers, 42(1):99-102.

Huang, X., W.-J. Liu, and B. W. Y. Wei (1994). A high-performance CMOS re-
dundant binary multiplication-and-accumulation (MAC) unit. IEEE Trans-
actions on Circuits and Systems I: Fundamental Theory and Applications, 41 (1):
33-39.

Huang, Z., and M. D. Ercegovac (2001). FPGA implementation of pipelined
on-line scheme for 3~ vector normalization. In IEEE Symposium on Field-
Programmable Custom Computing Machines, pages 1-4.

Hunt, D. (1995). Advanced performance features of the 64-bit PA~ InDigest
of Papers COMPCON '95, pages 23-28.

Hwang, K. (1978). Computer Arithmetic Principles, Architecture and Design. John
Wiley & Sons, Inc., New York.

Hwang, K., H. C. Wang, and Z. Xu (1987). Evaluating elementary functions
with chebyshev polynomials on pipeline nets. In Proceedings of the 8th IEEE
Symposium on Computer Arithmetic, pages 121-28.

Ide, N., H. Fukuhisa, Y. Kondo, T. Yoshida, M. Nagamatsu, J. Mori, I. Yamazaki,
and K. Ueno (1993). A 320-MFLOPS CMOS floating-point processing unit
for supe rscalar processors. IEEE Journal of Solid-State Circuits, SC-28(3):352-
61.

Ienne, P., and M. A. Viredez (1994). Bit-serial multipliers and squarers. IEEE
Transactions Computers, 43(12): 1445-50.

Ifrah, G. (1985). From One to Zero: A Universal History of Numbers. Viking, New
York.

Inui, S., T. Uesugi, H. Saito, Y. Hagihara, A. Yoshikawa, M. Nishida, and M.
Yamashina (1999). A 250 MHz CMOS floating-point divider with operand
pre-scaling. In Symposium on VLSI Circuits, pages 17-18.

Iordache, C., and D. W. Matula (1999). On infinitely precise rounding for
division, square root, reciprocal and square root reciprocal. In Proceed-

Bibliography 671

ings of the 14th IEEE Symposium on Computer Arithmetic, pages 233-
40.

Irwin, M. J. (1977). An Arithmetic Unit for On-line Computation. PhD thesis, De-
partment of Computer Science, University of Illinois at Urbana-Champaign.
(Technical Report UIUCDCS-R-77~

Irwin, M. J., and R. M. Owens (1983). Fully digit on-line networks. IEEE Trans-
actions on Computers, C~

Irwin, M. J., and R. M. Owens (1987). Digit-pipelined arithmetic as illustrated by
the Paste-up system: a tutorial. IEEE Computer, 20(4):61-73.

Irwin, M. J., and R. M. Owens (1989). Design issues in digit-serial signal processors.
In Proceedings oflSCAS'89, volume 1, pages 441-44.

Irwin, M. J., and R. M. Owens (1990). A case for digit serial VLSI signal processors.
Journal of VLSI Signal Processing, 1(4):321-34.

Ito, M., N. Takagi, and S. Yajima (1997). Efficient initial approximation for
multiplicative division and square root by a multiplication with operand
modification. IEEE Transactions on Computers, 46(4):495-98.

Iwamura, J., K. Suganama, S. Taguchi, M. Kimura, and K. Maeguchi (1982). A
16-bit CMOS/SOS multiplier-accumulator. In Proceedings of the ICCD '82
Conference, pages 151-54, New York.

Jain, V. K., and L. Lin (1995). High-speed double precision computation of non-
linear functions. In Proceedings of the 12th IEEE Symposium on Computer
Arithmetic, pages 107-14.

Jain, V. K., and L. Lin (1997). Complex-argument universal nonlinear cell for
rapid prototyping. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 5 (1): 15-27.

Jessani, R. M., and M. Putrino (1998). Comparison of single- and dual-pass
multiply-add fused floating-point units. IEEE Transactions on Computers,
47(9):927-37.

Jou, J. M., and S. R. Kuang (1999). Design of low-error fixed-width multiplier
for DSP applications. IEEE Transactions on Circuits and Systems--II: Analog
and Digital Signal Processing, 46(6):836-42.

Kabuo, H., T. Taniguchi, A. Miyoshi, H. Yamashita, M. Urano, H. Edamatsu,
and S. Kuninobu (1994). Accurate rounding scheme for the Newton-Raphson
method using redundant binary representation. IEEE Transactions on Com-
puters, 43(1):43-51.

672 Bibliography

Kahan, W. (1996). Lecture Notes on the Status of IEEE 754. Technical Report
http://http.cs.berkeley.edu/'wkahan/ieee754status/ieee754.ps, University of
California, Berkeley.

Kanie, Y., Y. Kubota, S. Toyoyama, Y. Iwase, and S. Suchimoto (1994). 4-2
compressor with complementary pass-transistor logic. IEICE Transactions
on Electronics, E77-C(4):647-49.

Kantabutra, V. (1991). Designing optimum carry-skip adders. In Proceedings of
the 10th IEEE Symposium on Computer Arithmetic, pages 146-55.

Kantabutra, V. (1993). Accelerated two-level carry-skip adders--a type of very
fast adder. IEEE Transactions on Computers, C-42(11):1389-93.

Kantabutra, V. (1993). A recursive carry-look-ahead/carry-select hybrid adder.
IEEE Transactions on Computers, C-42 (12): 1495-99.

Karatsuba, A., and Y. Ofman (1962). Multiplication of multidigit numbers on
automata. Soviet Physics-Doklaty, 7(7):595-96.

Karp, A. H., and P. Markstein (1997). High-precision division and square root.
ACM Transactions on Mathematical Software, 23(4):561-89.

Karpinsky, R. (1985). PARANOIA: A floating-point benchmark. BYTE,
10(2):223-35.

Kilburn, T., D. B. G. Edwards, and D. Aspinall (1959). Parallel addition in a
digital computer~a new fast carry. Proceedings of the lEE, 106B:460-64.

Kilburn, T., D. B. G. Edwards, and G. E Thomas (1956). The Manchester Uni-
versity Mark II Computing Machine. Proceedings of the IEE, pt. 103 B, Suppl.
2:247-68.

King, E. J., and E. E. Swartzlander (1998). Data-dependent truncation scheme for
parallel multipliers. In Proceedings of the 31st Asilomar Conference on Signals,
Systems and Computers, volume 2, pages 1178-82.

Kinniment, D. J. (1996). An evaluation of asynchronous addition. IEEE Transac-
tions on VLSI Systems, 4(1):137-40.

Kla, S., C. Mazenc, X. Merrheim, and J.-M. Muller (1991). New algorithms for
on-line computation of elementary functions. In Proceedings of the SPIE:
Advanced Signal Processing Algorithms, Architectures, and Implementations H,
volume 1566, pages 275-85.

Klir, J. (1963). A note on Svoboda's algorithm for division. Information Processing
Machines (Stroje na Zpracovani Informaci), (9):35-39.

Knowles, S. (1999). A family of adders. In Proceedings ofthe 14th IEEE Symposium
on Computer Arithmetic, pages 30-34.

Bibliography 673

Knowles, S. C., R. F. Woods, J. McWirther, and J. McCanny (1989). Bit-level
systolic architectures for high-performance IIR filtering. Journal of VLSI
Signal Processing, 1(1):9-24.

Knuth, D. E. (1998). The Art of Computer Programming: Seminumerical Algorithms.
Addison Wesley, Reading, Massachusetts, 3rd edition.

Kobayashi, H., and H. Ohara (1978). A synthesizing method for large parallel
counters with a network of smaller ones. IEEE Transactions on Computers,
C-27(8):753-57.

Kogge, R M., and H. S. Stone (1973). A parallel algorithm for the efficient solution
of a general class of recurrence equations. IEEE Transactions on Computers,
C-22(8):783-91.

Kolagotla, R. K., H. R. Srinivas, and G. F. Burns (1997). VLSI implementation
of a 200-MHz 16"16 left-to-right carry-free multiplier in 0.35/xm CMOS
technology for next-generation DSPs. In Proceedings of the IEEE 1997 Custom
Integrated Circuits Conference, pages 469-72.

K6nig, D., and J. F. B6hme (1990). Optimizing the CORDIC algorithm for
processors with pipeline architectures. In Signal Processing V: Theories and
Applications. Elsevier Science, Amsterdam, The Netherlands.

Koren, I. (1993). Computer ArithmeticAlgorithms. Prentice Hall, Englewood Cliffs,
New Jersey.

Koren, I., and O. Zinaty (1990). Evaluating elementary functions in a numerical
coprocessor based on rational approximations. IEEE Transactions on Com-
puters, 39(8):1030-37.

Kornerup, P. (1994). Digit-set conversions: Generalizations and applications.
IEEE Transactions on Computers, 43(5):622-29.

Kornerup, P. (1999). Necessary and sufficient conditions for parallel, constant
time conversion and addition. In Proceedings of the 14th IEEE Symposium on
Computer Arithmetic, pages 152-56.

Kota, K., and J. R. Cavallaro (1993). Numerical accuracy and hardware tradeoffs
for CORDIC arithmetic for special-purpose processors. IEEE Transactions
on Computers, 42(7):769-79.

Krieger, C., and B. Hosticka (1996). Inverse kinematics computations with
modified CORDIC iterations. IEE Proceedings Computer Digital Techniques,
143(1):87-92.

Krishnamurthy, E. V. (1970). On optimal iterative schemes for high-speed divi-
sion. IEEE Transactions on Computers, C-19(3):227-31.

674 Bibliography

Krishnamurthy, E. V. (1970). On range-transformation techniques for division.
IEEE Transactions on Computers, C- 19(2): 157-60.

Kuck, D. J., S. Parker, and A. Sameh (1977). Analysis of rounding methods
in floating-point arithmetic. IEEE Transactions on Computers, C-26:643-
50.

Kuhlmann, M., and K. K. Parhi (1998). Power comparison of SRT and GST
dividers. In Proceedings of the SPIE Advanced Signal Processing Algorithms,
Architectures, and Implementations VIII, volume 3461, pages 584-94.

Kuki, H., and W. J. Cody (1973). A statistical study of the accuracy of floating
point number systems. Communications of the ACM, 16(14):223-30.

Kulisch, U. W. (1977). Mathematical foundation of computer arithmetic. IEEE
Transactions on Computers, C-26(7):610-21.

Kulisch, U. W., and W. L. Miranker (1981). Computer Arithmetic in Theory and
Practice. Academic Press, New York.

Kunemund, R., H. Soldner, S. Wohlleben, and T. Noll (1990). CORDIC processor
with carry-save architecture. In Proceedings of the 16th European Solid-State
Circuit Conference, pages 193-96.

Kuninobu, S., T. Nishiyama, H. Edamatsu, T. Taniguchi, and N. Takagi (1987).
Design of high speed MOS multiplier and divider using redundant binary
representation. In Proceedings of the 8th IEEE Symposium on Computer Arith-
metic, pages 80-86.

Kutsuwa, T., M. Mun, and K. Ebata (1987). Configuration and evaluation of two's
complement multiplication-division arrays. IEEE Transactions Circuits and
Systems., CAS-34:304-8.

Kwak, J.-H. (2000). High Speed CORDIC Processor Design: Algorithms, Architec-
tures, and Applications. PhD thesis, University of Texas at Austin.

Kwak, J.-H., J. H. Choi, and E. E. Swartzlander (2000). High-speed CORDIC
based on an overlapped architecture and a novel a-prediction method.Journal
of VLSI Signal Processing Systems, 25(2):167-78.

Kwon, O., K. Nowka, and E. E. Swartzlander (2000). A 16-bit by 16-bit MAC
design using fast 5:2 compressors. In Proceedings of the IEEE International
Conference on Application-Specific Systems, Architectures, and Processors, pages
235-43.

Ladner, R., and M. Fisher (1980). Parallel prefix computation.Journal of the ACM,
27(4):831-38.

Bibliography 675

Lai, H. C., and S. Muroga (1982). Logic networks of carry-save adders. IEEE
Transactions on Computers, C-31:870-82.

Lang, T., and E. Antelo (1998). CORDIC vectoring with arbitrary target value.
IEEE Transactions on Computers, 47(7):736-49.

Lang, T., and E. Antelo (2000). CORDIC-based computation of ArcCos and
~/1 - t 2. Journal of VLSI Signal Processing, 25:19-38.

Lang, T., and E. Antelo (2001). Correctly rounded reciprocal square root by
digit recurrence and radix-4 implementation. In Proceedings ofthe 15th IEEE
Symposium on Computer Arithmetic, pages 94-100.

Lang, T., and E. Antelo (2001). High-throughput 3D rotations and normaliza-
tions. In Conference Record of the 35th Asilomar Conference on Signals, Systems
and Computers, volume 1, pages 846-51.

Lang, T., and P. Montuschi (1992). Higher radix square root with prescaling.
IEEE Transactions on Computers, 41 (8):996-1009.

Lang, T., and P. Montuschi (1999). Very high radix square root with prescaling
and rounding and a combined division/square root unit. IEEE Transactions
on Computers, 48(8):827-41.

Lang, T., and J.-M. Muller (2001). Bounds on runs of zeros and ones for algebraic
functions. In Proceedings of the 15th IEEE Symposium on Computer Arithmetic,
pages 13-20.

Lee, J.-A. (1990). Redundant CORDIC: Theory and Its Application to Matrix Com-
putations. PhD thesis, University of California, Los Angeles.

Lee, J. A., and T. Lang (1992). Constant-factor redundant CORDIC for angle
calculation and rotation. IEEE Transactions on Computers, 41 (8):1016-25.

Lee, K., and K. Choi (1996). Self-timed divider based on RSD number system.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 4(2):292-
95.

Leeser, M., and J. O'Leary (1995). Verification of a subtractive radix-2 square
root algorithm and implementation. In International Conference on Computer
Design: VLSI in Computers and Processors, pages 526-31.

Lef~vre, V., and J. Muller (1999). Table methods for the elementary functions. In
SPIE Symposium on Optical Science and Technology, vol. 3807, pages 43-9.

Lef~vre, V., and J.-M. Muller (2001). Worst cases for correct rounding of the
elementary functions in double precision. In Proceedings of the 15th IEEE
Symposium on Computer Arithmetic, pages 111-18.

676 Bibliography

Lef~vre, V., J.-M. Muller, and A. Tisserand (1998). Toward correctly rounded
transcendentals. IEEE Transactions on Computers, 47(11):1235-43.

Lehman, M. (1962). A comparative study of propagation speed-up circuits in
binary arithmetic units. Information Processing, pages 671-77.

Lehman, M., and N. Burla (1961). Skip techniques for high-speed carry propa-
gation in binary arithmetic units. IRE Transactions on Electronic Computers,
EC- 10:691-98.

Lewis, D. (1999). Complex logarithmic number system arithmetic using high-
radix redundant CORDIC algorithms. In Proceedings of the 14th IEEE Sym-
posium on Computer Arithmetic, pages 194-203.

Lewis, D. M. (1994). Interleaved memory function interpolators with application
to an accurate lns arithmetic unit. IEEE Transactions on Computers, 43(8):
974-82.

Ligomenides, R A. (1977). The skip-and-set fast division algorithm. IEEE Trans-
actions on Computers, C-26:1030-32.

Lim, R. S. (1978). High-speed multiplication and multiple summand addition. In
Proceedings of the 4th IEEE Symposium on Computer Arithmetic, pages 149-
53.

Lim, Y. C. (1992). Single-precision multiplier with reduced circuit complexity for
signal processing applications. IEEE Transactions on Computers, 41(10): 1333-
36.

Lin, H., and H. J. Sips (1987). A novel floating-point on-line division algorithm. In
Proceedings of the 8th IEEE Symposium on Computer Arithmetic, pages 188-95.

Lin, H., and H. J. Sips (1990). On-line CORDIC algorithms. IEEE Transactions
on Computers, 39(8):1038-52.

Ling, H. (1981). High-speed binary adder. IBM]ournal Research and Development,
25(3):156-66.

Linhardt, R. J., and H. S. Miller (1969). Digit-by-digit transcendental function
computation. RCA Review, 30:209-47.

Louie, M. E., and M. D. Ercegovac (1993). A digit-recurrence square root imple-
mentation for field programmable gate arrays. In IEEE Worksho p on FPGAs

for Custom Computing Machines.
Louie, M. E., and M. D. Ercegovac (1993). On digit-recurrence division imple-

mentation for field programmable gate arrays. In Proceedings of the 1 lth IEEE
Symposium on Computer Arithmetic, pages 202-9.

Bibliography 677

Louie, M. E., and M. D. Ercegovac (1994). Implementing division with field
programmable gate arrays. Journal of VLSI Signal Processing, 7(3):271-85.

Lu, E, and H. Samueli (1993). A 200-Mhz CMOS pipelined multiplier-
accumulator using a quasi-domino dynamic full-adder cell design. IEEE
Journal of Solid-State Circuits, 28:123-32.

Luk, W. K., and J. E. Vuillemin (1983). Recursive implementation of optimal
time VLSI integer multipliers. In VLSI '83. Proceedings of the IFIP TC WG
10.5 International Conference on Very Large Scale Integration, pages 155-68.
Elsevier Science Publishers (North-Holland).

Lutz, D. R., and D. N. Jayasimha (1996). Programmable modulo-k counters.
IEEE Transactions on Circuits and Systems I'. Fundamental Theory and Appli-
cations, 43(11):939-41.

Lutz, D. R., and D. N. Jayasimha (1997). The half-adder form and early branch
condition resolution. In Proceedings of the 13th Symposium on Computer Arith-
metic, pages 266-73.

Lynch, T., and E. E. Swartzlander (1992). A spanning tree carry lookahead adder.
IEEE Transactions on Computers, C-41 (8):931-39.

Lynch, T., A. Ahmed, M. J. Schulte, T. Callaway, and R. Tisdale (1995). The
K5 transcendental functions. In Proceedings of the 12th IEEE Symposium on
Computer Arithmetic, pages 163-70.

Lynch, T., and M. J. Schulte (1995). A high radix on-line arithmetic for credible
and accurate computing. Journal of Universal Computer Science, 1 (7):439-53.

Lyon, R. E (1976). Two's complement pipeline multipliers. IEEE Transactions on
Communication, pages 418-25.

Lyu, C. N., and D. W. Matula (1995). Redundant binary Booth recoding. In
Proceedings of the 12th IEEE Symposium on Computer Arithmetic, pages 50-
57.

MacSorley, O. L. (1961). High-speed arithmetic in binary computers. IRE Pro-
ceedings, 49:67-91.

Magenheimer, D. J., L. Peters, K. W. Pettis, and D. Zuras (1988). Integer mul-
tiplication and division on the HP precision architecture. IEEE Transactions
on Computers, C-37:980-90.

Mahant-Shetti, S. S., E T. Balsara, and C. Lemonds (1999). High performance
low power array multiplier using temporal tiling. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 7(1):121-24.

678 Bibliography

Majerski, S. (1967). On determination of optimal distributions of carry skips in
adders. IEEE Transactions on Electronic Computers, EC-16(1):45-58.

Majerski, S. (1985). Square-root algorithms for high-speed digital circuits. IEEE
Transactions on Computers, C-34(8):724-33.

Majithia, J. C. (1972). Cellular array for extraction of squares and square roots of
binary numbers. IEEE Transactions on Computers, C-21 (9):1023-24.

Majithia, J. C., and R. Kitai (1971). A cellular array for the nonrestoring ex-
traction of square roots. IEEE Transactions on Computers, C-20(12):1617-
18.

Makino, H., Y. Nakase, H. Suzuki, H. Morinaka, H. Shinohara, and K. Mashiko
(1996). An 8.8-ns 54 • 54-bit multiplier with high speed redundant binary
architecture. IEEE Journal of Solid-State Circuits, 31 (6):773-83.

Makino, H., H. Suzuki, H. Morinaka, Y. Nakase, H. Shinohara, K. Mashiko, T.
Sumi, and Y. Horiba (1996). A design of high-speed 4-2 compressor for fast
multiplier. IEICE Transactions on Electronics, E79-C(4):538-48.

Mandelbaum, D. M. (1990). A systematic method for division with high average
bit skipping.IEEE Transactions on Computers, C-39(1):127-30.

Markstein, P. W. (1990). Computation of elementary functions on IBM RISC
System/6000 processor. IBM Journal of Research and Development, pages 111-
19.

Markstein, P. (2000). IA-64 and Elementary Functions: Speed and Precision.Hewlett-
Packard Professional Books. Prentice Hall.

Martin, N. M., and S. P. Hufnagel (1980). Conditional-sum early completion
adder logic. IEEE Transactions on Computers, C-29:753-56.

Mathews, J. H. (1992). Numerical Methods for Mathematics, Science, and Engineer-
ing, Second Edition. Prentice-Hall, Englewood Cliffs, New Jersey.

Matsubara, G., and N. Ide (1997). A low power zero-overhead self-timed division
and square root unit combining a single-rail static circuit with a dual-rail
dynamic circuit. In Third International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pages 198-209.

Matsubara, G., N. Ide, H. Tago, S. Suzuki, and N. Goto (1995). 30-ns 55-b shared
radix-2 division and square root using a self-timed circuit. In Proceedings of
the 12th IEEE Symposium on Computer Arithmetic, pages 98-105.

Matula, D. W. (1982). Basic digit sets for radix representation.Journal ofthe ACM,
29(4):1131-43.

Bibliography 679

Matula, D. W. (1991). Design of a highly parallel IEEE Standard floating point
arithmetic unit. In Proceedings of the Symposium on Combinatorial Optimiza-
tion in Science and Technology at R UTCOR/DIMA CS.

Matula, D. W. (2001). Improved table lookup algorithms for postscaled division.
In Proceedings of the 15tk IEEE Symposium on Computer Arithmetic, pages
101-8.

Mazenc, C., X. Merrheim, and J.-M. Muller (1993). Computing functions cos -1
and sin -1 using CORDIC. IEEE Transactions on Computers, 42(1):118-22.

McIlhenny, R. D. (2002). Complex Number On-line Arithmetic for Reconfigurable
Hardware: Algorithms, Implementations, and Applications. PhD thesis, Univer-
sity of California, Los Angeles.

McLeish, J. (1991). Number. Fawcett Columbine, New York.
McQuillan, S., and J. V. McCanny (1994). Fast algorithms for division and square

root. Journal of VLSI Signal Processing, 8(2):151-68.
McQuillan, S., and J. V. McCanny (1995). A systematic methodology for the design

of high performance recursive digital filters. IEEE Transactions on Computers,
44(8):971-82.

Mcquillan, S. E. (1992). Algorithms and Architectures for High Performance Arith-
metic Processors. PhD thesis, The Queen's University of Belfast.

McQuillan, S. E., and J. V. McCanny (1992). VLSI module for high-performance
multiply, square root and divide. IEE Proceedings E: Computers and Digital
Techniques, 139(6):505-10.

McQuillan, S. E., J. V. McCanny, and R. Hamill (1993). New algorithms and
VLSI architectures for SRT division and square root. In Proceedings oft he
11th IEEE Symposium on Computer Arithmetic, pages 80-86.

McQuillan, S. E., J. V. McCanny, and R. E Woods (1991). High performance
VLSI architecture for division and square root. Electronics Letters, V27(1):
19-21.

Mehlhorn, K., and E E Preparata (1987). Area-time optimal division for t --
~o(log n) 1+~. Information and Computation, 72(3):270-82.

Mehta, M., V. Parmar, and E. E. Swartzlander (1991). High-speed multiplier
design using multi-input counter and compressor circuits. In Proceedings of
the 10th IEEE Symposium on Computer Arithmetic, pages 43-50.

Meier, P. C. H. (1999).Analysis and Design of Low Power Digital Multipliers. PhD
thesis, Carnegie Mellon University.

680 Bibliography

Meier, E C. H., R. A. Rutenbar, and L. R. Carley (1996). Exploring multiplier
architecture and layout for low power. In Proceedings ofthe IEEE 1996 Custom
Integrated Circuits Conference, pages 513-16.

Mencer, O., L. Semeria, M. Morf, and J.-M. Delosme (2000). Application of
reconfigurable CORDIC architectures. Journal of VLSI Signal Processing,
24(2-3):211-21.

Meo, A. R. (1975). Arithmetic networks and their minimization using a new line
of elementary units. IEEE Transactions on Computers, C-24(3):258-80.

Merrheim, X., J.-M. Muller, and H. J. Yeh (1993). Fast evaluation of polynomials
and inverses of polynomials. In Proceedings of the llth IEEE Symposium on
Computer Arithmetic, pages 186-92.

Metafas, D. E., and C. E. Goutis (1995). A floating-point advanced CORDIC
processor. Journal of VLSI Signal Processing, 10:53-65.

Metze, G. (1962). A class of binary divisions yielding minimally represented
quotients. IRE Transactions Electronic Computers, EC- 11 (6):761-64.

Metze, G. (1967). Minimal square rooting. IEEE Transactions on Computers, EC-
14(2): 181-85.

Modiri, R., and T. Lang (1988). Alternative implementations of a radix-4 divider
with scaling. Technical report CSD-880069, Computer Science Department,
University of California, Los Angeles.

Moes, E. A. J., R. Nouta, and G. J. Hekstra (1993). Divider architectures for VLSI
implementation. International Journal of High Speed Electronics and Systems,
4(1):1-33.

Montalvo, L. A., K. K. Parhi, and A. Guyot (1998). New Svoboda-Tung division.
IEEE Transactions on Computers, 47(9):1014-20.

Montoye, R. K., E. Hokonek, and S. L. Runyan (1990). Design of the floating-
point execution unit of the IBM RISC System/6000. IBM]ournal of Research
and Development, 34(1):59-70.

Montuschi, E (1992). Parallel architectures for higher-radix division, lEE Pro-
ceedings E: Computers and Digital Techniques, 139(2): 101-10.

Montuschi, E, and L. Ciminiera (1993). Reducing iteration time when result digit
is zero for radix-2 SRT division and square root with redundant remainders.
IEEE Transactions on Computers, 42(2):239-46.

Montuschi, E, and L. Ciminiera (1991). Algorithm and architectures for radix-4
division with over-redundant digit set and simple digit selection hardware.

Bibliography 681

In Conference Record of the 25th Asilomar Conference on Signals, Systems and
Computers, pages 418-22.

Montuschi, P., and L. Ciminiera (1991). Simple radix 2 division and square root
with skipping of some addition steps. In Proceedings of the 10th IEEE Sym-
posium on Computer Arithmetic, pages 202-9.

Montuschi, P., and L. Ciminiera (1992). Design of a radix 4 division unit with
simple selection table. IEEE Transactions on Computers, 41 (12):1606-11.

Montuschi, P., and L. Ciminiera (1993). Reducing iteration time when result digit
is zero for radix-2 SRT division and square root with redundant remainders.
IEEE Transactions on Computers, 42(2):239-46.

Montuschi, P., and L. Ciminiera (1994). Over-redundant digit sets and the de-
sign of digit-by-digit division units. IEEE Transactions on Computers, 43(3):
269-77.

Montuschi, P., and L. Ciminiera (1994). Radix-8 division with over-redundant
digit set. Journal of VLSI Signal Processing, 7(3):259-70.

Montuschi, P., and L. Ciminiera (1995). Quotient prediction without prescaling.
IEE Proceedings: Computers and Digital Techniques, 142(1): 15-22.

Montuschi, P., L. Ciminiera, and A. Giustina (1994). Division unit with Newton-
Raphson approximation and digit-by-digit refinement of the quotient. IEE
Proceedings--Computers and Digital Techniques, 141 (6):317-24.

Montuschi, P., and T. Lang (2001). Boosting very-high radix division with
prescaling and selection by rounding. IEEE Transactions on Computers, 50(1):
13-27.

Montuschi, P., and M. Mezzalama (1990). Survey of square rooting algorithms.
IEE Proceedings E: Computers and Digital Techniques, 137(1):31-40.

Moore, J. S., T. W. Lynch, and M. Kaufmann (1998). A mechanically checked
proof of the AMD5k86 floating-point division program. IEEE Transactions
on Computers, 47(9):913-26.

Morgan, C. P., and D. B. Jarvis (1959). Transistor logic using current switching
routing techniques and its application to a fast carry-propagation adder.
Proceedings of the lEE, 106B:467-68.

Muller, J.-M. (1994). Some characterizations of functions computable in on-line
arithmetic. IEEE Transactions on Computers, 43(6):752-55.

Muller, J.-M. (1997). Elementary Functions, Algorithms and Implementation.
Birkhauser, Boston.

682 Bibliography

Muller, J.-M. (1999). A few results on table-based methods. Reliable Computing,
5(3):279-88.

Nadler, M. (1956). A high speed electronic arithmetic unit for automatic comput-
ing machines. Acta Technica (6):464-78.

Naffziger, S. (1996). A sub-nanosecond 0.5 micron 64b adder design. Digest of
IEEE International Solid-State Circuits Conference, pages 362-63.

Nagamatsu, M., S. Tanaka, J. Mori, K. Hirano, T. Noguchi, and K. Hatanaka
(1990). A 15-ns 32 • 32-b CMOS multiplier with an improved parallel struc-
ture. IEEE Journal of Solid-State Circuits, 25(2):494-97.

Nagendra, C., M. J. Irwin, and R. M. Owens (1996). Area-time-power tradeoffs in
parallel adders. IEEE Transactions Circuits and Systems II: Analog and Digital
Signal Processing, 43(10):689-702.

Naini, A., A. Dhablania, W. James, and D. Das Sarma (2001). 1 GHz HAL
SPARC64 r dual floating point unit with RAS features. In Proceedings of the
15th IEEE Symposium on Computer Arithmetic, pages 173-83.

Nannarelli, A. (1999). Low Power Division and Square Root. PhD thesis, University
of California, Irvine.

Nannarelli, A., and T. Lang (1996). Low-power radix-4 divider. In International
Symposium on Low Power Electronics and Design, pages 205-8.

Nannarelli, A., and T. Lang (1998). Low-power radix-8 divider. In Proceedings In-
ternational Conference on Computer Design. VLSI in Computers and Processors,
pages 420-26.

Nannarelli, A., and T. Lang (1998). Power-delay tradeoffs for radix-4 and radix-
8 dividers. In 1998 International Symposium on Low Power Electronics and
Design, pages 109-11.

Nannarelli, A., and T. Lang (1999). Low-power radix-4 combined division and
square root. In Proceedings of the IEEE International Conference on Computer
Design: VLSI in Computers and Processors (ICCD'99), pages 236-42.

Nannarelli, A., and T. Lang (1999). Low-power divider. IEEE Transactions on
Computers, 48(1):2-14.

Nannarelli, A., and T. Lang (1999). Low-power division: Comparison among im-
plementations of radix 4, 8 and 16. In Proceedings of the 14th IEEE Symposium
on Computer Arithmetic, pages 60-67.

Naseem, A. (1984). Implementation of Parallel Computational Algorithms on a Mod-
ified CORDIC Arithmetic Logic Unit. PhD thesis, Michigan State University.

Bibliography 683

Naseem, A., and P. D. Fisher (1985). The modified CORDIC algorithm. In
Proceedings of the 7th IEEE Symposium on Computer Arithmetic, pages 144-
52.

Ngai, T. F., M. J. Irwin, and S. Rawat (1986). Regular, area-time efficient carry-
lookahead adders. Journal of Parallel and Distributed Computing, 3(1):92-
105.

Nicks, T. N., R. E. Fry, and P. E. Harvey (1994). POWER2 floating-point unit:
Architecture and implementation. IBM Journal of Research and Development,
38(5):525-36.

Nielsen, A. M. (1997). Number Systems and Digit Serial Arithmetic. PhD the-
sis, Department of Mathematics and Computer Science, Odense University,
Denmark.

Nielsen, A. M., D. W. Matula, C. N. Lyu, and G. Even (2000). An IEEE compliant
floating-point adder that conforms with the pipelined packet-forwarding
paradigm. IEEE Transactions on Computers, 49(1):33-47.

Noetzel, A. S. (1989). An interpolating memory unit for function evaluation:
analysis and design. IEEE Transactions on Computers, 38(3):377-84.

Noll, T. (1991). Carry-save architectures for high-speed digital signal processing.
Journal of VLSI Signal Processing, 3(1-2):121-40.

Noll, T., D. Schmitt~Landsiedel, H. Klar, and G. Enders (1986). A pipelined
330-MHz multiplier. IEEE Journal of Solid-State Circuits, SC-21 (6):411-16.

Oberman, S. F. (1996). Design Issues in High Performance Floating Point Arithmetic
units. PhD thesis, Department of Electrical Engineering, Stanford University.

Oberman, S. F. (1999). Floating-point division and square root algorithms and
implementation in the AMD-K7 microprocessor. In Proceedings of the 14th
IEEE Symposium on Computer Arithmetic, pages 106-15.

Oberman, S. F., G. Favor, and F. Weber (1999). AMD 3DNow technology: archi-
tecture and implementations. IEEE Micro, 19(2):37-48.

Oberman, S. F., and M. J. Flynn (1996). Fast IEEE rounding for division by
functional iteration. Technical Report CSL-TR-96-700, Computer Systems
Laboratory, Department of Electrical Engineering and Computer Science,
Stanford University.

Oberman, S. F., and M. J. Flynn (1996). Implementing division and other floating-
point operations: A system perspective. In Scientific Computing and Validated
Numerics (Proceedings of SCAN'95), pages 18-24.

684 Bibliography

Oberman, S. E, and M. J. Flynn (1997). Design issues in division and other
floating-point operations. IEEE Transactions on Computers, 46(2): 154-61.

Oberman, S. F., and M. J. Flynn (1998). Minimizing the complexity of SRT tables.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 6(1): 141-49.

Oberman, S. E, and M. J. Flynn (1998). Reducing the mean latency of floating-
point addition. Theoretical Computer Science, 196(1-2):201-14.

Oklobdzija, V. G. (1988). Simple and efficient CMOS circuit for fast VLSI adder
realization. In Proceedings of the IEEE Symposium on Circuits and Systems,
pages 235-38.

Oklobdzija, V. G. (1994). An algorithmic and novel design of a leading zero
detector circuit: comparison with logic synthesis. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 2(1): 124-28.

Oklobdzija, V. G. editor (1999). High-Performance System Design: Circuits and
Logic. IEEE Press, Piscataway, New Jersey.

Oklobdzija, V. G., and E. R. Burnes (1985). Some optimal shemes for ALU im-
plementation in VLSI technology. In Proceedings of the 7th IEEE Symposium
on Computer Arithmetic, pages 2-8.

Oklobdzija, V. G., and M. D. Ercegovac (1982). An on-line square root algorithm.
IEEE Transactions on Computers, C-31:70-75.

Oklobdzija, V. G., and D. Villeger (1995). Improving multiplier design by using
improved column compression tree and optimized final adder in CMOS
technology. IEEE Transactions on VLSI, 3(2):292-301.

Oklobdzija, V. G., D. Villeger, and S. S. Liu (1996). A method for speed optimized
partial product reduction and generation of fast parallel multipliers using an
algorithmic approach. IEEE Transactions on Computers, 45(3):294-306.

Omondi, A. R. (1994). Computer Arithmetic Systems, Algorithms, Architecture and
Implementations. Prentice Hall International Series in Computer Science,
Englewood Cliffs, New Jersey.

Oppenheim, A. V., R. W. Schafer, and J. R. Buck (1999). Discrete-Time Signal
Processing. Prentice-Hall, Upper Saddle River, New Jersey.

Osorio, R. R., E. Antelo, J. D. Bruguera, J. Villalba, and E. L. Zapata (1995). Digit
on-line large radix CORDIC rotator. In Proceedings ofASAP-95 (Strasbourg,
France), pages 246-57.

Overton, M. A. (2001). Numerical Computing with IEEE Floating-Point Arithmetic.
SIAM.

Bibliography 685

Owens, R. M. (1980). Digit On-line Algorithms for Pipeline Architectures. VhD
thesis, Department of Computer Science, Pennsylvania State University,
University Park. (Technical Report CS-80-21.)

Owens, R. M., R. S. Bajwa, and M. J. Irwin (1995). Reducing the number of
counters needed for integer multiplication. In Proceedings of the 12th IEEE
Symposium on Computer Arithmetic, pages 38-41.

Owens, R. M., T. P. Kelliher, M. J. Irwin, M. Vishwanath, R. S. Bajwa, and
W.-L. Yang (1993). The design and implementation of the Arithmetic Cube
II, a VLSI signal processing system. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 1(4):491-502.

Paal, F. (1973). Implementation of truncated comparison and quotient prediction
in the Q-P (quotient predictor) division algorithms. In Proceedings of the 7th
Asilomar Conference on Circuits, Systems and Computers, pages 734-36.

Paliouras, V., K. Karagianni, and T. Stouraitis (2000). A floating-point processor
for fast and accurate sine/cosine evaluation. IEEE Transactions on Circuits and
Systems II: Analog and Digital Signal Processing, 47(5):441-51.

Parhami, B. (1987). On the complexity of table-lookup for iterative division. IEEE
Transactions on Computers, C-36:1233-36.

Parhami, B. (1988). Carry-free addition of recoded binary signed-digit numbers.
IEEE Transactions on Computers, C-37(11): 1470-76.

Parhami, B. (1993). On the implementation of arithmetic support functions for
generalized signed-digit number systems. IEEE Transactions on Computers,
42(3):379-84.

Parhami, B. (1996). Variations on multioperand addition for faster logarithmic-
time tree multiplier. In Proceedings of the 30th Asilomar Conference on Signals,
Systems and Computers, pages 899-903.

Parhami, B. (2000). Computer Arithmetic: Algorithms and Hardware Designs. Ox-
ford University Press, New York.

Parhi, K. K. (1999). Low-energy CSMT carry generators and binary adders. IEEE
Transactions on VLSI Systems, 7(12):450-62.

Park, W.-C., T.-D. Han, S.-D. Kim, and S.-B. Yang (1999). A floating point
multiplier performing IEEE rounding and addition in parallel. Journal of
Systems Architecture, 45(14): 1195-1207.

Parker, A., and J. O. Hamblen (1992). Optimal value for the Newton-Raphson
division algorithm. Information Processing Letters, 42(3): 141-44.

686 Bibliography

Parks, M. (2000). Number-theoretic test generation for directed roundings. IEEE
Transactions on Computers, 49(7):651-58.

Paterson, M., and U. Zwick (1993). Shallow circuits and concise formulae for
multiple addition and multiplication. Computational Complexity, 3(3): 262-
91.

Peng, V., S. Samudrala, and M. Gavrielov (1987). On the implementation of
shifters, multipliers, and dividers in VLSI floating-point units. In Proceedings
of the 8th IEEE Symposium on Computer Arithmetic, pages 95-102.

Pezaris, S. D. (1971). A 40 ns 17 bit by 17 bit array multiplier. IEEE Transactions
on Computers, C-20(4):442-47.

Phatak, D. S. (1998). Comments on Duprat and Muller's branching CORDIC
paper. IEEE Transactions on Computers, 47(9):1037-40.

Phatak, D. S. (1998). Double step branching CORDIC: a new algorithm for fast
sine and cosine generation. IEEE Transactions on Computers, 47(5):587-602.

Phatak, D. S., T. Geoff, and I. Koren (2001). Constant-time addition and simul-
taneous format conversion based on redundant binary representation. IEEE
Transactions on Computers, 50(11): 1267-87.

Potkonjak, M., M. B. Srivastava, and A. P. Chandrakasan (1996). Multiple constant
multiplications: Efficient and versatile framework and algorithms for explor-
ing common subexpression elimination. IEEE Transaction on Computer-Aided
Design of Integrated Circuits and Systems, 15(2):151-65.

Prabhu, J. A., and G. B. Zyner (1995). 167 MHz radix-8 divide and square root
using overlapped radix-2 stages. In Proceedings of the 12th IEEE Symposium
on Computer Arithmetic, pages 155-62.

Prasad, K., and K. K. Parhi (2001). Low-power 4-2 and 5-2 compressors. In
Proceedings of the 35th Asilomar Conference on Signals, Systems and Computers,
pages 129-33.

Priest, D. M. (1991). Algorithms for arbitrary precision floating point arithmetic.
In Proceedings of the 10th IEEE Symposium on Computer Arithmetic (Arith-10) ,
pages 132-44.

Purdy, C. N., and G. B. Purdy (1987). Integer division in linear time with bounded
fan-in. IEEE Transactions on Computers, C-36:640-44.

Quach, N. T., and M. J. Flynn (1992). High-speed addition in CMOS. IEEE
Transactions on Computers, 41 (12): 1612-15.

Rabaey, J.-M., A. Chandrakasan, and B. Nikoli6 (2003).Digital Integrated Circuits:
A Design Perspective. Prentice Hall, Englewood Cliffs, New Jersey, 2 edition.

Bibliography 687

Rajagopal, S., and J. R. Cavallaro (2001). On-line arithmetic for detection in
digital communication receivers. In Proceedings of the 15th IEEE Symposium
on Computer Arithmetic, pages 257-65.

Ramachandran, R., and S.-L. Lu (1996). Efficient arithmetic using self-timing.
IEEE Transactions on VLSI, 4(4):445-54.

Ramamoorthy, C. V., J. R. Goodman, and K. H. Kim (1972). Some properties
of iterative square-rooting methods using high-speed multiplication. IEEE
Transactions on Computers, C-21 (8):837-47.

Randell, B., editor (1975). On the Mathematical Powers of the Calculating Engine
(C. Babbage). Springer-Verlag, New York, 2nd edition.

Rauchwerger, L., and P. M. Farmwald (1990). A multiple floating point coproces-
sor architecture. In Proceedings of the 23rd Annual Worksho p and Symposium,
pages 216-22.

Reif, J. H., and S. R. Tate (1989). Optimal size integer division circuits. In Pro-
ceedings of the 21st Annual ACM Symposium on Theory of Computing, pages
264-73.

Reiser, J. E, and D. E. Knuth (1975). Evading the drift in floating-point addition.
Information Processing Letters, 3(3):84-87.

Reitwiesner, G. W. (1960). Binary arithmetic. InAdvances in Computers, volume 1,
pages 232-308. Academic Press, New York.

Renaudin, M., B. E. Hassan, and A. Guyot (1996). A new asynchronous pipeline
scheme: application to the design of a self-timed ring divider. IEEE Journal
of Solid-State Circuits, 31(7): 1001-13.

Robertson, J. E. (1955). Two's complement multiplication in binary parallel com-
puters. IEEE Transactions on Electronic Computers, EC-34(3):118-19.

Robertson, J. E. (1957). Arithmetic unit (chapter 8). In On the Design of Very High-
Speed Computers. Technical report no. 80, Computer Science Department,
University of Illinois at Urbana-Champaign.

Robertson, J. E. (1958). A new class of digital division methods. IRE Transactions
Electronic Computers, EC-7(3):88-92.

Robertson, J. E. (1960). Theory of Computer Arithmetic Employed in the Design of
the New Computer at the University of lllinois. File no. 319, Computer Science
Department, University of Illinois at Urbana-Champaign.

Robertson, J. E. (1964). Introduction to Digital Computer Arithmetic. File no.
599, Department of Computer Science, University of Illinois at Urbana-
Champaign.

688 Bibliography

Robertson, J. E. (1965). Methods of Selection of Quotient Digits during Digital Di-
vision. File no. 663, Computer Science Department, University of Illinois at
Urbana-Champaign.

Robertson, J. E. (1967). A deterministic procedure for the design of carry-save
adders and borrow-save subtracters. Technical report No. 235, Dept. of Com-
puter Science, University of Illinois, Urbana-Champaign.

Robertson, J. E. (1970). The correspondence between methods of digital divi-
sion and multiplier recoding procedures. IEEE Transactions on Computers,
C-19(8):692-701.

Rodrigues, M. R. D., J. H. P. Zurawski, and J. B. Gosling (1981). Hardware
evaluation of mathematical functions. IEE Proceedings E (Computers and
Digital Techniques), 128(4):155-64.

Rohatsch, F. A. (1967). A Study of Transformations Applicable to the Development of
Limited Carry-Borrow Propagation Adders. PhD thesis, Department of Com-
puter Science, University of Illinois, Urbana-Champaign.

Rubinfield, L. P. (1975). A proof of the modified Booth's algorithm for multipli-
cation. IEEE Transactions on Computers, C-24(4):1014-15.

Ruess, H., N. Shankar, and M. K. Srivas (1999). Modular verification of SRT
division. Formal Methods in System Design, 14(1):45-73.

Rusinoff, D. (1998). A mechanically checked proof of IEEE compliance of a
register-transfer-level specification of the AMD-k7 floating-point multipli-
cation, division, and square root instructions. LMS Journal of Computation
and Mathematics, 1:148-200.

Salomon, D. (1987). A design for an efficient NOR-gate only, binary ripple adder
with carry-completion detection logic. Computer Journal, 30(3):283-85.

Sam, H., and A. Gupta (1990). A generalized multibit recoding of the two's
complement binary numbers and its proof with application in multiplier
implementations. IEEE Transactions on Computers, C-39(8): 1006--15.

Santoro, M. R. (1989). Design and Clocking of VLSI Multipliers. PhD thesis,
Stanford University.

Santoro, M. R., G. Bewick, and M. A. Horowitz (1989). Rounding algorithms for
I EEE multipliers. In Proceedings ofthe 9th Symposium on ComputerArithmetic,
pages 176--83.

Santoro, M. R., and M. A. Horowitz (1989). SPIM: a pipelined 64 • 64-bit iterative
multiplier. IEEE Journal of Solid-State Circuits, 24:487-93.

Schmid, H. (1974). Decimal Computation. John Wiley & Sons, New York.

Bibliography 689

Schulte, M. J., P. I. Balzola, A. Akkas, and R. W. Brocato (2000). Integer multipli-
cation with overflow detection or saturation. IEEE Transactions on Computers,
49(7):681-91.

Schulte, M. J., J. Omar, and E. Swartzlander, Jr. (1994). Optimal initial approxi-
mations for the Newton-Raphson division algorithm. Computing, 53(3-4):
233-42.

Schulte, M. J., and J. E. Stine (1997). Symmetric bipartite tables for accurate func-
tion approximation. In Proceedings of the 13th IEEE Symposium on Computer
Arithmetic, pages 175-83.

Schulte, M. J., and J. E. Stine (1997). Accurate function evaluation by symmetric
table lookup and addition. In Proceedings of the IEEE International Confer-
ence on Application-Specific Systems, Architectures and Processors, pages 144-
53.

Schulte, M. J., and J. E. Stine (1999). Approximating elementary functions with
symmetric bipartite tables. IEEE Transactions on Computers, 48(8):842-47.

Schulte, M. J., J. E. Stine, and J. G. Jansen (1999). Reduced power dissipation
through truncated multiplication. In Proceedings of the IEEE Alessandro Volta
Memorial Worksho p on Low-Power Design, pages 61-69.

Schulte, M. J., and E. Swartzlander (1993). Truncated multiplication with correc-
tion constant (for DSP). In Proceedings of the IEEE Worksho p on VLSI Signal
Processing, pages 388-96.

Schulte, M. J., and E. E. Swartzlander (1993). Exact rounding of certain ele-
mentary functions. In Proceedings of the llth IEEE Symposium on Computer
Arithmetic, pages 138-45.

Schulte, M. J., and E. E. Swartzlander (1994). Hardware designs for exactly
rounded elementary functions. IEEE Transactions on Computers, 43(8):964-
73.

Schwarz, E. M. (1995). Rounding for quadratically converging algorithms for
division and square root. In Conference Record of the 29th Asilomar Conference
on Signals, Systems and Computers, volume 1, pages 600-3.

Schwarz, E. M., R. Averill, III, and L. Sigal (1997). A radix-8 CMOS S/390
m ul tiplie r. I n Proceedings of the 13th IEEE Symposium on Computer Arithmetic,
pages 2-9.

Schwarz, E. M., and M. J. Flynn (1996). Hardware starting approximation method
and its application to the square root operation. IEEE Transactions on Com-
puters, 45(12):1356--69.

690 Bibliography

Schwarz, E. M.,R. M. Smith, and C. A. Krygowski (1999). The S/390 G5 floating-
point unit supporting hex and binary architectures. In Proceedings of the 14th
IEEE Symposium on Computer Arithmetic, pages 258-65.

Scott, N. R. (1985). Computer Number Systems & Arithmetic. Prentice Hall, En-
glewood Cliffs, New Jersey.

Seidel, P.-M., and G. Even (2001). On the design of fast IEEE floating-point
adders. In Proceedings of the 15th IEEE Symposium on Computer Arithmetic,
pages 184-94.

Seidel, P.-M., L. D. McFearin, and D. W. Matula (2001). Binary multiplication
radix-32 and radix-256. In Proceedings of the 15th IEEE Symposium on Com-
puter Arithmetic (Arith-15), pages 23-32.

Shaham, Z., and Z. Riesel (1972). A note on division algorithms based on multi-
plication. IEEE Transcations on Computers, C-21 (5):513-14.

Sharangpani, H., and K. Arora (2000). Itanium processor microarchitecture.
IEEE Micro, 20(5):24-43.

Shedletsky, J. J. (1977). Comment on the sequential and indeterminate behaviour
of an end-around-carry adder. IEEE Transactions on Computers, C-26(3):271-
72.

Shively, R. R. (1963). Stationary Distributions of Partial Remainders in SRT Digital
Division. PhD thesis, University of Illinois.

Singh, M., and S. M. Nowick (2000). Fine-grain pipelined asynchronous adders
for high-speed DSP applications. In Proceedings of the IEEE Computer Society
Worksho p on VLS12000, System Design for a System-on-Chip Era, pages 111-18.

Sips, H. J. (1984). Bit-sequential arithmetic for parallel processors. IEEE Trans-
actions on Computers, C-33(1):7-20.

Sklansky, J. (1960). Conditional-sum addition logic. IRE Transactions on Electronic
Computers, EC-9:226-31.

Sklansky, J. (1960). An evaluation of several two-summand binary adders. IRE
Transactions on Electronic Computers, EC-9:213-26.

Smith, S. G., and P. Denyer (1988). Serial-Data Computation. Kluwer Academic
Publishers.

Soceneantu, A., and C. I. Toma (1972). Cellular logic array for redundant binary
division. In Proceedings of the IEE, volume 119, pages 1452-56.

Soderquist, P., and M. Leeser (1996). Area and performance tradeoffs in floating-
point division and square root implementations. ACM Computing Surveys,
28(3):518-64.

Bibliography 691

Soderstrand, M., W. Jenkins, G. Jullien, and E Taylor (1986).Residue Number Sys-
tem Arithmetic: Modern Applications in Digital Signal Processing. IEEE Press,
New York.

Song, P. J., and G. D. Micheli (1991). Circuit and architecture trade-offs for
high-speed multiplication. IEEE Journal of Solid-State Circuits, 26(9):1184-
98.

Spaniol, O. (1981). Computer Arithmetic: Logic and Design. John Wiley & Sons,
Inc., New York.

Specker, W. H. (1965). A class of algorithms for In(x), exp(x), sin(x), cos(x),
tan-l(x) and cot-l(x). IEEE Transactions on Electronic Computers, EC-14:
85-86.

Spira, P. M. (1973). Computation times of arithmetic and Boolean functions in
(d,r) circuits. IEEE Transactions on Computers, C-22(6):552-55.

Srinivas, H. R., and K. K. Parhi (1995). A fast radix-4 division algorithm and its
architecture. IEEE Transactions on Computers, 44(6):826-31.

Srinivas, H. R., and K. K. Parhi (1999). A radix 2 shared division/square root
algorithm and its VLSI architecture.Journal of VLSI Signal Processing Systems

for Signal, Image, and Video Technology, 21 (1):37-60.
Stan, M. R., A. E Tenca, and M. D. Ercegovac (1998). Long and fast up/down

counters. IEEE Transactions on Computers, 47(7):722-35.
Stelling, P. E (1995).Application of Combinatorics to Parallel Multiplier Design, Tree

Reconstruction, and the Analysis ofStrings. PhD thesis, University of California,
Davis.

Stelling, P. E, C. U. Martel, V. G. Oklobd~ija, and R. Ravi (1998). Optimal circuits
for parallel multipliers. IEEE Transactions on Computers, 47(3):273-85.

Stelling, P. E, and V. G. Oklobdzija (1996). Design strategies for optimal hy-
brid final adders in a parallel multiplier. Journal of VLSI Signal Processing,
14(3):321-31.

Stelling, P. E, and V. G. Oklobdzija (1997). Implementing multiply-accumulate
operation in multiplication time. In Proceedings of the 13th IEEE Symposium
on Computer Arithmetic, pages 99-106.

Stenzel, W. J., W. J. Kubitz, and G. H. Garcia (1977). A compact high-speed par-
allel multiplication scheme. IEEE Transactions on Computers, C-26(10):948-
57.

Sterbenz, P. H. (1974). Floating Point Computation. Prentice-Hall, Englewood
Cliffs, New Jersey.

692 Bibliography

Stine, J. E., and M. J. Schulte (1999). The symmetric table addition method for
accurate function approximation. Journal of VLSI Signal Processing, 21:167-
77.

Story, S., and P. T. P. Tang (1999). New algorithms for improved transcendental
functions on IA-64. In Proceedings of the 14th IEEE Symposium on Computer
Arithmetic, pages 4-11.

Strandberg, R. H., L. G. Bustamante, V. G. Oklobdzija, M. Soderstrand, and
J. C. LeDuc (1996). Efficient realizations of squaring and reciprocal used in
adaptive sample rate notch filter. Journal of VLSI Signal Processing Systems,
14(3):303-9.

Sung, T. Y., Y. H. Hu, and H. J. Yu (1986). Doubly pipelined CORDIC array for
digital signal processing. In IEEE International Conference on ASSP, pages
1169-72.

Suzuki, H., H. Makino, K. Mashiko, and H. Hamano (1997). A floating-point
divider using redundant binary circuits and an asynchronous clock scheme.
In Proceedings of the International Conference on Computer Design: VLSI in
Computers and Processors, pages 685-89.

Suzuki, H., Y. Nakase, H. Makino, H. Morinaka, and K. Mashiko (1995).
Leading-zero anticipatory logic for high-speed floating point addition. In
Proceedings of the IEEE 1995 Custom Integrated Circuits, pages 589-92.

Svoboda, A. (1963). An algorithm for division. Information Processing Machines
(Stroje na Zpracovani Informaci), 9:25-34.

Svoboda, A. (1970). Adder with distributed control. IEEE Transactions on Com-
puters, C-19(8):749-51.

Swartzlander, E. (1999). Truncated multiplication with approximate rounding. In
Proceedings of the 33rd Asilomar Conference on Signals, Systems, and Computers,
volume 2, pages 1480-83.

Swartzlander, E. E. (1973). Parallel counters. IEEE Transactions on Computers,
C-22:1021-24.

Swartzlander, E. E. editor. (1990). Computer Arithmetic, Vol. I and Vol. 2. IEEE
Computer Society Press, Los Alamitos, California.

Sweeney, D. W. (1965). An analysis of floating-point addition. IBM Systems Jour-
hal, 4:31-42.

Sweitz, F. J. (1987). Capitalism & Arithmetic: The New Math of the 15th Century.
Open Court, La Salle, Illinois.

Bibliography 693

Szabo, N. S., and R. I. Tanaka (1967). Residue Arithmetic and Its Applications to
Computer Technology. McGraw-Hill, New York.

Takagi, N. (1987). Studies on Hardware Algorithms for Arithmetic Operations with
a Redundant Binary Representation. PhD thesis, Department of Information
Science, Kyoto University.

Takagi, N. (2001). A hardware algorithm for computing reciprocal square root.
In Proceedings of the 15th IEEE Symposium on Computer Arithmetic, pages
94-100.

Takagi, N., T. Asada, and S. Yajima (1991). Redundant CORDIC methods with
a constant scale factor. IEEE Transactions on Computers, 40(9):989-95.

Takagi, N., and T. Horiyama (1999). A high-speed reduced~size adder un-
der left-to-right input arrival. IEEE Transactions on Computers, 48(1):76-
80.

Takagi, N., H. Yasukura, and S. Yajima (1985). High speed multiplication algo-
rithm with a redundant binary addition tree. IEEE Transactions on Computers,
C-34(9):789-96.

Tan, K. G. (1978). The theory and implementation of high-radix division. In Pro-
ceedings of the 4th IEEE Symposium on Computer Arithmetic, pages 154-63.

Tang, P. T. P. (1989). Table-driven implementation of the exponential function in
IEEE floating-point arithmetic. ACM Transactions on Mathematical Software,
15(2):144-57.

Tang, P. T. P. (1990). Table-driven implementation of the logarithm function in
IEEE floating-point arithmetic. ACM Transactions on Mathematical Software,
16(4):378-400.

Tang, P. T. P. (1991). Table lookup algorithms for elementary functions and
their error analysis. In Proceedings of the 10th IEEE Symposium on Computer
Arithmetic, pages 232-36.

Tang, P. T. P. (1992). Table-driven implementation of the expml function in
IEEE floating-point arithmetic. ACM Transactions on Mathematical Software,
18(2):211-22.

Taylor, F. (1984). Residue arithmetic: A tutorial with examples. IEEE Computer
Magazine, 17(5):50-62.

Taylor, G. S. (1981). Compatible hardware for division and square root. In
Proceedings of the 5th IEEE Symposium on Computer Arithmetic, pages
127-34.

694 Bibliography

Taylor, G. S. (1985). Radix-16 SRT dividers with overlapped quotient-selection
stages. In Proceedings of the 7th IEEE Symposium on Computer Arithmetic,
pages 64-71.

Taylor, G. S., and D. A. Patterson (1981). VAX hardware for the proposed IEEE
Floating-Point Standard. In Proceedings of the 5th IEEE Symposium on Com-
puter Arithmetic, pages 190-96.

Tenca, A. E (1998). Variable Long-Precision Arithmetic (VLPA) for Reconfigurable
Coprocessor Architectures. PhD thesis, University of California, Los Angeles.

Tenca, A. E, and M. D. Ercegovac (1999). On the design of high-radix on-line
division for long precision. In Proceedings of the 14th IEEE Symposium on
Computer Arithmetic, pages 44-51.

Tenca, A. E, M. D. Ercegovac, and M. E. Louie (1999). Fast on-line multiplication
units using LSA organization. In Proceedings of the SPIEmAdvanced Signal
Processing Algorithms, Architectures, and Implementations IX, volume 3807,
pages 74-83.

Tenca, A. E, and S. U. Hussaini (2001). A design of radix-2 on-line division using
LSA organization. In Proceedings of the 15th IEEE Symposium on Computer
Arithmetic, pages 266-73.

Timmermann, D., H. Hahn, and B. J. Hosticka (1992). Low latency time
CORDIC algorithms. IEEE Transactions on Computers, 41 (8):1010-15.

Timmermann, D., H. Hahn, B. J. Hosticka, and B. Rix (1991a). A new addition
scheme and fast scaling factor compensation methods for CORDIC algo-
rithms. INTEGRATION, The VLSI Journal, 11:85-100.

Timmermann, D., H. Hahn, B. J. Hosticka and G. Schmidt (1991). A pro-
grammable CORDIC chip for digital signal processing applications. IEEE
Journal of Solid-State Circuits, 26(9):1317-21.

Timmermann, D., B. Rix, H. Hahn, and B. J. Hosticka (1994). A CMOS floating-
point vector-arithmetic unit. IEEE Journal of Solid-State Circuits, 29(5):634-
39.

Tisserand, A., P. Marchal, and C. Piguet (1999). FPOP: field-programmable
on-line operators. In Proceedings of the SPIE Advanced Signal Processing
Algorithms, Architectures, and Implementations IX, volume 3807, pages 31-42.

Tocher, K. D. (1958). Techniques of multiplication and division for automatic
binary computers. Quart. J. Mech. Appl. Math., XI(Pt. 3):364-84.

Trivedi, K. S., and M. D. Ercegovac (1977). On-line algorithms for division and
multiplication. IEEE Transactions on Computers, C-26(7): 161-67.

Bibliography 695

Trivedi, K. S., and J. G. Rusnak (1978). Higher radix on-line division. InProceed-
ings of the 4th IEEE Symposium on Computer Arithmetic, pages 164-74.

Tsunekava, Y., M. Hinosugi, and M. Miura (1998). Design and VLSI evaluation
of a high-speed cellular array divider with a selection function. Electrical
Engineering in Japan, 124(4):760-97.

Tu, P. K.-G. (1990). On-line Arithmetic Algorithms for Efficient Implementations.
PhD thesis, University of California, Los Angeles.

Tu, P. K.-G., and M. D. Ercegovac (1989). Design of on-line division unit. In
Proceedings of the 9th IEEE Symposium on Computer Arithmetic, pages 42-49.

Tu, P. K.-G., and M. D. Ercegovac (1991). Gate array implementation of on-line
algorithms for floating-point operations. Journal of VLSI Signal Processing,
3(4):307-17.

Tullsen, D. M., and M. D. Ercegovac (1986). Design and implementation of an
on-line algorithm. In Proceedings of the SPIE Real Time Signal Processing IX,
volume 698, pages 92-99.

Tung, C. (1968). A division algorithm for signed-digit arithmetic. IEEE Transac-
tions on Computers, C-17(9):887-89.

Tung, C. (1970). Signed-digit division using combinational arithmetic nets. IEEE
Transactions on Computers, C- 19(8):746-48.

Tung, C. (1972). Arithmetic (Chapter 3). In Computer Science. Wiley-Interscience,
New York.

Tung, C., and A. Avizienis (1970). Combinational arithmetic systems for the
approximation of functions. In AFIPS Conference Proceedings 1970 Spring
Joint Computer Conference, pages 95-107.

Turrini, S. (1989). Optimal group distribution in carry-skip adders. In Proceedings
of the 9th IEEE Symposium on Computer Arithmetic, pages 96-103.

Tyagi, A. (1993). A reduced area scheme for carry-select adders. IEEE Transactions
on Computers, C-42(10):1163-70.

Unwala, I. H., and E. E. Swartzlander (1993). Superpipelined adder designs. In
Proceedings of the International Symposium on Circuits and Systems (ISCAS),
volume 3, pages 1841-44.

Uya, M., K. Kaneko, and J. Yasui (1984). A CMOS floating-point multiplier.
IEEE Journal of Solid-State Circuits, SC- 19(5):697-702.

Van, L. D., S.-S. Wang, and W.-S. Feng (2000). Design of the lower error fixed-
width multiplier and its application. IEEE Transactions Circuits and Systems
II: Analog and Digital Signal Processing, 47(10):1112-18.

696 Bibliography

Vanmeulebroecke, A., E. Vanzieleghem, T. Denyer, and E G. A. Jespers
(1990). A new carry-free division algorithm and its application to a single-
chip 1024-b RSA processor. IEEE Journal of Solid-State Circuits, SC-25(3):
748-65.

Vassiliadis, S., D. S. Lemon, and M. Putrino (1989). S/370 sign-magnitude
floating-point adder. IEEE Journal of Solid-State Circuits, 24:1062-70.

Vassiliadis, S., E. M. Schwarz, and D. J. Harahan (1989). A general proof for
overlapped multiple-bit scanning multiplication. IEEE Transactions on Com-
puters, 38:172-73.

Vassiliadis, S., J. Philips, and B. Blaner (1993). Condition code predictor for fixed-
point arithemtic units. IEEE Transactions on Computers, 42(7):825-39.

Verdonk, B., A. Cuyt, and D. Verschaeren (2001). A precision- and range-
independent tool for testing floating-point arithmetic, i. Basic operations,
square root, and remainder. ACM Transactions on Mathematical Software,
27(1):92-118.

Villalba, J., T. Lang, and E. L. Zapata (1998). Parallel compensation of scale factor
for the CORDIC algorithm. Journal of VLSISignal Processing, 19:227-41.

Villalba, J., E. L. Zapata, E. Antelo., and J. D. Bruguera (1998). Radix-4 vectoring
CORDIC. Journal of VLSI Signal Processing, 19:127-47.

Volder, J. (1959). The CORDIC computing techniquie. IRE Transactions on Elec-
tronic Computers, EC-8(3):330-34.

Volder, J. E. (2000). The birth of CORDIC. Journal of VLSI Signal Processing
Systems, 25(2):101-5.

Vuillemin, J. E. (1991). Constant time arbitrary length synchronous binary coun-
ters. In Proceedings of the 10th IEEE Symposium on Computer Arithmetic, pages
180-83.

Wakerly, J. E (2001). Digital Design Principles & Practices. Prentice Hall, Engle-
wood Cliffs, New Jersey.

Wallace, C. S. (1964). A suggestion for a fast multiplier. IEEE Transactions on
Electronic Computers, EC-13(2):14-17.

Walter, C. D. (1995). Verification of hardware combining multiplication, division
and square root. Microprocessors and Microsystems, 19(5):243-45.

Walther, J. S. (1971). A unified algorithm for elementary functions. In Proceedings
of the Spring Joint Computer Conference, pages 379-85.

Walther, J. S. (2000). The story of unified CORDIC. Journal of VLSI Signal
Processing Systems, 25(2):107-12.

Bibliography 697

Wang, C.-C., C.-J. Huang, and G.-C. Lin (2000). Cell-based implementation
of radix-4/2 64b dividend 32b divisor signed integer divider using the
COMPASS cell library. IEE ProceedingsEComputers and Digital Techniques,
147(2):109-15.

Wang, S. (1998). A CORDIC Arithmetic Processor. PhD thesis, University of Texas
at Austin.

Wang, S., V. Piuri, and E. E. Swartzlander (1997). Hybrid CORDIC algorithms.
IEEE Transactions on Computers, 46(11): 1202-7.

Wang, Z., G. A. Jullien, and W. C. Miller (1995). A new design technique for
column compression multipliers. IEEE Transactions on Computers, 44(8):962-
70.

Ware, F. A., W. McAllister, J. R. Carlson, D. K. Sun, and R. J. Vlach (1982). 64
bit monolithic floating-point processors. IEEE Journal of Solid-State Circuits,
SC-17(5):898-907.

Wasser, S., and M. J. Flynn (1982). Introduction to Arithmetic for Digital Computers.
Holt, Rinehart, Winston, New York.

Watanuki, O. (1981). Floating-Point On-line Arithmetic for Highly Concurrent
Digit-Serial Computation: Application to Mesh Problems. PhD thesis, Uni-
versity of California, Los Angeles.

Watanuki, O., and M. D. Ercegovac (1983). Error analysis of certain floating-point
on-line algorithms. IEEE Transactions on Computers, C-32:352-58.

Wei, B. W. Y., and C. D. Thompson (1990). Area-time optimal adder design.
IEEE Transactions on Computers, 39(5):666-75.

Weinberger, A. (1978). High-speed zero-sum detection. In Proceedings of the 4th
IEEE Symposium on Computer Arithmetic, pages 200-207.

Weinberger, A. (1981). 4:2 carry-save adder module. IBM Technical Disclosure
Bulletin, 23.

Weinberger, A., and J. L. Smith (1958). A logic for high-speed addition.Nat. Bur.
Stand. Circ., 591:3-12.

Wells, D. (1997). Curious and Interesting Numbers. Penguin Books, New York.
Weste, N. H. E., and K. Eshragian (1993). Principles of CMOS VLSI Design: A

System Perspective. Addison-Wesley Publishing Co., Reading, Massachusetts,
2nd edition.

Wey, C. L. (2000). Design of fast high-radix SRT dividers and their VLSI imple-
mentation. IEE Proceedings--Computers and Digital Techniques, 147(4):275-
81.

698 Bibliography

Wey, C. L., and C.-R Wang (1999). Design of a fast radix-4 SRT divider and its
VLSI implementation, lEE ProceedingsuComputers and Digital Techniques,
146(4):205-10.

Wilkinson, J. H. (1963). Rounding Errors in Algebraic Processes. Prentice-Hall,
Englewood Cliffs, New Jersey.

Williams, J., and V. C. Hamacher (1981). A linear-time divider array. Canadian
Electr. Engineering Journal, 6:14-20.

Williams, T., N. Patkar, and G. Shen (1995). SPARC64: a 64-b 64-active-
instruction out-of-order-execution MCM processor. IEEE Journal of Solid-
State Circuits, 30(11):1215-26.

Williams, T. E. (1991). Self-Timed Rings and Their Application to Div#ion. PhD
thesis, Stanford University. Computer Systems Laboratory technical report
no. CSL-TR-91-482.

Williams, T. E., and M. Horowitz (1991). A 160ns 54-bit CMOS division im-
plementation using self-timed and symmetrically overlapped SRT stages.
In Proceedings of the l Oth IEEE Symposium on Computer Arithmetic, pages
210-17.

Williams, T. E., and M. A. Horowitz (1991). A zero-overhead self-timed 160-ns
54-b CMOS divider. IEEE Journal of Solid-State Circuits, 26(11): 1651-61.

Wilson, J. B., and R. S. Ledley (1961). An algorithm for rapid binary division.
IRE Transactions Electronic Computers, EC-10(4):662-70.

Winograd, S. (1965). On the time required to perform addition. Journal of the
ACM, 12(2):277-85.

Winograd, S. (1967). On the time required to perform multiplication.Journal of
the ACM, 14(4):793-802.

Wires, K. E., M. J. Schulte, L. E Marquette, and E I. Balzola (1999). Combined
unsigned and 2's complement squarers. In Proceedings of the 33rd Asilomar
Conference on Signals, Systems, and Computers, pages 1215-19.

Wires, K. E., M. J. Schulte, and J. E. Stine (2000). Variable-correction truncated
floating point multipliers. In Proceedings of the 34th Asilomar Conference on
Signals, Systems, and Computers, pages 1344-48.

Wires, K. E., M. J. Schulte, and J. E. Stine (2001). Combined IEEE compliant
and truncated floating point multipliers for reduced power dissipation. In
Proceedings of the IEEE International Conference on Computer Design: VLSI
in Computers and Processors (ICCD'O1), pages 497-500.

Bibliography 699

Wold, E. H. and A. M. Despain (1984). Pipeline and parallel-pipeline FFT
processors for VLSI implementations. IEEE Transactions on Computers, C-
33(5):414-26.

Won, J.-H., and K. Choi (2000). Low power self-timed radix-2 division. In
ISLPED'O0: Proceedings of the 2000 International Symposium on Low Power
Electronics and Design, pages 210-12.

Wong, D., and M. J. Flynn (1992). Fast division using accurate quotient approxi-
mations to reduce the number of iterations. IEEE Transactions on Computers,
41(8):981-95.

Wong, D. C., G. De Micheli, and M. J. Flynn (1993). Designing high-performance
digital circuits using wave pipelining: Algorithms and practical experiences.
IEEE Transactions Computer-Aided Design of Integrated Circuits and Systems,
12(1):25-46.

Wong, W. F., and E. Goto (1994). Fast hardware-based algorithms for elementary
function computations using rectangular multipliers. IEEE Transactions on
Computers, 43(3):278-94.

Yang, B., D. Timmermann, J. F. Bome, H. Hahn, B. J. Hosticka, G. Schmidt,
and G. Zimmer (1987). Special computers: graphics, robotics. In Proceedings
of VLSI Computer, COMPEURO, pages 727-30.

Yeager, K. C. (1996). The Mips R10000 superscalar microprocessor. IEEE Micro,
16(2):28-41.

Yeh, C.-H., and B. Parhami (1996). Efficient pipelined multi-operand adders
with high throughput and low latency: Designs and applications. In Proceed-
ings of the 30th Asilomar Conference on Signals, Systems and Computers, pages
894-98.

Yohe, J. M. (1973). Roundings in floating-point arithmetic. IEEE Transactions on
Computers, C-22(6):577-86.

Yoshida, N., E. Goto, and S. Ichikawa (1991). Pseudorandom rounding for trun-
cated multipliers. IEEE Transactions on Computers, 40(9): 1065-67.

Yoshimura, H., T. Nakanishi, and H. Yamauchi (1989). A 50-MHz CMOS ge-
ometrical mapping processor. IEEE Transactions on Circuits and Systems,
36(10):1360-63.

Yu, R. Y., and G. B. Zyner (1995). 167 MHz radix-4 floating point multiplier.
In Proceedings of the 12th IEEE Symposium on Computer Arithmetic, pages
149-54.

700 Bibliography

Zimmerman, R. (1998). Binary Adder Architectures for Cell-Based VLSI and Their
Synthesis (Ph.D. dissertation). Series in Microelectronics, Vol. 37. Hartung-
Gore, Konstanz, Switzerland.

Zou, F., and P. Kornerup (1995). High speed DCT/IDCT using a pipelined
CORDIC algorithm. In Proceedings of the 12th IEEE Symposium on Computer
Arithmetic, pages 180-87.

Zuras, D. (1993). On squaring and multiplying large integers. In Proceedings of
the llth IEEE Symposium on Computer Arithmetic, pages 260-71.

Zuras, D. (1994). More on squaring and multiplying large integers. IEEE Trans-
actions on Computers, 43(8):899-908.

Zuras, D., and W. H. McAllister (1986). Balanced delays trees and combinatorial
division in VLSI. IEEE Journal of Solid-State Circuits, SC~

Zurawski, J. H. P. (1980). High Performance Evaluation of Division and Other
Elementary Functions. PhD thesis, University of Manchester, England.

Zurawski, J. H. P., and J. B. Gosling (1981). Design of high-speed digital divider
units. IEEE Transactions on Computers, C-30(9):691-99.

Zurawski, J. H. P., and J. B. Gosling (1987). Design of a high-speed square root,
multiply, and divide unit. IEEE Transactions on Computers, C~

Index

[3:2] adder, 141
[4:2] adder (module), 145
[5:2] adder (module), 146
[7:2] adder (module), 146
[p:2] adder (module), 140
(1,2,3:4] counter, 150
(3:2] counter, 145
(5,5:4] counter, 150
(7:3] counter, 147, 150
(p:q] counter, 144
ABRE (absolute rounding error),

409
Absolute error,

average, 409
exponential, 592

in digit-serial arithmetic, 518
logarithm, 584
maximum, 411

Adder
1-bit, 52
[3:2], 100
[4:2], 100
asynchronous (self-timed), 91
borrow save, 127
carry-lookahead (CLA), 53,

71
carry-propagate, 52
carry-ripple (CRA), 59
carry-save, 53, 98
carry-select, 53, 86
carry-skip, 53, 65
conditional-sum, 53

conventional number
system, 52

fixed-time, 52
hybrid, 53
linear array, 151-152
n-bit, 52
ones' complement, 95
pipelined, 91
prefix, 53, 79
redundant, 52-53, 97
schemes, 52
signed-digit, 53
switched carry-ripple

(Manchester), 53, 63
delay, 64

tree, 153-154
two's complement, 95
variable-time, 52, 91

Addition in ones' complement
system, 22

Addition in true-and-
complement system,
19

Addition in two's complement
system, 20

Addition of positive integers, 17
Addition of signed integers, 18
Addition

algorithm, 51
for positive fixed-point

operands, 51
two-operand, 51

Addition/subtraction in
sign-and-magnitude
system, 25

Alignment,
in double-datapath

implementation,
430-431

in floating-point addition,
418,420, 422-424

in floating-point
multiply-add, 446-448

Alternative floating-point
addition
implementations, 426

CLOSE path, 431
double datapath, 430
FAR path, 431
single path, 427

Argument range reduction, 551
Arithmetic unit (processor), 3

functional description, 4
arithmetic-algorithm level,

4
implementation level, 4

Arithmetic processor, 4
Arithmetic shifts, 27
Arrays of smaller multipliers, 215

Base, in floating-point, 398
Binary code, 18
Bipartite table method, 562

701

702 Index

Bit-array (in combinational
multiplication), 194,
202

pipelined, 207
reduction by rows

linear adder array, 205
adder tree, 207

reduction by columns using
(p:q] counters

Bit-arrays, 137
unsigned operands, 137
signed operands, 138
sign extension, 138

Bit-vectors, representation, 8-9
Borrow-save adder, 127

Canonical system 7
Carries, 53

alive, 55
generate, 55
kill, 54
propagate, 55

Carry chains, 55
1-carry chain, 55
0-carry chain, 55

Carry-in, carry-out, 51
Carry-lookahead adder (CLA),

53,71
carry-lookahead generator

(CLG), 72
delay (1-CLA), 72
delay (2-CLA), 77
delay (L-CLA), 77
group size, 79
number of levels, 77
one-level (1-CLA), 75
three or more levels CLA,

77
two-level (2-CLA), 75

Carry-save adder (CSA), 98
high radix carry-save, 101

Carry-save adder, 141
Carry-select adder, 86

delay, 86
Carry-skip adder, 53, 65

delay, 66-67
group size, 70
multi-level, 71
variable group size, 70

Change-of-sign in ones'
complement system,
23

Change-of-sign in true-and
complement system,
23

Change-of-sign in two's
complement system,
24

Choice of base, in floating-point,
403-404

Circular coordinates, 609
Combination of division and

square root, 343-345
Combinational multioperand

addition, 151
Combinational multiplication

with recoding, 193
bit-array, 194,202
generation of multiples, 194
radix 2, two's complement,

194
sign extension, 197

Combined division and square
root, 343

Compensation of scaling errors,
619-620

Complement forms, 11
Complementation constant, 11
Composite algorithm, 495-496
Conditional adder

(COND-ADDER),
86

Condition code, 416

Conditional-sum adder, 87
delay, 89

Constant and multiple constant
multipliers, 223-225

Continuity condition, 348
Converse mapping, 15-16
CORDIC algorithm, 609, 611

circular, 611
convergence, 616
error, 618
high radix, 626, 631
hyperbolic, 623
implementation, 620
range, 618
redundant representation,

627
rotation mode, 612
scaling factor, 619
truncation error, 618
unified description, 626
vectoring mode, 614

CORDIC implementations, 620
pipelined, 621
word-serial, 620

Correct rounding and
monotonicity,
551-552,598

Correcting-iterations approach,
630-631

Delay of adders,
carry-lookahead, 72, 77
carry-ripple, 59, 62
carry-skip, 66-67
switched carry-ripple, 64
reducing, 63

Denormals, 426
Digit, 5
Digit complement system (DC),

11
Digital representation, 11

Index 703

Digit-recurrence,
algorithm for, 249-259
convergence of, 367
division, method of,

247-319
rounding for, 453,478
square root, method of,

331-362
Digit-selection function, 273
Digit-serial arithmetic, 489

algorithm and
implementation
model, 492

composite algorithm, 495
delay, 489
initial delay, 492

Digit-vector mapping, 8
Digit-vectors,

about, 4,5
in mixed radix system, 7
in nonredundant number

systems, 6,8
in redundant number

systems, 6
representation of, 6

Digital arithmetic, 3
Dividend x, 34,248
Division (integer) algorithms, 34

restoring division, 35
nonperforming division, 37
nonrestoring division, 38

Division and square root,
example of
implementation 383

Division by digit-recurrence, 247
Division by iterative

approximation, 367,
380

Division,
algorithm radix-2, 266
comparison of

implementations, 277

containment condition, 282
continuity condition, 283
convergence, 250
definition, 248
error bound, 250
example of execution

radix-2,267
example of execution

radix-4, 270
fractional, 248, 249
implementation, 259
implementation of

recurrence step,
252

initialization, 254
integer, 248, 278
integer example of

execution, 280
notation, 248
number of iterations, 254
overlap, 283 P-D diagram,

283
radix-2,264
radix-4,264
radix-8, 270
radix-16, 273
radix-16 with overlapped

stages, 273
radix-512 with scaling and

selection by rounding,
275

range of estimate, 298
recurrence step, 249
residual, 251
Robertson's diagram, 283
SRT, 288
selection function radix-2,

266, 288, 302
selection function radix-4,

269, 294, 305
selection intervals, 282
selection constants, 287

staircase selection function,
289

selection function with
redundant adder, 296

selection function with
carry-save adder, 299

selection function with
signed-digit adder, 308

termination, 254
zero-remainder condition,

263
Division, comparison between

digit recurrence and
multiplicative
methods, 463

Divisor d, 34,248
Double precision,

in division and square root
algorithms, 383

for elementary functions,
598

in IEEE Standard 754, 415
and lookup tables, 599
in range extension, 26
for transcendentals, 598

Double-datapath
implementation,
430-434

Double-rail coding, 92
Double-rotation approach,

629-630

End-around carry, 22-23, 96-97
Errors,

absolute representation
(ABRE), 409

bias error (RB), 409-410
in CORDIC algorithms,

616, 624,631
in division by digit

recurrence, 250

704 Index

Errors (continued)
maximum absolute

representation error
(MABRE), 409

in multiplicative
normalization
method, 377-378

in Newton-Raphson (NR)
method, 370

in online arithmetic, 511
in quotient-digit selection,

299
relative representation error

(RRE), 410
from scale factor

compensation, 620
from truncating multiplier,

221
types of, 409-410

Estimate of residual, 297, 299,
513,589

Estimate of S[j], 349-350
Exceptions (floating-point), 407

division by zero, 417
inexact, 417
invalid, 417
overflow, 407
underflow, 407

Exponent
denormal and, 401,438
in logarithms, 551
overflow, 407, 420
representation of, 405-407

Exponential,
by additive normalization,

587-593
algorithm, 589
implementation, 590.

Extended precision, 383
Extension to hyperbolic and

linear coordinates,
623-626

Final adder in multipliers,
210-212

Fixed radix number system, 6
Fixed-point numbers, 3, 5
Floating-point addition, 417

alignment of significands,
418

alternative
implementations, 426

basic algorithm, 418
basic implementation, 420
delay and pipelining, 426
denormals, 426
effective operation, 419
exceptions and special

values, 420, 425
guard bits, 422
normalization of result, 419
round to nearest (tie to

even), 424
round toward zero, 425
round toward infinity, 425
rounding, 420, 422
sticky bit, 422

Floating-point CORDIC, 641
Floating-point division, 451

comparison between digit
recurrence and
multiplicative
methods, 463

rounding for digit
recurrence, 453

rounding for iterative
approximation, 457

Floating-point multiplication,
435

alternative implementation,
438

basic algorithm, 435
basic implementation, 435
delay and pipelining, 438
denormals, 438

exceptions and special
values, 437

normalization, 436
round to nearest (tie to

even), 436
round to zero, 437
round toward infinity,

437
sticky bit, 436

Floating-point multiply-add
fused (MAF), 445

Floating-point numbers 3,397
Floating-point numbers, 397

distribution of values, 402
ranges of values, 402

Floating-point operations, 416
Floating-point representation,

397
base, 398
biased exponent, 405
choice of base, 403
denormalized numbers

(denormals), 401
dynamic range, 398
exponent, 398, 405
normalized, 401
range of significand, 400
significand, 398, 404
special values, 407
ulp (unit in the last

position), 400
unnormalized, 401

Floating-point square root, 461
Floating-point standards, 477
Fraction

in fixed-point
representation, 16

in floating-point addition,
420-421,426

in IEEE Standard 754, 415
Fractional operands, 247, 279,

331,502

Index 705

Full adder (FA), 51
as counters, 159
characteristics of, 62
implementation, 60
with self-timed carry

circuit, 92
Functional description, 4
Function evaluation, 549

exponential, 587
linear convergence method,

576
logarithm, 584
polynomial interpolation,

557
rational approximation,

566

Generated errors, 376-378
Generation of adder input F[j],

334-335
Generation of multiples and bit

array, 194-197
Gradual underflow

and denormals, 438
in floating-point addition,

420
in IEEE Standard 754, 416

Group size, 70, 79
Guard bits, 422

Half-adder (HA), 60
as counters, 159
in full-adder

implementation, 60-62
in reduction by columns,

60-61, 175
Hardware polynomial

evaluators, 598
Hidden bit, 405
High-radix CORDIC, 631

High-radix carry-save
representation,
101-102

Hybrid adder, 112, 128, 211,236
Hyperbolic coordinates, 623-624

IEEE Standard 754, 414-417,
425-426

Implementation
of (p:q] counters, 144-149
of adders, 127
of conversion, 257-259
of division algorithm,

259-278
of exponential functions,

590-592
of floating-point division

and square root, 478
of floating-point multiplier,

478
of floating-point

multiply-add fused
(MAF), 446-450

of full-adder, 60-62
of linear interpolation,

558-559
of logarithm functions,

585-587
of multiplicative

normalization
method, 372-373

of piecewise interpolation,
562

of rational functions,
574-575

of table methods, 563-564
Infinite precision

in IEEE Standard 754, 417
of real numbers, 401,408
and roundoff modes,

408-410

Infinite precision quotient, 457,
459

Initial approximation, 373-375,
391

Integer division, 247-248, 281
Integer multiplier, 236
Integer square root, 345
Interpolation

linear 558
lookup tables, 599
piecewise, 553, 557-560
quadratic, 560

Iterative approximation, 367

Last digit adjustment, 454
Latency, 167, 426, 438, 529, 534
LOD (Leading-One-Detector),

421
LOP (Leading-One-Predictor),

429
LSDF 491,496
LSDF addition, 496
LSDF multiplication, 498
LSDF subtraction, 496
LZA (Leading-Zeros

Anticipation), 434
Leading-One-Detector (LOD),

421
Leading-One-Predictor (LOP),

429
Leading-Zeros Anticipation

(LZA), 434
Least-significant-digit-first

(LSDF) 491,496
Linear array

adder organization,
151-152, 198

in digit-serial arithmetic, 514
for multipliers, 235
partitioned, 226
pipelined, 207 .

706 Index

Linear array multiplier, 207, 235
Linear convergence method, 576

exponential, 587
logarithm, 584
multiplicative

normalization, 577
selection by rounding, 581

Linear coordinates, 625
Logarithm, 584

algorithm, 585
implementation, 585

Lookup tables, 599

MABRE (maximum absolute
rounding error), 409

MAF (Multiply-add fused), 445
MSDF 491,502
MSDF addition, 503
MSDF division, 519
MSDF multiplication, 515
MSDF polynomial/rational

function evaluator, 567
MSDF subtraction, 503
MSDF, multioperand algorithm

527
Magnitude multiplier, 198

with saturation, 232
Manchester adder, 64
Microrotation, 610
Mixed radix system, 7
Monotonicity, 552
Most-significant-digit first

(MSDF), 491
Multicolumn counter, 149
Multioperand addition, 137
Multipartite table method, 565
Multiple-constants multiplier,

223
Multiplication algorithms

(positive and signed
integers), 29

Multiplication, 181
add-and-shift algorithm,

182
composition of smaller

multiplications, 182
magnitudes, 195
positive integers, 30-31
sequential with recoding,

182
signed integers, 31-34
sign-and-magnitude, 181
two's complement, 181-182

Multiplicative division
algorithm, 386

Multiplicative methods, 367
Multiplicative normalization, 577

for division, 381
for reciprocal, 368, 371-373
for square root, 382-383

Multiplicative square root
algorithm, 387

Multiplier, combinational, 193
rectangular, 221
saturating, 219
sequential, 182
truncating, 219

Multiply-Accumulate (MAC),
217

Multiply-add, 217

NAN (not a number), 407
Newton-Raphson method

for reciprocal, 368
for square root, 381

Noncanonical system, 7
Nonperforming division, 37-38
Nonrestoring division, 38-40
Normalized divisor, 248-249
Number representation systems,

binary (radix 2) number
system, 7

bit-vector representation,
8

canonical digit set, 7
complement forms, 11
complementation constant,

11
conventional number

system, 7
converse mapping, 15
digit set, 5
fixed-radix (number)

system, 6
hexadecimal (radix 16)

number system, 7
interpretation rule, 5
mapping, 10
mixed-radix (number)

system, 7
non-negative integers, 5
noncanonical digit set, 7
nonredundant, 6
octal (radix 8) number

system, 7
ones' complement system,

12
quaternary (radix 4)

number system, 7
radix (number) system,

6
range complement system,

11
redundant, 6
signed integers, 9
sign-and-magnitude

system, 10
true-and-complement

system, 10
two's complement system,

11
true forms, 11
weighted (number) systems,

6

Index 707

Ones' complement, 97, 376
adders, 95-97
representation, 95

Online addition, 503
Online arithmetic, 502

addition, 503
division, 519
generic implementation,

513
method, 507
multiplication, 515
recursive algorithm, 529
second-order IIR filter, 533
subtraction, 503
sum of squares, 528

Online division, 519
Online implementation,

reduction of digit
slices, 526

Online multiplication, 515
Online recursive algorithm, 529
Online second-order IIR filter,

533
Online subtraction, 503
Online sum of squares, 528
On-the-fly conversion, 256
Overflow detection for addition,

25

[p:2] adders, 141,153
[p:2] modules, 142, 142
[p:q] adder, 189
(p:q] counters, 147
P-D diagram, 283
Parallel recoding, 198-201
Partially combinational

multioperand
addition, 167

Partially combinational
multiplication, 212

Perfect rotation, 610

Piecewise interpolation, 557
reduction, approximation,

and reconstruction,
56O

Pipelined adder arrays, 166
Pipelined adder, 91
Pipelined multiplier, 235
Pipelined sequential multiplier,

215
Polynomial approximation, 552,

553
Polynomial interpolation, 557
Prefix adder, 53, 79

number of cells, 85
number of levels, 80

Pseudo-sum, 98

QM[j], 256
Quadratic convergence, 367, 369,

371
Quotient conversion, 315
Quotient rounding, 259
Quotient-digit (redundant), 249
Quotient-digit selection function

with carry-save adder, 299
with redundant adder, 296
with signed-digit adder,

308
Quotient-digit selection function,

251,280

RB (rounding bias), 409
RRE (relative rounding error),

410
Radix-2 division

conventional number
system, 27

residual in carry-save form,
264

nonredundant residual, 288

Radix-4 division,
nonredundant residual,

294-296
residual in carry-save form,

264-267
Radix-8 divider, 315
Radix- 16 divider, 273-274
Radix-512 divider, 275-276
Radix-8 multiplier, 204
Radix-2 square root with

carry-save adder,
336-339

Range complement system (RC),
11

Range extension, 26
Rational approximation, 566
Reciprocal square root, 381
Reciprocal, 368

implementation and
additional errors, 375

implementation with
reduced multipliers,
378

multiplicative
normalization, 371

Newton-Raphson method,
368

Recoding, 184
parallel implementation,

201
parallel radix 4, 198
sequential implementation,

188
sequential radix 4, 185, 193

Rectangular multiplier, 221
Reduction by columns, 156

number of counter levels,
156

systematic design method,
158

nonrectangular array
(example), 162

708 Index

Reduction by rows, 151
linear array of adders, 151
linear array of [p:2] adders,

151
adder tree, 153
tree of adders, 153
tree of[3:2] adders, 155
tree of carry-save adders,

155
tree of[4:2] adders, 155
tree of[p:2] adders, 154

Reduction, 138
Redundancy factor, 250
Redundant CORDIC, 627
Redundant adder, 52-53, 97
Redundant quotient-digit set,

247
Residual (division), 251
Rmode (rounding mode), 408
Robertson's diagram, 283
Rotation mode, 612
Rounding

floating-point addition
420

digit-recurrence division,
453

iterative division, 457
Rounding errors, 409

absolute error (ABRE), 409
bias (RB), 409
maximum absolute error

(MABRE), 409
relative error (RRE), 410

Rounding modes, 408
round to nearest (tie to

even), 408, 410
round toward plus/minus

infinity, 409, 414
round toward zero

(truncation), 409, 412
Roundoff (rounding), 397

error, 399

error analysis, 407
modes, 407

SRT division, 288
Saturating multiplier, 219
Selection by rounding, 581
Selection intervals, 348-349

overlap between, 297
Self-timed carry-circuit, 92-94
Sequential multioperand

addition, 151
Sequential multiplication with

recoding, 182
delay, 183
radix 2, 184
radix 4, 184
sign-and-magnitude, 183
two's complement, 192
with higher radices, 189
with redundant adder,

184
with [p:2] adder

Serial
adder, 128
multiplier, 498

Serial modes, 491
least-significant-digit-first

(LSDF), 491,496
most-significant-digit first

(MSDF), 491
Serial-parallel multiplier, 500
Sign detection algorithm, 15
Signed-digit adder, 102

bit-level implementation,
110

borrow-save adder, 127
double recoding, 106
interim sum, 103
modified signed-digit

addition, 106
transfer, 103

with one conventional and
one signed-digit
operand, 110

with two signed-digit
operands, 104

with two conventional
operands, 109

Significand
in floating-point, 398
range of, 400
representation of, 401,

404-405, 415
Special values (floating-point),

407
infinities, 407
not a number (NAN),

407
Square root by iterative

approximation, 381
Square root selection, 347

selection constants, 350
selection intervals, 348
staircase selection, 349
radix-2 with carry-save

adder, 354
radix-4 with carry-save

adder, 342, 355
Square root, 331

operands and result range,
331

algorithm, 337
combined with division,

343
integer algorithm, 345
radix-2 implementation,

336
radix-4 implementation,

339
recurrence and step, 331
result-digit selection, 347
selection function for radix

4,342

Index 709

subcomputations, 333
summary of definitions,

332
timing, 342

Square root, multiplicative
normalization, 382

Newton-Raphson method,
381

Squarers, 221
Staircase selection function,

289-294
Sticky bit

in floating-point addition
and subtraction, 423,
424,433

in floating-point division, '
452,453,459, 460

in floating-point
multiplication, 435,
436, 439, 440, 443

in floating-point
multiply-add fused
(MAF), 448

in square root algorithms,
463

Subtraction in
true-and-complement
system, 24

Subtraction of positive integers,
18

Switched carry-ripple
(Manchester) adder, 64

Trigonometric and inverse
trigonometric
functions, 593

True-and-complement
representation, 10

True-and-complement addition,
19

Truncating multiplier, 219
Two's and ones' complement

representation, 11
Two's complement addition, 20
Two's complement and ones'

complement adders,
95

end-around carry, 96

Two-operand addition, 51

Unary code, 144
Unit in last position (ulp), 248, .

4O0
Unnormalized representation,

401-402

Variable group size, 70
Variable-time adder, 91

actual delay, 93
completion signal, 91
with self-time carry circuit

(Type-1), 92
with parallel carry

completion sensing
(Type-2), 94

Vector normalization, 495
Vector rotation, 609
Vectoring mode, 614

Weighted number system, 6
Weight-vector, 6
Word-serial implementation,

620-621

This Page Intentionally Left Blank

	Front Cover
	Digital Arithmetic
	Copyright Page
	Contents
	About the Authors
	Preface
	Symbols and Notation
	Chapter 1. Review of the Basic Number Representations and Arithmetic Algorithms
	1.1 Digital Arithmetic and Arithmetic Units
	1.2 Basic Fixed-Point Number Representation Systems
	1.3 Addition, Change of Sign, and Subtraction
	1.4 Range Extension and Arithmetic Shifts
	1.5 Basic Multiplication Algorithms
	1.6 Basic Division Algorithms
	1.7 Exercises
	1.8 Further Readings
	1.9 Bibliography

	Chapter 2. Two-Operand Addition
	2.1 About Carries
	2.2 Basic Carry-Ripple Adder (CRA) and FA Implementation
	2.3 Reducing the Adder Delay
	2.4 Switched Carry-Ripple (Manchester) Adder
	2.5 Carry-Skip Adder
	2.6 Carry-Lookahead Adder (CLA)
	2.7 Prefix Adder
	2.8 Carry-Select and Conditional-Sum Adders
	2.9 Pipelined Adders
	2.10 Variable-Time Adder
	2.11 Two's Complement and Ones' Complement Adders
	2.12 Adders with Redundant Digit Set
	2.13 Concluding Remarks
	2.14 Exercises
	2.15 Further Readings
	2.16 Bibliography

	Chapter 3. Multioperand Addition
	3.1 Bit-Arrays for Unsigned and Signed Operands
	3.2 Reduction
	3.3 Sequential Implementation
	3.4 Combinational Implementation
	3.5 Partially Combinational Implementation
	3.6 Exercises
	3.7 Further Readings
	3.8 Bibliography

	Chapter 4. Multiplication
	4.1 Sequential Multiplication with Recoding
	4.2 Combinational Multiplication with Recoding
	4.3 Partially Combinational Implementation
	4.4 Arrays of Smaller Multipliers
	4.5 Multiply-Add and Multiply-Accumulate (MAC)
	4.6 Saturating Multiplier
	4.7 Truncating Multiplier
	4.8 Rectangular Multipliers
	4.9 Squarers
	4.10 Constant and Multiple-Constant Multipliers
	4.11 Concluding Remarks
	4.12 Exercises
	4.13 Further Readings
	4.14 Bibliography

	Chapter 5. Division by Digit Recurrence
	5.1 Definition and Notation
	5.2 Algorithm and Implementation of Fractional Division
	5.3 Implementations of the Division Algorithm
	5.4 Integer Division
	5.5 Quotient-Digit Selection Function
	5.6 Concluding Remarks
	5.7 Exercises
	5.8 Further Readings
	5.9 Bibliography

	Chapter 6. Square Root by Digit Recurrence
	6.1 Recurrence and Step
	6.2 Generation of Adder Input F [j]
	6.3 Overall Algorithm, Implementation, and Timing
	6.4 Combination of Division and Square Root
	6.5 Integer Square Root
	6.6 Result-Digit Selection
	6.7 Exercises
	6.8 Further Readings
	6.9 Bibliography

	Chapter 7. Reciprocal, Division, Reciprocal Square Root, and Square Root by Iterative Approximation
	7.1 Reciprocal
	7.2 Division
	7.3 Square Root
	7.4 Example of Implementation of Division and Square Root
	7.5 Concluding Remarks
	7.6 Exercises
	7.7 Further Readings
	7.8 Bibliography

	Chapter 8. Floating-Point Representation, Algorithms, and Implementations
	8.1 Floating-Point Representation
	8.2 Roundoff Modes and Error Analysis
	8.3 IEEE Standard 754
	8.4 Floating-Point Addition
	8.5 Floating-Point Multiplication
	8.6 Floating-Point Division and Square Root
	8.7 Concluding Remarks
	8.8 Exercises
	8.9 Further Readings
	8.10 Bibliography

	Chapter 9. Digit-Serial Arithmetic
	9.1 Introduction
	9.2 LSDF Arithmetic
	9.3 MSDF: Online Arithmetic
	9.4 Concluding Remarks
	9.5 Exercises
	9.6 Further Readings
	9.7 Bibliography

	Chapter 10. Function Evaluation
	10.1 Argument Range Reduction
	10.2 Correct Rounding and Monotonicity
	10.3 Polynomial Approximations and Interpolations
	10.4 Bipartite and Multipartite Table Method
	10.5 Rational Approximation
	10.6 Linear Convergence Method
	10.7 Concluding Remarks
	10.8 Exercises
	10.9 Further Readings
	10.10 Bibliography

	Chapter 11. CORDIC Algorithm and Implementations
	11.1 Rotation and Vectoring Modes
	11.2 Convergence, Precision, and Range
	11.3 Compensation of Scaling Factor
	11.4 Implementations
	11.5 Extension to Hyperbolic and Linear Coordinates
	11.6 Redundant Addition and High Radix
	11.7 Application-Specific Variations
	11.8 Concluding Remarks
	11.9 Exercises
	11.10 Further Readings
	11.11 Bibliography

	Bibliography
	Index

