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Preface 

Objectives and Importance 
Our main objective in preparing this book is to provide a comprehensive dis- 
cussion of the main ideas and concepts in digital arithmetic, reflecting both the 
theory and design aspects, and to help students and practicing engineers develop 
a good understanding of the "arithmetic style" of algorithms and designs. The 
research in digital arithmetic continues to be active, and new areas of applications 
are being introduced, making such a book useful in understanding the state of the 
art in digital arithmetic in order to develop sound solutions and avoid mistakes 
and repetitions. Lastly, a thorough exposition of digital arithmetic is likely to 
stimulate interest in the field. 

Digital arithmetic has continued to play an important role in the design of 
digital processors and application-specific (embedded) systems found in signal 
processing, graphics, and communications. In spite of a mature body of knowl- 
edge, it is not unusual that in each new generation of processors or digital systems 
new arithmetic design problems need to be solved. A good solution benefits 
greatly from a comprehensive exposition to digital arithmetic as provided in this 
book. 

Audience 
The material covered in this book is intended for graduate students in computer 
engineering/electrical engineering and computer science who are interested in the 
design of digital arithmetic for general-purpose processors, application-specific 
and embedded digital systems, and signal processing systems. It will also be useful 
to practicing digital design engineers involved in logic and circuit design of arith- 
metic and floating-point units and in their implementation in VLSI technologies. 
The background expected consists primarily of college-level mathematics, digital 

xvii 



xviii Preface 

systems and logic design, and, for those interested in applying the material to im- 
plementation, a knowledge of VLSI design tools. 

Features and Approach 
The main feature of our approach has been in providing a unified treatment of 
digital arithmetic, tying the underlying theory and design practice in a technology- 
independent manner. We consistently use an algorithmic approach in defining 
arithmetic operations, illustrate with examples of designs at the logic level, and 
discuss cost/performance characteristics. To enhance learning, we developed a 
large set of exercises with solutions and extensive reading lists. These are included 
in each chapter, and general references (books and compilation of articles) are 
given in Chapter 1. For instructors we have developed a complete set of lecture 
viewgraphs. 

Ways of Use 
The main use of this book is as a text for a graduate course. As such, it can be 
covered completely in a semester course or alternatively, by eliminating some ma- 
terial, in a quarter course. Many options exist for what is not covered, depending 
on the emphasis required. For instance, for an emphasis in floating-point units, 
the most-detailed parts of Chapters 9 and 11 can be skipped; on the other hand, 
if the emphasis is on other applications, such as signal processing, it might be 
better to skip parts of Chapter 8. In our opinion, it would be best to cover the 
chapters in order, to make best use of the knowledge acquired before; however, 
other sequences are possible. For instance, the chapter on floating point could be 
covered earlier since it does not depend much on the details of previous chapters. 
The exercises at the end of the chapters allow for practice and extension of the 
material and can be used for design and implementation projects. The "Further 
Readings" sections and extensive bibliography provide material for additional 
self-study. 

The book can also be used as a reference for designers of hardware for 
numerical applications. In this case, if they have not had a comprehensive course 
on the topic, the most profitable approach would be to study complete chapters, 
instead of only particular algorithms or implementations. This approach would 
provide the basis to experiment with alternative designs to choose the best for the 
particular requirements and constraints. 
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Additional Resources 
The book is supported with a Web site (http://www.cs.ucla.edu/digital_arithmetic) 
that contains 

�9 Appendix A: Material for instructors, consisting of solutions to all exercises, 
sample exams, and source files for lecture viewgraphs. This material will be 
available to instructors in a password-protected section of the Web site. 

�9 Appendix B: One-third of solutions to exercises. 
�9 Appendix C: Lecture viewgraphs associated with each chapter (in PS and 

PDF forms). 
�9 Appendix D: Short notes on selected topics. 
�9 Appendix E: Comments and errata. 

Overview of Topics 
The book begins with a review of basic material in terms of representations and 
algorithms for the basic operations (Chapter 1) and provides an introduction to 
the notation and description formats used. It then concentrates on a thorough pre- 
sentation of alternative algorithms and implementations for addition/subtraction 
(of two and more than two operands), multiplication, division, and square root 
(Chapters 2-7). These algorithms and implementations can be directly used for 
fixed-point applications. 

Chapter 8 concentrates on floating-point representation and on the corre- 
sponding algorithms and implementations. It contains an extensive discussion of 
alternative implementations for floating-point addition/subtraction and multi- 
plication and describes the basic approaches to produce correctly rounded results 
in division and square root. 

Chapter 9 presents serial arithmetic, both least-significant-digit first (LSDF) 
and most-significant-digit first (MSDF). The LSDF approach is effective for 
algorithms consisting only of additions and multiplications, whereas MSDF can 
be used for cases that include also division, square root, and comparisons. After 
considering the basic operations, the chapter illustrates their use in composite 
operations and in multimodule systems. 

Chapters 10 and 11 discuss methods for function generation. Two main ap- 
proaches are considered: (1) approximations based on multiplications, additions, 
and table lookup and (2) recurrences with linear convergence. The first approach 
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results in polynomial approximations (also included are methods based only on 
addition and table lookup) and is applicable to a large variety of functions. On 
the other hand, the second method is based on multiplicative and additive nor- 
malization and is practical only for some important functions, such as logarithm, 
exponential, sine, cosine, and arctan. In particular, the CORDIC algorithm pre- 
sented in Chapter 11 is attractive for the multivariable functions rotation by an 
angle, modulus of a vector, and arctan(y/x). The discussion in that chapter also 
considers the generalization to hyperbolic and linear coordinates. 

Topics Not Covered 
Several major areas of digital arithmetic, such as residue number system arith- 
metic, logarithmic number system arithmetic, modular arithmetic, asynchronous 
multiplication and division, design for low-power arithmetic, arithmetic error 
codes, and verification and testing, are not included in this book. This does not 
imply that the omitted topics are less important than the ones presented; there 
will be short notes and a bibliography on the Web site. 
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p-input, q-output counter 
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base of floating-point representation x -- Mx x b t~x 

bias in floating-point representation of exponent 

carry-lookahead adder 

carry-lookahead generator 
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carry-propagate adder 

carry-ripple adder 

carry-save form 

carry-save adder 

carry-skip adder 
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MAC 

MAF 
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MUX 

NAN 

q j  

p - -  a / ( r  - 1) 

on-line delay: number of initial cycles in online operation 

number of bits of estimate of divisor/argument in 
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effective operation 

full-adder 
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half-adder 

incrementer 
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leading-zeros anticipation 

multiply-accumulate 
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Xi 
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X 

recoder 

j th square root digit 
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vector AND (OR) gate 

residual 
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pseudosum (stored-carry) bit-vectors 

n-digit vector 

digit-vector X at step (iteration) j 
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x truncated to t fractional bits 

bit-complement of vector X 

low-precision estimate of the scaled residual rw[j] 
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CHAPTER I Review of Basic Number 
Representations and 
Arithmetic Algorithms 

In this chapter we briefly review basic number representations and algorithms 
used in digital arithmetic. The treatment is very concise; readers that need a more 
detailed review should consult some of the references listed at the end of the 
chapter. More advanced algorithms as well as the implementations are the topic 

of later chapters. 

1 .1  Digital Arithmetic and Arithmetic Units 
Digital arithmetic encompasses the study of number representations, algorithms 
for operations on numbers, implementations of arithmetic units in hardware, and 
their use in general-purpose and application-specific systems. 

An arithmetic unit (processor) is a system that performs operations on num- 
bers. We limit ourselves to the most common cases in which these numbers are 

1. fixed-point numbers 

�9 integersI = { - N , . . . ,  N} 
�9 rational numbers of the form x = a / 2 f  ("binary" rationals), a ~ I and 

f positive integer 

floating-point numbers x • b E, x rational number, b the integer base, and 
E integer exponent. The floating-point numbers approximate real 
numbers and facilitate computations over a wide dynamic range. 

Collectively, we refer to these numbers as DA (digital arithmetic) numbers. 

. 
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An arithmetic processor operates on one, two, or more operands depending 
on the operation. The operands are characterized by a representation and a set of 
values as defined in the next section. The operation is selected from an allowable 
set, which usually includes addition, subtraction, multiplication, division, square 
root, change of sign, comparison, and so on. The results can be DA numbers, 
logical variables (conditions), and/or singularity conditions (exceptions). Logical 
results occur for operations such as comparison, check for zero, and the like. 
Singularity conditions correspond to overflow, divide by zero, square root of a 
negative number, hardware error, and so on. 

The parameters that describe the processor to the user include the number 
representation and precision, the operation set, the time required to execute each 
operation, the cost of the processor, and its energy consumption. 

The function (functional description)of the arithmetic processor can be given 
at three levels: 

1. Abstract (mathematical) level. The domain ofoperands and results is the 
set of numbers. The operations are specified as functions (sets of pairs). 
Also, some abstract properties such as commutativity, associativity, and 
distributivity can be given. At this level the objective is a functional 
specification (description). This is also known as high-level description. It 
has no implementation details. 

2. Arithmetic-algorithm level. The numbers are represented by vectors of 
digits (digit-vectors), and the operations are described by algorithms 
composed of primitive operations (transformations) that are performed on 
these digit-vectors. This level provides a behavioral description, typically 
using arithmetic expressions and composition of functions. It introduces 
constraints affecting implementation. 

3. Implementation level. The digit-vectors are encoded on bit-vectors. The 
operations are described by register-transfer algorithms. The description at 
this level is structural, specifying the modules, their interconnection, and 
the control flow. 

In this text, we discuss arithmetic processors at the arithmetic-algorithm and 
implementation levels. 

In the next section we introduce the basic number systems for fixed-point 
representation, which are used in the following chapters. Other representations 
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are discussed in later chapters together with their uses. We then present the basic 

algorithms. 

to2 Basic Fixed-Point Number Representation Systems 
To perform operations on fixed-point numbers at the arithmetic-algorithm level, 
a specific number representation is required. In a digital representation, such a 
number is represented by an ordered n-tuple. Each of the elements of the n-tuple 
is called a digit, and the n-tuple is called a digit-vector. The number of digits n 
is called the precision of the representation. We begin with the representation 
of nonnegative integers, followed by the representation of signed integers, and 
concluding with an extension to fixed-point numbers. 

1 ~ Representation of Nonnegative Integers 
The digit-vector that represents the integer x is denoted by 

X = ( Xn--l, Xn--i, . . . ,  X~, Xo) 1.1 

Note that we use a zero-origin, leftward-increasing indexing. 
The number system to represent x consists of the following elements: 

1. The number ofdigitsn.  

2. A set of (numerical) values for the digits. We call Oi the set of values of Xi. 
The cardinality of set Di is denoted by ]Di I. For example, {0, 1, 2, . . . ,  9} 
is the digit set for the conventional decimal number system with cardinality 

10. 

3. A rule of interpretation. This rule corresponds to a mapping between the set 
of digit-vector values and the set of integers. 

There are many number systems differing in these elements. 
The set of integers, each represented by a digit-vector with n digits, is afinite 

n--1 set with at most K -- 1-Ii=0 ]Oi] different elements since this is the maximum 
number of different digit-vectors. For example, in a conventional decimal system 
a digit-vector of six digits can represent a million values. Sets that have been found 
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generally useful to perform basic arithmetic operations include, for example, all 
integers from 0 to K - 1. 

A number system is nonredundant if each digit-vector represents a different 

integer; that is, if the representation mapping is one to one. It is redundant if 

there are integers that are represented by more than one digit-vector. Redundant 

number systems are sometimes used to reduce the complexity of the arithmetic 
algorithms and increase the speed of execution. 

The number systems most frequently used are weighted systems. For them 
the representation mapping is 

n - 1  

x =ff~'XiWi 
i=0 

1.2 

where W - -  ( W n _ l ,  . . . , W 0 )  is the weight-vector. 
A radix number system is a weighted number system in which the weight- 

vector is related to the radix-vector R -- ( R n - 1 , . . . ,  RO) as follows: 

Wo = 1; IV,. = W i _  1 �9 Ri-1 (1 < i < n -- 1) 1.3 

This is equivalent to 

i -1  

W 0 - 1 ;  W i - - H R  j 1.4 
j=0 

Radix number systems are classified according to the radix-vector into fixed-radix 
and mixed-radix systems. 

In afixed-radix system all elements of the radix-vector have the same value r 
(the radix). Consequently, the weight vector is 

W__(rn-1  2 1) �9 . . ~ '  ~'~ 1.5 

and 

n - 1  

X - - ~ X i . r  i 
i=0 

1.6 
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The most frequently used radices are powers of two, such as 2 (binary), 4 (qua- 

ternary), 8 (octal), and 16 (hexadecimal). The corresponding weight-vectors are 
W = ( . . . ,  16, 8, 4,2, 1) for r  = 2, W = ( . . . ,  256, 64, 16, 4, 1) for r  -- 4, and 
so on. The other radix that is sometimes used is 10 (decimal); this is done because 
of our familiarity with this representation and because the interface with humans 
is more convenient in decimal. Because some arithmetic algorithms are simpler 

in binary than in decimal, in many systems the input-output is decimal but the 
internal processing is done in binary. Conversion is therefore required between 
these representations. 

In a mixed-radix system the elements of the radix-vector are different. For 
example, the representation of time in terms of hours, minutes, and seconds in a 
24-hour period uses a radix-vector R = (24, 60, 60). The corresponding weight- 
vector is W = (3600, 60, 1). Consequently, the digit-vector X = (5, 37, 43) 
represents 20,263 seconds. 

According to the set of digit values, the radix number  systems are classified 
into canonical and noncanonical systems. 

In acanonicalsystem the set of values for Di is {0, 1, . . . ,  Ri - 1 } with ]Di] = 
Ri. For example, the canonical digit sets in the binary, quaternary, octal, and 
hexadecimal number systems are respectively {0, 1}, {0, 1, 2, 3}, {0, 1, 2, . . . ,  7}, 
and {0, 1, 2, . . . ,  15}. The corresponding range of values of x represented with 
n radix-r digits is 

0 < x  < r n - - 1  1.7 

In a noncanonical system the set of digit values is not canonical. For example, 
Di -- {--4, --3, - 2 ,  --1, 0, 1, 2, 3, 4, 5} is a digit set in a noncanonical decimal 
system and {-1 ,  0, 1} and {0, 1, 2} in noncanonical binary systems. 

A noncanonical digit s e t  Di such that IDil > Ri produces a redundant  
system allowing more than one representation of a value; for example, in the 
{ -1 ,  0, + 1} binary system the vectors (1, 1, 0, 1) and (1, 1, 1, - 1 )  both represent 
the integer "thirteen. ''1 

A system with fixed positive radix r and canonical set of digit values is 
called a radix-r conventional number system. These are by far the most commonly 

1. To distinguish the integer from its radix-10 representation, we give the name of the 
number as its decimal representation in letters. 
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Number System Digit Vector 

Conventional radix-2 system (binary) 

Conventional radix-3 system 

Conventional radix-4 system 

Conventional radix- 10 system 

Radix-2 system with digit set {-1 = 1, 0, 1} 

Residue system with P = ( 17, 13, 11, 7, 5, 3, 2) 

0011110 

0001010 

0000132 

0000030 

0011110 

01000i0 

(13)482000 

T A B L E 1.1 Representations of the integer "thirty." 

used number systems. As indicated, the favored radices are powers of 2 and 

10 (decimal). In the following sections we discuss algorithms for these systems 
emphasizing the conventional binary system. 

There exist also nonradix number systems in which weights are not defined 
recursively as in (1.3). One example is the residue number system (RNS), where for 
a given set of pairwise relatively prime integers P = (Pn-1 , . . . ,  P0), a positive 

n-1  
integer x (for 0 < x < I-Ii=0 Pi) is represented by the vector X such that 

Xi = x mod Pi 1.8 

This is a nonredundant system that allows fast implementation of addition and 
multiplication. In this system there is no notion that the digits on the left are 
more significant than the digits on the right. In that sense, there is no notion 
of "weight," and RNS is sometimes classified as a nonweighted system. As an 
example, we represent in Table 1.1 the integer "thirty" in several number systems 
using a digit-vector with seven components. 

In this text we use fixed radix and mainly radix 2. 

Bit- Vector Representation 

For the implementation of arithmetic algorithms in (binary) digital systems, it is 
necessary to represent the digit-vectors by bit-vectors. This is done by defining a 
code for a digit and mapping the digit-vector by mapping each digit according to 
this code. 
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In the binary (conventional) number system, the code is direct: the binary- 
digit values 0 and 1 are represented by the binary-variable values 0 and 1, 
respectively. 

For higher power-of-two radices the most common code is the binary code 
in which a digit d is represented by a bit vector (dk_l, . . . ,  do) ofk = log 2 r bits 
such that 

k-1 

d -- ~ d i  2i 
i=0 

1.9 

The use of this code for each digit results in a bit-vector for x that is the same for 
any power-of-two radix, the only difference being the way the bits are grouped to 
form a digit. In the binary case, each bit corresponds to a digit, while in the radix-r 
case, groups of log 2 r bits form a digit. Therefore, conversion from a bit-vector in 
a radix-2 representation to a radix-r representation and vice versa is trivial. For 
example, the bit-vector 

X -- (1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1) 

-- ((1, 1, 0), (0, 0, 1), (0, 1, 1), (1, 0, 1)) 

-- ((1, 1, 0, 0), (0, 1, 0, 1), (1, 1, 0, 1)) 

1.10 

corresponds tothe octal digit-vector (6, 1, 3, 5) and the hexadecimal digit-vector 
(C, 5, D). 2 

The fact that the bit-vectors are identical permits the use of some binary 
algorithms to perform operations on integers represented in these higher radices. 

1 ~2o2 Representation of Signed Integers 
In the previous section we presented the representation of nonnegative integers. 
We now extend the discussion to the representation of signed integers (positive 
and negative). Two representations are by far the most common: the sign-and- 
magnitude representation and the true-and-complement representation; these 
are the topic of this section. 

2. The integers 10, 11, . . . ,  15 are denoted with letters A, B, . . . ,  F, respectively. 
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S i g n - a n d - M a g n i t u d e  ( S M )  Sys tem 

A signed integer x is represented in the SM system by a pair (Xs, Xm), where Xs 

is the sign and Xm is the magnitude (positive integer). The two values of the sign 
(+, - )  are represented by a binary variable, where traditionally 0 corresponds to 
-t-and 1 t o - .  

The magnitude can be represented by any system for the representation of 
positive integers. If a conventional radix-r system is used, the range of signed 
integers, for n digits in the representation of the magnitude, is 

0 ___< X m ~___ r n - 1 1.11 

Note that zero has two representations: Xs - 0, X m m 0 (positive zero) and 
X s -- 1, Xm -- 0 (negative zero). 

T r u e - a n d - C o m p l e m e n t  ( T C )  Sys tem 

In the true-and-complement system there is no separation between the represen- 
tation of the sign and the representation of the magnitude, but the whole signed 
integer is represented by a positive integer. Consequently, this representation 
involves an additional mapping as indicated in Figure 1.1. 

The signed integer x is represented by a positive integer x R, which in turn is 
represented by the digit-vector X. Map 2 defines the mapping between integers 

Signed integer X 

True-and-complement 
system 

Positive integer X R 

Map 1 

Code Map 2 

Digit-vector X 

IF I G U R E 1.1 Signed integer represented by positive integer. 
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and digit-vectors as discussed in the previous section. We now define the mapping 

Map 1 for the true-and-complement system. 

A signed integer x is represented in the t rue-and-complement  system by a 

positive integer xR such that 

xR -- x mod C 1.12 

where C is a positive integer, called thecomplementation constant. By the definition 

of the rood function, for max Ix l < C, this is equivalent to 

{C if x > 0  1.13 
x R - -  - [ x ] - - C + x  i fx  < 0  

In order to have an unambiguous representation, the region for x > 0 should not 

overlap with the region for x < 0. This requires that 

max Ix l < C /2  1.14 

The converse mapping is 

xR i fxR < C/2 
x -- 1.15 

x R - C  i fxR > C / 2  

When  xR = C / 2  is representable, it is usually assigned to x - - C / 2 ,  making 

the representation asymmetrical. 

The  representations of positive integers are called true forms, and those of 

negative integers, complement forms. 
The positive integer x R can be represented in any system for positive integers. 

For a digit-vector of n digits, the range is 

0 < x R  < r  ~ - 1  1.16 

The usual choices for the complementation constant are C = r n (Range Comple- 
ment System (RC)) and C = r n - 1 (Digit Complement System (DC)). We now 

consider a radix-2 representation and leave as an exercise the more general radix-r 

CaSC.  

The  choice C -- 2 n defines the two's complement system. The corresponding 

mapping is illustrated in Table 1.2. In this system the value xR - C is outside 

the range, and, therefore, there is only one representation of x - 0. The  value 

X R -- 2 "-1 could represent either x - -  2 n-1 or x - -  --2 n-l ,  resulting in an 

asymmetric representation. It is usual to make the second choice in order to 
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EXAMPLE 1.1 

X X R 

2 n-1  1 

__2n-1 

- ( 2  n - l -  1) 

- 2  

1 

2 n-1 1 

2 n --1 

2 n-1 + 1 

2 n - -  2 

2 n 1 

T r u e  f o r m s  

(positive) 

X R - ' -X  

Complement  forms 

(negative) 

xR = 2 ~ Ix l 

T A B L E  1.2 Mapp ing  in the two's complement  system. 

simplify the sign detection, as discussed later in Section 1 . 2 . 3 .  The  range of  

signed integers is 

- - 2  n -1  < x < 2 n -1  - -  1 1.17 

T h e  choice C = 2 n - 1 defines the ones' complement system. The  corresponding 

ma p p i n g  is shown in Table 1.3. In this system xR = C is representable with n 

digits so that  there are two representat ions o f x  -- 0: xR = 0 and xR = 2 n - 1. 

T h e  range of  signed integers is 

- ( 2  n-1 - 1) < x < 2 n-1 - 1 1.18 

Re p re s en t  - 4  < x < 3 in the two's  c o m p l e m e n t  and  ones '  c o m p l e m e n t  

systems.  T h e  m a p p i n g s  

x --+ xR ---~ X 
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2 n -1 

(2 n-1  

- 2  

- 1  

0 

XR 

2 n-1 1 

2 n -1 

2 n 3 

2 n 2 

2 n 1 

T r u e  forms 

(positive) 

X R ~ X  

Complement  forms 

(negative) 

X R = 2 n 1 Ix l 

T A 8 L E 1 .S Mapping in the ones' complement system. 

and  

X - . . +  X R -.-~ x 

are s h o w n  in Tables 1.4 and  1.5, respectively. 

The  fol lowing properties of  the two's complement  and ones' complement  systems 

can be seen f rom the previous example: 

�9 The  representat ion of  zero is unique  in the two's complement  system since 

the complementa t ion  constant C -- 2 n is not  representable by an n-bi t  

vector. In the ones' complement  system there are two representations of  

zero since C -- 2 n - 1 is representable as (1, 1, . . . ,  1). 

�9 T h e  range in the two's complement  system is not symmetrical  since 

x -- - 2  n-1 is representable but x -- 2 n-1 is not. T h a t  is, the range is 

[ - - 2  n - l ,  2 n - l -  1] 1.19 

This  means that the system is not closed under  the change of  sign operation. T h e  

range in the ones' complemen t  system is symmetrical:  

[--(2 n - l -  1), 2 n - l -  1] 1.20 
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- 0  

1 

2 

3 

4 

Two's Ones' 

Complemen t  C o m p l e m e n t  

( c  = 8) ( c  = 7) 

xR X x~ X 

3 011 

2 010 

1 001 

0 000 

7 111 

6 110 

5 101 

4 100 

3 011 

2 010 

1 001 

0 000 

7 111 

6 110 

5 101 

4 100 

T A B L E 1.4 Two's and ones' complement representations for n = 3: mapping from value to 

bit-vector. 

X xR 

Two's Ones '  

C o m p l e m e n t  C o m p l e m e n t  

( c  = 8) ( c  = 7) 

X X 

000 0 0 

001 1 1 

010 2 2 

011 3 3 

100 4 - 4  

101 5 3 

110 6 2 

111 7 - 1  

3 

2 

- 1  

0 

T A B L E 1 .S Two's and ones' complement representations for n -- 3: converse mapping from 

bit-vector to value. 
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1 . 2 , 3  

1 . 2 , 4  

S i g n  D e t e c t i o n  

We now present algorithms for sign detection in the sign-and-magnitude and 
true-and-complement systems. Let 

0 i f x  > 0  
- -  - 1.21 sign(x) 1 i f x  < 0  

which allows representation of positive and negative 0s. 

In the sign-and-magnitude system, the sign detection is trivial since there is 

a sign bit. 

In the true-and-complement system, since Ix l < C/2,  the sign is determined 
as follows: 3 

0 i f x R  < C / 2  
s i g n ( x ) =  1 i f x R  > C / 2  1.22 

Consequently, in the two's complement and ones' complement systems the sign 

is determined from the most-significant bit as follows: 

0 if X n_l  = 0 1.23 

s i g n ( x ) =  1 i f X n _ l - - 1  

that is, 

sign(x ) = Xn-1 1.24 

C o n v e r s e  M a p p i n g  b e t w e e n  B i t - V e c t o r s  a n d  V a l u e s  

Since X n _  1 corresponds to the sign, it is straightforward to perform the converse 
mapping using the bit-vector X as follows: 

1. Xn-1 = 0 indicates a positive x and, consequently, 

n--2 

x -- XR = 0 • 2 n-1 -+- ~ X i 2 i 1.25 
i=0 

2. Xn-1 = 1 indicates a negative x. In this case x = XR -- C. 

3. Assigning XR = C/2 to represent x = -C /2  allows a simple sign detection based on the 
most-significant bit of X. 
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�9 For  C = 2 n, we have 

n - 2  n - 2  

x - - l x  2 n - - l +  E x i 2 i - - 2 n - - - - 1  • 2 n - l +  E Xi2i 
i=0 i=0 

1.26 

Combining  both cases we get for two's complement  

n-2 
= 2 n-1 2 i X - -Xn-1  - ~ - ~ X i  

i=0 

1.27 

In other words, in convert ing a bit-vector to a value, we use the fact 

that the most-significant bit of  X has a negative weight  while the 

remaining bits have positive weights. For example, 

X - - ( l l O l l )  ~ - 1 6 + 8 + 2 + 1 = - 5 - - x  

For  C -- 2 n - 1, we get 

n -2 n -2 
x -- 1 • 2 n-1 -+- - -  ~ Xi 2i - ( 2  n - 1) -- - 1  • (2 n-1 - 1) + ~ Xi 2i 

i=0 i=0 
1.28 

Again, after combining both cases we get for ones' complement  

converse mapping  

n-2 

x = - - X n _ l ( 2  n-1 -- 1) + ~ Xi 2i 
i=0 

For  example, 

1.29 

X = (10101) ---> - ( 1 6 -  1) + 4 + 1 -- - 1 0  = x 

1 .2~5  Extension to Fixed-Point Representations 

A fixed-point representat ion of  a number  x = x m r  + xvR consists of  integer and 

fraction components  represented by m and f digits, respectively. Consequently,  

it is convenient to use the following notation: 

X --  (X(m_l) . . .  Xl  X o . X - 1  . . .  X_f) 1.30 
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1,3 

so that 
m--1 

X - -  ~ X i  r i  1.31 

- f  
7 For example, 0 < x < 7g is represented in radix-2 as X - ( X 2  X 1 X o . X - 1 X - 2  X-3). 

When representing fractions (no integer part), the convention used sometimes 
is to assign positive indices to the fractional part. That  is, 

so that 

X - -  ( X  1 X 2 . . .  X f )  1.32 

f 
x - -  ~ X i  r - i  

1 

1.33 

Addition, Change of Sign, and Subtraction 
In this section, we discuss addition, subtraction, change of sign, and overflow 
detection. 

1 .3 .1  Addition and Subtraction of Positive Integers 

Consider the operation z = x + y  in which the operands and the result are positive 
integers, represented in a conventional radix-r number system. If the operands 
are represented by a digit-vector of n digits, the result is represented by a digit- 
vector of n + 1 digits, where the most-significant digit (Zn) has values in the set 
{0, 1 }. To limit the number of digits of the result to n digits, an additional binary 
variable is introduced (the carry-out Cout) for the additional digit. Moreover, a 
carry-in (Cin) is included so that 

Cout 1" n .~_ Z - -  X "~- y + C in 1.34 

resulting in 

z --  (x + y + Cin ) mod r n 1.35 

and 

1 if(x + y + Cin ) ~ r n 

Cout --  0 otherwise 
1.36 
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In terms of the digit vectors we can write 

(Co.t, Z) = A D D ( X ,  Y, ci,,) 1.37 

which is implemented by an adder. As indicated on page 9, for power-of-two 
radices and using the binary code for the digits, the bit-vectors are the same 
independent of the radix. As a consequence, at the bit level, the adder is the same 

for these radices. 
The Cout signal can be used to indicate an overflow (OVF), which indicates 

that the sum has a value outside the range representable by Z. 

Similarly, for subtraction 

-bout rn + d = x - y - bin 1.38 

and the algorithm is described as 

(bout, D) = SU B( X, Y, bin) 1.39 

1 . 3 ~  Addition, Change of Sign, and Subtraction of Signed Integers 

We now describe algorithms for the addition and subtraction of signed integers. 
Specifically, let x and y be signed integers represented by the digit-vectors X 
and Y, respectively. The addition algorithm A D D S  produces the digit-vector Z 
representing the signed integer z = x + y. That is, 

Z = A D D S ( X ,  Y) 1.40 

For the difference d = x - y, since d = x + ( - y ) ,  it is sufficient to consider the 
algorithms A D D S  and CS (change of sign). That is, 

D = A D D S ( X ,  CS(Y))  1.41 

If the range of integers represented by Z is the same as that of X and Y, the result 
of the addition or subtraction might not be representable by Z. In such a case the 
result of the algorithm cannot be correct and an overflow (OVF) signal indicates 

this situation. 
The complexity of implementing the A D D S  and CS algorithms in 

hardware depends on the representation system used for the signed integers. 
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We now consider these algorithms for the sign-and-magnitude and true-and- 

complement systems. Although the representation in sign-and-magnitude might 

seem more natural, and therefore a candidate to be considered first, the algorithm 

for addition is simpler in the true-and-complement system. Consequently, we 

consider this first, since the algorithm for sign-and-magnitude makes use of this 

algorithm. 

Addition in the True-and-Complement System 

Consider the case where there is no overflow, that is, the result is representable. 

If this is not the case, the overflow is detected as described later on page 25. In the 

true-and-complement system z -- x + y is obtained by computing 

zR = (XR + YR) mod C 1.42 

where xR, yR, and z R are the positive integers representing x, y, and z in this 

number system, and C is the complementation constant. 

To prove the correctness of this algorithm consider 

(xR + yR) mod C 1.43 

We now show that it corresponds to z R, the representation of the sum z. By 
definition of the representation, 

xR = x mod C; yR = y mod C 1.44 

so that 

( x R + y R )  m o d C - - ( x m o d C  + y m o d C )  m o d C  1.45 

This can be simplified because (a mod C + b mod C) mod C = (a + b) mod C 

and consequently, 

( x R + y R )  m o d C  = ( x + y )  m o d C  = z m o d C  1.46 
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x y 

13 9 

13 - 9  

-13  9 

-13  - 9  

XR YR ZR z 

13 9 

13 55 

51 9 

51 55 

22 

68 mod 64 = 4 

60 

106 mod 64 = 42 

TABLE 1.6 Examples oftrue-and-complementaddition(C = 64). 

22 

4 

- 4  

-22  

and by definition 

z mod C - zR 1.47 

This means that to perform the addition of two signed integers represented in the 

true-and-complement system, we add the (positive) representations and obtain 

the residue (mod) of the sum with respect to the complementation constant C. 

Table 1.6 illustrates several cases of addition for C = 64 and - 3 2  < x, y, 

z < 3 1 .  
The algorithm consists of two steps: the addition of the positive represen- 

tations and the mod operation. The first step is done by the algorithm ADD 

discussed in Section 1 3 . 1 .  We now consider the mod operation. 

Let wR -- x R + YR. Then, since X R, Y R < C, we have that wR < 2C. 

Therefore, the mod operation results in 

- -  w R  m o d  C - -  [{wR ZR ! wR - - C  

ifwR < C 

i fC  < w R  < 2 C  
1.48 

Consequently, this operation consists of determining if wR > C and, if so, sub- 

tracting C from it. The complexity of this operation depends on the value of the 

complementation constant. We now consider the two's complement and ones' 

complement systems. 

Two's  C o m p l e m e n t  Sys tem 

In the two's complement system the complementation constant is C = 2 n. Since 

wR < 2C, the representation ofwR is the digit-vector W = (Wn, Wn-1, . . . ,  Wo) 

ofn + 1 digits (bits). Consequently, to determine whether wR > C, it is sufficient 
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Discard 

COU t -- Cn 

t *f tZ /'l 

ADDER 

zt" 

I Cin = 0 

r 

F I G U R E 1 .2  Two's complement adder. 

to check the most significant digit (bit) of W: 

<2 n i f W , , - - O  
WR - -  2n 

> i f W n  -- 1 
1.49 

In the first case, WR mod 2 n -- WR and its representation is W. In the second 
situation, it is necessary to subtract 2 n from WR. This is simple to do since the 
representation of 2 n is a 1 followed by n 0s. Consequently, 

WR mod 2 n ~ (1, W n _ l , . . .  , Wo) --(1, 0, . . . ,  0) = (W,,-1, . . . ,  W0) 1.50 

That is, the mod operation is performed by discarding the most-significant bit. 
Note that this bit corresponds to the carry-out of the adder that adds XR and yR 

to produce WR. 

In summary, in the two's complement system the result of the addition cor- 
responds to the output of the adder, discarding the carry-out. We describe this by 
the following bit-level algorithm: 

ADDS2,s (X ,  Y) .  Z -- A D D ( X ,  Y, O) 1.51 

where A D D  is a bit-level algorithm for the addition of positive integers and 
the third operand corresponds to the carry-in. The two's complement addition 
scheme is shown in Figure 1.2. 

E X A M P L E  1 . 2  We now show two examples of addition of signed integers in the two's com- 

plement number system. 
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n = 4  C = 2 4  

X =  1011 x R = l l  x = - 5  

Y = 0 1 0 1  y R = 5  y = 5  

W --  10000 wR --  16 

Z = 0000 zR = 0 z = 0 

n = 8  C = 2  s 

X = 11011010 xR = 218 x = - 3 8  

Y = 11110001 yR = 241 y = - 1 5  

W = 111001011 WR --  459 

Z = 11001011 zR = 203 z = - 5 3  

Ones" Complemen t  System 

W e  n o w  consider  the m o d  opera t ion  in the ones '  c o m p l e m e n t  system. In this 

system the c o m p l e m e n t a t i o n  cons tant  is 2 n - 1. To pe r fo rm z R = wR m o d  (2 n - 1) 

consider  the fo l lowing three  cases: 

1. I f w R  < 2 n - -  1, then  wR m o d  ( 2  n - -  1) = wR and Wn = O. 

2. I f w R  -- 2 n -- 1, then  wR m o d  (2 n - 1) = 0 and Wn = 0. 

3. I f ( 2  n - 1) < wR < 2(2 n - 1), then  wR m o d  (2 n - 1) --  WR -- (2 n -- 1) --- 

(WR -- 2 n) + 1 and  W, = 1. 

Consequen t ly ,  

�9 if Wn = 0, the result  is equal  to W, and 

�9 if Wn = 1 the result  is ob ta ined  by d i scard ing  Wn (subtract ing 2 n) and  

a d d i n g  1. N o t e  tha t  this p roduces  a result  vector o f ( l ,  1 , . . . ,  1) in case 2, 

wh ich  is correct  since this is ano the r  represen ta t ion  of  0 in the ones '  

c o m p l e m e n t  system. 

Since the bit W, is p r o d u c e d  as the car ry-out  of  the adder ,  the addi t ion  of  1 

can be accompl i shed  by an end-around carry as show n  in F igu re  1.3. T h e  effect 
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Cou t = C n 

ADDER 
c in 

End-around carry 

F I G U R E 1.3 Ones' complement adder. 

of this end-around carry on the implementation is discussed in Chapter 2. The 

corresponding bit-level algorithm is 

ADDSls , (X ,  Y): Z -- A D D ( X ,  Y, Cn) 1.52 

Change o f  Sign in the True-and-Complement  System 

The change of sign operation consists of obtaining the representation of z such 

that z - - x  where z and x are signed integers. Since x and z are represented in 

the true-and-complement system by x R and zR, we have 

ZR = (--X)R = (--x) mod C = C - x m o d C  = C -- xR 1.53 

Consequently, the change of sign operation consists of subtracting x R from the 

complementation constant C. The complexity of this operation depends on the 
value of the complementation constant. We now discuss this operation for the the 
two's complement and ones' complement systems. 4 

Ones' Complement System. In this case the complementation constant is 2 n - 1, 

which is represented by the digit-vector (1, 1, . . . ,  1). Therefore the subtraction 
is performed by complementing each digit of X with respect to 1, obtaining the 
vector X. Therefore, the change of sign bit-level algorithm is 

CSis (X): Z = X 1.54 

4. Note that we discuss first the ones' complement system; this is because the algorithm is 
simpler and is used as a component in the algorithm for the two's complement system. 
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EXAMPLE 1 .3  T h e  fo l lowing example  i l lustrates the change  of  sign in the ones '  c o m p l e m e n t  

system wi th  n - 4, C --  24 - 1" 

X 1100 x --  - 3  

Z --  X 0011 z - - 3  �9 

Two's Complemen t  System. In this case the complementa t ion  constant is 2 n . The  

direct subtraction 2 n - x  R requires a complete subtraction, which is complex. Since 

2 n = (2 n - 1) + 1 and the complement  with respect to 2 n - 1 is per formed by 

complement ing  each digit, the change of  sign operation is done in two parts: 

1. Complemen t  each digit with respect to 1. 

2. Add 1. 

The  addition of  1 can be accomplished by setting tin - -  1. The  corresponding 

bit-level a lgor i thm is 

CS2,s(X)" Z -- A D D ( X ,  O, 1) 1.55 

EXAMPLE 1 .4  W e  give an example  of  the change  of  sign in the two's c o m p l e m e n t  system. 

Fo r  n --  4, C --  24, and  x - - 3  we have 

X 1101 x --  - 3  

+ 

X 0010 

0 0000 

co 1 

Z 0011 z --  3 �9 

Subtraction in the True-and-Complement System 

As already indicated, to per form subtraction we combine change of  sign and 

addition since d -- x - y -- x + ( - y ) .  The  corresponding bit-level algori thms 

a r e  

SUB2,s" D -- ADD(X,_Y,  1) 1.56 

SUBls,: D = A D D ( X ,  Y, cn) 
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Addition~Subtraction in the Sign-and-Magnitude System 

The direct algorithm for addition in sign-and-magnitude requires the comparison 
of the signs, performing an addition if the signs are equal or a subtraction if they 
are different, and in the latter case a comparison of magnitudes to determine the 
order of the operands in the subtraction. This is significantly more complex than 
the algorithm for true-and-complement, in which the operation is always the 
same, independent of the signs and the relative magnitudes. As a consequence 
of this, addition in sign-and-magnitude is usually performed by converting the 
operands to true-and-complement representation, performing the addition in 
the true-and-complement system, and finally converting the result to sign-and- 
magnitude. Variations of this algorithm are presented in Section 8.4. 

Overflow Detection 

An overflow exists whenever the magnitude of result of addition or subtraction 
exceeds the largest representable magnitude. If this occurs, the result is incorrect 
and, consequently, it is necessary to detect this situation. Since, as indicated above, 
even in sign-and-magnitude, the actual addition is performed in the true-and- 
complement system, we consider only this case. 

In the true-and-complement system, an overflow exists when the operands 
are of the same sign and the result of the addition represents an integer of opposite 
sign. Since in a ones' complement or two's complement system the sign is deter- 
mined by the most-significant bit (bit n - 1), the overflow detection is specified 
by the following switching expression: 5 

f OVF - -  X l n _ l  �9 Yrn_  1 �9 Z n _  1 + X n _  1 �9 Y n - l  " Z n _  1 1.57 

Moreover, in the two's complement system, the overflow can also be detected by 
checking the two most significant carries of the adder (see Exercise 1.16). 

OVF = c n ( ~  O n _  1 1.58 

5. We use ',- and + to represent the logical NOT, AND and OR functions. 
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1.4  Range Extension and Arithmetic Shifts 
We now present algorithms for range extension and arithmetic shifts for signed in- 

tegers represented in the radix-2 system. The generalization to radix-r is straight- 

forward. These operations are useful in the implementation of multiplication and 

division. 

1.4,'J Range Extension 

The range extension algorithm is performed when it is necessary to represent 

the value x by a digit-vector of m digits, given its representation by a vector of n 
digits (m > n). That  is, 

z = x  1.59 

and 

Z - -  ( Z m _ l ,  Zm_2, . . .  , Z o )  , X - -  (Xn_l, Xn_2 , . . .  , Xo) 1.60 

For example, if a single-precision operand is to be added to a double-precision 

operand, its range must be extended to double precision before the operation. 
This is also used in multiplication and division algorithms. 

In t h e s i g n - a n d - m a g n i t u d e s y s t e m ,  f o r x  = (Xs,  X ) a n d z  = (Zs,  Z), the range 
extension algorithm is 

Zs = X s (sign) 

Zi  - -  O, i = m - 1, m - 2, . . . , n  

Z i = X i ,  i = n - I , . . . , 0  

1.61 

This is illustrated in Figure 1.4(a). The proof is straightforward, resulting directly 
from the definition ofrange extension. For example, forr = 2,n = 3,andxs = 1, 
X = ( 1, 0, 1), the extension to m -- 5 is Zs = 1, Z = (0,  O, 1, O, 1). 

In the t r u e - a n d - c o m p l e m e n t  sys tem,  the range extension algorithm is 

Z i = X n _ l ,  i = m  - 1, . . . , n  

Z i = X i ,  i = n - I , . . . , 0  
1.62 

This is illustrated in Figure 1.4(b). A proof is left as Exercise 1.19. As an example 
consider the case r = 2, n = 4, m -- 7, and X = (1, 0, 1, 1). Then in the ones' 

complement system, Z -- (1, 1, 1, 1, 0, 1, 1). 
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t ~ 1 7 6  

(a) 

Xs 
J 

0 0 0 

Zs Zm.1 Zn+ l Zn 

x,.1 x,_2 Xo 

Zn-1 Zn-2 Zo 

(Xn-1 = 0 or 1) Xn. 1 Xn. 2 X 0 

(b) (s ign ex tens ion)  �9 ** 

Zm-1 Zn+l Zn Zn.1 Zn-2 ZO 

F t G O R E 1.4 Range extension. (a) Sign-and-magnitude. (b) True-and-complement. 

Arithmetic Shifts 

Two elementary arithmetic operations that are used in multiplication and division 

are the left and right arithmetic shifts. They correspond to scaling operations 
(multiplying and dividing by the radix). 

A left arithmetic shift is defined in a conventional radix-2 number system for 
integers as 

z = 2x 1.63 

and a right arithmetic shift as 

z = 2 - 1 x  - - 6 ,  ]61 < 1 1.64 

The value of E is such that it makes z an integer. Note that E can be positive or 
negative. Its sign depends on the representation, as discussed below. 

These operations are denoted by SL(X) and SR(X) in the algorithms devel- 
oped later. 

Assuming that overflow does not occur, the algorithms to perform these shift 
operations are as given below. 

Arithmetic Shifts in the Sign-and-Magnitude System 

The left arithmetic-shift algorithm is 

Zs = X s (sign) 

Z i + l - - X i ,  i = 0 , . . . , n - 2  1.65 

Z 0 = 0  
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EXAMPLE 1 .5  

Xs Xn.1 Xn.2 Xo Xs Xn.1 Xn.2 Xo 

(lost) ""e 0 0 �9 �9149 (lost) 
/ / \ 

z~ z~.l z~.2 Zo z~ z~.l z~_2 Zo 

OVF if Xn. 1 - 1 

(a) (b) 

F I G U R E  1.5 Sign-and-magnitude shift operations. (a) Left shift. (b) Right shift. 

The right arithmetic-shift algorithm is 

Zs = X s  

Z i _  1 = X i ,  i = 1 , . . . ,  n - 1 1.66 

Z n _  1 - - 0  

Note that in this case, the sign of ~ is the sign ofx. 
The proof of these algorithms is straightforward. They are illustrated in 

Figure 1.5. 

For  binary SM representation with 8-bit magnitude and x = - 4 5 ,  the 

arithmetic-shift operations result in 

(Xs , X) - (1,00101101) 

S L ( X )  -- (1,01011010) 

SR(X)  = (1,00010110) �9 

Arithmetic  Shifts in True-and-Complement  Systems 

In the two's complement system the left arithmetic-shift algorithm is 

Zi+i = Xi, i = 0 , . . . ,  n - 2 1.67 

Z 0 = 0  

In the ones' complement system, the algorithm is 

Zi+l = Xi, i = 0 , . . . , n - 2  
1.68 

Z0 = X~-I 
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x.q x..2 Xo 

(" l j~ 1 
( los t )  �9 � 9 1 4 9  0 

/ / 
Zn.l Zn-2 ZO 

OVF unless Xn. 1 = Xn. 2 

Xn.1 Xn.2 

Zn.1 Zn-2 

XO / 

Zo 

OVF unless Xn. 1 = Xn. 2 

x,,q x,,.2 Xo 

Zn-1 Zn-2 Zo 

F ! G U R E 1 . 6  True-and-complement shift operations for r -- 2. (a) Two's complement left 

shift. (b) Ones' complement left shift. (c) TC right shift. 

The two's and ones' left arithmetic-shift algorithms are illustrated in Figure 1.6(a) 

and (b). Proofs are left as Exercise 1.20. 
In both the two's and ones' complement systems, the right arithmetic-shift 

algorithm is 

Z n _  1 ~ X n _  1 

Z i _  1 - -  X i ,  i = l , . . . , n - 1  
1.69 

In this case, E is always positive. 
The true-and-complement right shift algorithm is illustrated in Figure 1.6(c). 

EXAMPLE 1 .6  Table 1.7 shows examples of the left and right arithmetic shifts in the true- 
and-complement system. Signed integers are given in decimal. �9 

1.5 Basic Multiplication Algorithms 
In this section we discuss the basic multiplication algorithms on positive and 
signed integers. More advanced algorithms and implementations are discussed 

in Chapter 4. 
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Two's Complement System 

Bit-Vector Signed Integer 

Ones' Complement System 

Bit-Vector Signed Integer 

X 
SL(X)  

s R ( x )  

Y 
SL(Y)  

SR(Y)  

001101 13 
011010 26 
000110 6 

110101 -11 
101010 -22 
111010 - 6  

001111 15 
011110 30 
000111 7 

111010 - 5  
110101 -10 
111101 -2  

1o5ol 

TABLE 1.1 Examples of arithmetic shifts in the true-and-complement system. 

Multiplication of Positive Integers 

For simplicity we first consider an algorithm for the multiplication of positive 
integers. Later we extend this algorithm to operate on signed integers. Let x and 
y be the multiplicand and the multiplier, represented by the n-digit vectors X 
and Y in the radix-r conventional number system. The multiplication operation 
produces p = x x y, with p being represented by the digit-vector P of 2n digits. 
The usual method of multiplication is described by the expression 

n-1 

p = x ~ Yi ri 
i=0 

n-1 

-- ~ xriyi 
i--0 

1.70 

1.71 

This expression indicates that one first computes the n terms xriYi and then 
performs the summation. The computation of the i th term requires an i-position 
arithmetic left shift of X and a multiplication by the single radix-r digit Yi. The 
direct use of this expression leads to a combinational multiplication unit. 

If, instead of using n - 1 adders, a single adder is reused, the sequential 
algorithm is 

p[0] = 0 

p[ j  + 1] = r - l (p [ j ] - ] -  xrnyj) 
p -- p[n] 

fo r j  -- 0, 1 , . . . , n  - 1 1.72 
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1 . 5 ~  

I 
n : 

x r y j  I 

p[./] J 
I 

I 

Multiplicand Xr" ! 

k 
Vector-digit multiplier r 

1 " J 

I 
rp[j+l] I ~ I i 
p [ j + l ]  ' ~ i 

1 1 , 
, 

ADDER 

\ 

yj digit of 
multiplier Y 

Shift right 

FIGURE 1.7 Relative position ofoperands in multiplication recurrence. 

Since the expansion of this recurrence results in p[n]  = x • y ,  the product is 
obtained in n steps. Each step consists of the multiplication of x by a radix-r 
digit to form x Y j ,  followed by a two-operand addition, and by a one-position 
arithmetic right shift. The factor r n multiplying x indicates only that X has to be 
aligned with the most significant half of the partial product. 

This form of recurrence, using a right shift, is chosen so that the multipli- 
cation can proceed from the least-significant digit of the multiplier, while the 
multiplicand retains the same position with respect to the single-precision adder. 
This is illustrated in Figure 1.7. Note that the adder has n + 1 digits because x Y j  

can have n + 1 digits (except for the radix-2 case in which n digits are sufficient). 
An example of the execution of the algorithm for radix-2 is given in Figure 1.8. 

Note that a temporary overflow, indicated by (*) in the figure, may occur in the 
process of forming the partial products, but it is immediately corrected by the 
right shift in the following step. Also note that only the significant part of the 
partial products ((n + j )  bits of the 2n bits) is shown; this is consistent with the 
implementation of the multiplication algorithm, as described in Chapter 4. 

Multiplication of Signed Integers (Radix-2) 
The extension of the previous multiplication procedure to signed integers in 
radix-2 representation is considered next. The operands are represented with n 
bits (including sign) and the product with 2n - 1 bits. 
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n -- 5 x -- 23 ( X - -  10111) y -- 26(Y -- 11010) 

p[O] 00000 

25x Yo 00000 

p[1] 

25xY1 

p[2] 

25xY2 

p[3] 

25xY3 

p[4] 

25xY4 

00000 

00000 0 

10111 

10111 

01011 

00000 

0 

10 

01011 

00101 

10111 

10 

110 

11100 

01110 

10111 

110 

0110 

(*) 100101 0110 

p[5] 10010 10110 = 598 

FIGURE 1.S Example of magnitude multiplication. 

. 

Sign-and-magnitude algorithm. The algorithm presented before produces 
the correct magnitude of the product. Therefore, the extension consists only 
in computing the sign Ps by the common rule of signs: Ps = Xs ~ ys. 

Two's complement algorithm. The value of the multiplier in the two's 
complement system can be expressed as in (1.27): 

n-2 
2n-1 ~ ' ~  2 i y = - Y n - I  + / _ ~  Yi 1.73 

i=0 

Therefore, 

n-2 
= ~ ' ~  -- 2n-1 x y x Yi 2 i X Yn-1 

i=0 

1.74 
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n = 5 ,  r = 2  x = - 3  (X = 11101) y -- - 4  (Y = 11100) 

p[O] 

25xYo 

p[1] 

25xy1 

p[2] 

25xY2 

p[3] 

25xY3 

p[4] 

-25xY4 

0 00000 

0 00000 

0 00000 

0 00000 

0 00000 

0 00000 

0 00000 

1 11101 

0 

O0 

1 11101 

1 11110 

1 11101 

O0 

100 

1 11011 

1 11101 

0 00011 

100 

1100 

p[5] 0 00000 1100 = xy = 12 

F ! G U R E 1.9 Example of two's complement multiplication. 

. 

Consequently, the algorithm for multiplication of signed integers in the 
two's complement system consists of performing the basic recurrence for 
the first n - 1 steps and then subtracting (instead of adding) the multipli- 
cand in the last step. 

To avoid losing the sign of the partial product in the case of a tem- 
porary overflow, the multiplicand, and the partial product are extended one 
bit to the left (sign extension). An example is given in Figure 1.9. 

Ones' complement algorithm. The multiplication algorithm for operands 
in the ones' complement system also requires a corrective step that can be 
specified in a manner similar to the two's complement case. However, since 
the change of sign is a simple operation in this system, an alternative 
approach is to make the negative multiplier positive before applying the 
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multiplication algorithm, in which case the product should be comple- 

mented at the end. 

1o6 Basic Division Algorithms 
Here we consider integer division. 6 That is, the dividend x, the divisor d, the 

quotient q, and the remainder w are integers such that 

x = q d  + w  1.75 

with the restriction 0 < Iwl < Idl and the sign of the remainder is equal to the 

sign of the dividend. 

We first consider the case of positive integers. These are all represented in 
a radix-r number system. To obtain a quotient with n digits (0 < q < r n - 1), 

the dividend should have 2n digits and the divisor n digits. We consider the case 

0 < d and x < r nd ,  which precludes division by zero and quotient overflow. 

The basic division algorithm consists ofn iterations of the following residual 

recurrence: 

w[0] -- x 1.76 

w[j + 1] = r w [ j ]  - d*qn_l_j j = 0, . . . ,  n - 1 1.77 

n - - 1  i * n where q = ~-]4-0 q ir and d -- d r  ; that is, the divisor is aligned with the 
most-significant half of the residual. In each iteration one digit of the quotient is 

determined by the quotient-digit selection function 

qj+]  - S E L ( w [ I ' ] ,  d )  1.78 

The value of the quotient digit is such that the next residual w[ j  + 1] is bounded, 

such that 

0 < w[/" + 1] < d* 1.79 

We now consider the selection function for the restoring and nonrestoring algo- 

rithms. 

6. Non-integer division for floating-point operation is discussed in Chapters 5 and 8. 
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I 

I - (k+ 1)d* 
4 - -  7 

I 

I 

I - k d *  
I"I--7 7 
I 

I I 
I 

I I 
I 

I I 
I , D, 

0 w[j+l] d* rw[j] 

F I G U R E  1.10 Selecting quotient  d ig i tqn_l_j  -- k. 

Restoring Division 

In the restoring algorithm, the quotient-digit set is the nonredundant set {0, 1, 
2, . . . ,  r - 1 }. In this case, to achieve the residual bound w[j ] < d ' ,  it is necessary 
to use the following quotient-digit selection function: 

qn-l- j  = k if d* k < rw[jl < d'( k + 1) (O<k < r - l )  1.8o 

This selection is illustrated in Figure 1.10. Its implementation requires compar- 
isons ofrw[l" ] with multiples ofd ' .  To avoid the need of several comparators, it is 
possible to subtract the divisor repetitively until the resulting residual is smaller 
than d*. This would still need one comparator with d*. The implementation can 
be further simplified if the subtraction is continued until the sign of the tentative 
residual is negative, in which case an addition of d* produces the correct resid- 
ual. This addition step is called a restoring step. Because of the large number of 
subtractions required for high radices, this algorithm is only suited for radix-2. 
In this case, an iteration consists of the following two substeps: 

1. A tentative residual is calculated as 

t~[j + 1] -- 2w[j ] - d* 1.81 

The quotient digit is selected according to the sign of the tentative residual 
tF[j + 1], namely: 
If tF[j + 1] > 0 then 

q n - l - j  = 1 and w[j + 1 ] -  t~[j + 1] 1.82 



36 e H A P T E R ~ Review of Basic Number Representations and Arithmetic Algorithms 

If t~[j + 1] < 0 then 

q n - l - j  - - 0  and w [ / +  1] = 2w[j] = ~ [ j  + 1] + d *  1.83 

That is, depending on the sign of the tentative residual, the value of the quo- 
tient digit is selected. Moreover, when the tentative residual is negative, the new 

residual is obtained by adding d ' .  This restoring division procedure is formalized 
in Algorithm RD. 

Algorithm RD: Restoring Divide 

1. [Initialize] 
w[0] = x 

2. [Recurrence] 
for j = 0 . . . n  - 1 

2.1 tF[j" + 1] = 2w[j ] - d* 
2.2 if t~[j + 1] > 0 then 
qn- l - j  = 1; w[j + 1] = ~[j  ] 

else 
qn- l - j  -- 0; w[j + 1] = t~[j] + d* 

end for 

In an implementation the tentative and the true residuals are stored in the 
same register. Thus a restorauon operation w + d is performed whenever the 
tentative residual is negative. 

EXAMPLE 1.7 An example of binary restoring division with n - 4 is given in Figure 1.11. 
Note that the subtractions are performed by adding the two's complement 
of the divisor d ' .  In order to preserve the sign of the shifted residual, the 
representations of the residuals and divisor are extended by one additional bit 
to the left. �9 

The restoring division algorithm is simple to implement but is relatively slow. In 

order to obtain an n-digit quotient, n subtractions, n shifts, and n/2 restoration 
additions (on the average) are required. 
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D i v i d e n d x  = 1110 -- (00001011)2, d iv isord  = 2 = (0010)2 

w[0] = 0 0000 

2w[0] = 0 0001 

- d *  = 1 1110 

1011 

0110 

t~[1] = 11111 

+ d "  = 0 0010 

0110 q 3 = O  

restore 

w[1] -- 0 0001 

2w[1] = 0 0010 

- d "  = 1 1110 

0110 

1100 

t~[2] = 0 0000 

2w[21 = 0 0001 

- d "  = 1 1110 

1100 

1000 

q 2 = 1  

t~[3] = 1 1111 

+ d "  = 0 0010 

1000 q l = O  

restore 

w[3] = 0 0001 

2w[3] = 0 0011 

- d "  = 1 1110 

1000 

0000 

t714] = 0 0001 0000 q 0 = 1 

w[4] = t714] 

Quot ient  q = (0101) z = 5, remainder  w = (0001) z = 1. Check: 11 = 2 • 5 + 1. 

F ! G U R E 1 .1t  Example of radix-2 restoring division. 

The  restoring a lgor i thm can be made  faster by not storing the tentative 

residuals at all and thus avoiding the restoration steps. Such an a lgor i thm is 

called nonperforming division, and it is specified in Algor i thm N P D .  N o w  in each 

iteration, the register has to be loaded either with 2w[j]  or with the result of  the 

subtraction. 
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Algorithm NPD: Nonperforming Divide 

1. [Initialize] 
w[0] = x 

2. [Recurrence] 
for j - - 0 . . . n  - 1 
if 2 w [ j ] -  d* > 0 then 

q n-j-1 = 1; w[j + 1] = 2 w [ j ] -  d* 
else 

q n - j - 1  --- 0; w [ j  -~- 1] = 2w[j ] 
end for 

1 . 6 . 2  N o n r e s t o r i n g  D i v i s i o n  

The speed of the restoring division algorithm can also be improved in the fol- 

lowing manner. It is easily observed that the restoration of the j th residual w[/]  

can be combined with the next subtraction of the divisor. When  restoration is 

required; that is, when t~[j] < 0, qn- j  --" O,  then 

t~[/ + 1] = 2w[j ] - d* = 2(~[./ ] + d*) - d* -- 2t~[./ ] + d* 1.84 

and when no restoration is necessary; that is, when iF[j] > 0, q n- j  -- 1, then 

t~[j + 1] = 2w[j ] - d" -- 2t~[./] - d" 1.85 

Therefore, an equivalent algorithm can be implemented in which iF[j] is 
the residual (instead of w[j ]). These residuals can be positive or negative and are 
bounded by 

I~F]I < d" 1.86 

Since the residuals can be negative and we want a positive final remainder, the 

last step of the procedure is modified to assure a positive remainder. 

The nonrestoring algorithm is described in Algorithm NRD.  To simplify 

the notation we use w[j] to denote this new residual. This algorithm requires n 

shifts and n additions/subtractions to obtain an n-digit  quotient, and is therefore 

faster than the restoring one. 
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Algorithm NRD: Nonrestoring Divide 

1. [Initialize] 
w[0] = x 

2. w[1] = 2w[0]-d* 
3. [Recurrence] 

forj  = 1 . . . n - 1  
if w[j] > 0 then 
qn-l-j  = 1; w[j + 1] = 2w[J'] -- d" 

else 
q n - l - j  - -  O; w[j + 1] = 2w[/'] + d" 

4. [Correct] 
if w[n ] < 0 then 
q0 = 0; w[n] = w[n] + d* 

else 
q 0 = l  

endfor 

EXAMPLE 1 .8  An example of nonrestoring division of positive fractions is given in Figure 
1.12. Note that the subtractions are performed by adding the two's complement 
of the divisor d ' .  In order to preserve the sign of the shifted residual, the 
representations of the residuals and divisor are extended by an additional bit 
to the left. �9 

An alternative description of the nonrestoring algorithm consists in defining the 
digit set for the quotient as { -  1, + 1} instead of the canonical {0, 1} and to perform 
directly the recurrence with the quotient-digit selection 

qn--j--1 = 1 if w[j] > 0 and --1 otherwise 1.87 

For compatibility reasons, usually the quotient eventually has to be transformed 
to the canonical representation. If this transformation is done digit by digit during 
the division process, the NRD algorithm results. 
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t . 7  

1.1 

Dividend x = 1110 --" ( 0 0 0 0 1 0 1 1 )  2, divisor d = 2 = (0010) 2 

w[O] = o oooo 

2w[0] -- 0 0001 

- d *  = 1 1110 

1011 

0110 

w[1] = 11111 

2w[1] = 1 1110 

+ d "  = 0 0010 

0110 q3 = 0 

1100 

. ,[2] = o oooo 

2w[2] = 0 0001 

- d *  = 1 1110 

1100 q2 = 1 

1000 

w[3] = 11111 

2w[3] = 1 1111 

+ d "  = 0 0010 

1000 ql = 0 

0000 

w[4] = 0 0001 0000 qo = 1 

Quot ien t  q = (0101) 2 = 5, r emainder  w = (0001) 2 = 1. Check: 11 = 2 • 5 + 1. 

F ! G U R E 1 . 1 2  Example of radix-2 nonrestoring division. 

E x e r c i s e s  

R e p r e s e n t a t i o n  o f  P o s i t i v e  I n t e g e r s  

(a) De te rmine  how many  digits are necessary to represent  integers in the range 0 

to (297) 10 using 

1. radix-2 conventional  system 

2. radix-8 conventional  system 

3. radix-17 conventional  system 

4. mixed-radix  system with radix vector R = (n + 1, n, . . . ,  3, 2) and 

canonical digit-set 

(b) W h a t  is the largest integer that can be represented by the digit-vectors of  

the size de te rmined  in each of  the cases? 
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1 . 2  

1 . 3  

1 . 4  

1 . 5  

1 . 6  

1 . 7  

(c) Specify a coding for the digits and determine the number of bits of the 
bit-vector that represents these integers. Determine the efficiency of each repre- 
sentation, defined as the ratio of the number of bits in the binary representation 
and the number of bits required by the digit-vector. 

Represent the integers 0, 13, 15, 19, 22, and 127 using a residue number system 
with P = (7, 5, 3, 2) as the set of moduli. Specify a bit coding for the digits and 
determine the efficiency of the representation. 

What happens if the moduli used in a residue number system are not relatively 
prime? 

A processor word has eight bits. Determine the set of positive integers repre- 
sentable with two words for the following representation systems. Determine the 
efficiency of the representations. 

1. Conventional, radix-2 

2. Conventional, radix-10, BCD 

3. Conventional, radix-16 

Representation of Signed Integers 

Given the digit-vector 

X - ( 1 , 0 , 1 , 0 , 1 , 1 ) r  

(a) Determine its representation value x R in decimal for r = 2, 8, 10, and 16. 
(b) What  is the greatest value of xR that a six-component vector X can 

represent for r -- 2, 10, and 16 ? 

Show the bit-vectors that represent x, - 6  < x < 6, in the binary true-and- 
complement systems with complementation constants C -- 16, 15, 19, and 127. 
Use the minimum number of bits required by the number system. 

Given the digit-vector 

X = (1, O, 1, 1)r 

(a) determine the representation value x R in a weighted, radix-r representa- 
tion system for the radices 2, 7, and 16; 
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(b) determine the value x in the following cases: 

r Attributes 

Integer, two's complement 

Integer, digit complement 

Integer, digit complement 

1 .8  Complete the following table, assuming (a) conventional number system, r = 

4, range complement, n = 6 digits (b) conventional number system, r = 2, 

ones' complement, n - 8 bits (c) conventional number system, r = 2, two's 

complement, n - 5 bits. 

Value x Value x R Digit Vector X 

(a) 
(b) 
(c) 

-3910 

21510 

11101 

1 .9  

Number 
System 

Complete the following table. All values are given in the decimal system. 

Radix Number of 
r Digits n Value x Value x R Digit-Vector X 

SM 

Two's compl. 

Range compl. 

Range compl. 

Ones' compl. 

Two's compl. 

Digit compl. 

Ones' compl. 

10 

2 

3 

8 

2 

2 

8 

2 

-837  

--37 

--83 

- -  1 9 / 6 4  

- 19/64 

363 

110010 

6527 

1 .10  Given the digit-vector 

X = ( X6, Xs,  . . . ,  Xo) 
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1.11 

1 . 1 2  

1 . 1 3  

1 . 1 4  

1 . 1 5  

and the radix r = 2, if the radix point is between bits X4 and X3, determine 

the values of the most positive number Xmax and the most negative number Xmin 

and show their corresponding digit-vector representation in (a) the sign-and- 

magnitude system (b) the two's complement system (c) the ones' complement 

system. 

Determine the value x, represented by the digit-vector X = (1, 0, 1, 0, 1) for the 

following cases: 
(a) Values are integers, r -- 2, and the two's complement system is used. 
(b) As in (a), but the ones' complement system is used. 
(c) As in (a), but the sign-and-magnitude system is used. 

(d) Repeat (a), (b), and (c), assuming that the values are fractions (signed). 

Given the four-component vector X = ( 1, 0, 1, 1) 2: 
(a) Assuming that X represents the integer x, represent x with the six- 

component vector Y using the two's complement and ones' complement systems. 

(b) Repeat (a), assuming that the given X represents the fraction x. Do not 
change the position of the radix point when extending X to the six-component 

vector. 

Algorithms and Implementations for Addition, 
Subtraction, and Change of Sign 

Perform the operations x + y, y - x, x - y, - x  - y, - y  - x, and Ix - y[ on 
digit vectors X and Y that represent the integers x = - 1 7  and y = 9 in the 
radix-2 sign-and-magnitude, two's complement, and ones' complement number 
systems. Determine the minimal number of digits so that no overflow will occur. 

Show an algorithm for the computation 

- I x l -  lyl 

where the signed integers x, y, and z are represented in the two's complement 

system. 

Prove that the following bit-serial algorithm performs the "change of sign" op- 

eration in the two's complement system. Let 

2 - -  ( 2 n _ l ,  2 n _ 2 , . . .  , 20)  2 
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1 .16  

1 .17 

and 

X = (Xn-1,  X n - 2 , . . . ,  X0)2 

represent z and x such that z -- - x .  
Algorithm: Ifk is the index of the rightmost bit of X that is 1, 

Zi=Xi  i = 0 ,  1 , . . . ,  k 

Zi=X~ i = k + l , . . . , n - 1  

(a) Show that the overflow in addition in the two's complement system can be 
detected by the exclusive-or of the carry-in and the carry-out of the most significant 
bit. 

(b) Show that the last expression does not work properly in the ones' com- 
plement system. 

In many computers two types of integers are represented: signed integers and 
unsigned (positive) integers. This is done to use more effectively the available 
number of bits in a word. 

(a) Determine the range of signed and unsigned integers that can be rep- 
resented by a 16-bit word. In the signed case consider the sign-and-magnitude, 
two's complement, and ones' complement systems. 

(b) Suppose we want to perform the operations of addition and subtraction 
for both types of integers. The basic module used for these operations is a 16-bit 
adder and four flags: the zero flag Z is set to 1 when the result is zero, the sign 
flag SGN is loaded with bit 15 of the result vector, the carry flag CO is loaded 
with the carry-out of the adder (used for multiprecision operations), and the 
overflow flag OVF is set to one if there is an overflow in the addition (assuming 
true-and-complement representation). Indicate whether the same algorithms can 
be used for addition and subtraction for both types of integers. Consider the 
two cases for the representation of signed integers: two's complement and ones' 
complement. 

(c) Consider the operation of comparison. The operation is performed by 
a subtraction (without storing the result) and setting the flags. Determine the 
values of the flags for greater, equal, and smaller for both types of integers. 
Consider the three representations in the signed case. Suppose that the computer 
has conditional branch instructions that branch or not depending on the result 
of a previous comparison (branch on greater, branch on equal, and branch on 
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1 .18  

1 .19  

1 . 2 0  

1.21 

1 .22  

1 .23  

1 . 2 4  

1 . 2 5  

smaller). Indicate whether the same instructions can be used if the comparison 

was done on unsigned integers or on signed integers. If  not, determine how the 
flags would be used by the branch instructions in each case. 

Algorithms for Range Extension and Arithmetic Shifts 

Given the digit-vectors A = (7, 3, 6, 2) and B = (3, 2, 1, 6): 

(a) Determine the integers represented in a range complement decimal system 

and in a digit complement decimal system. 

(b) Extend the vectors to six digits; that is, represent the same numbers using 
six digits. 

(c) Obtain the representation for the integers 10a and a/10 using vectors with 
seven digits. 

Prove the algorithm presented in the text for t rue-and-complement  range exten- 

sion. 

Prove the algorithms presented in the text for arithmetic shifts in true-and- 

complement systems. 

For the digit-vectors X -- 00101101 and Y - 11010110 apply the arithmetic-shift 

algorithms for two's complement and ones' complement  radix-2 systems. Check 
the results. 

Determine conditions for overflow in the right arithmetic-shift algorithm. 

For A = (1, 1, 0, 1), B = (1, 1, 0), C -- (0, 1, 0, 1), and D -- (1, 0, 1, 0, 1), 
obtain X representing x -- (a + b) + 8c - 2d in the two's complement 
system. 

Multiplication 

Perform the multiplication of x -- 21 and y = 14 using the basic multiplication 
algorithm for positive integers and r - 2. 

Perform multiplication of x = 21 and y -- - 17 using algorithms for 

�9 two's complement  

' p l  �9 ones com ement 
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1 . 2 6  

1 .27  

1 . 2 8  

1 . 2 9  

1 . 3 0  

assuming radix 2. What is the minimum number of bits necessary to represent 
the operands and the result? 

Determine the execution time of the basic multiplication algorithm for n-bit non- 
negative integers assuming that a partial product of each iteration is stored in a 
register and 

�9 tva time to perform vector-digit multiplication 

�9 t=aa addition time 

�9 treg register loading time 

Propose a modification to the algorithm so that the execution time is reduced to 
about 50% of the original time. 

Derive a recurrence for multiplication of positive integers assuming that the 
multiplier digits are used from left to right; that is, the algorithm begins with 
y~-l. Show a figure indicating relative position ofoperands, partial products, and 
the adder. Is there an effect on the execution time compared with the original 
right-to-left multiplication algorithm? 

Division 

Prove the nonrestoring division algorithm. 

Perform nonrestoring division ofx -- 14 by d -- 3. Use conventional binary repre- 
sentation and perform subtraction by adding the two's complement of the divisor. 

Derive a nonrestoring algorithm for two's complement operands. 

Further Readings 
The basic concepts of digital arithmetic are covered in many books on digital 
design and computer organization such as Wakerly (2001) and Hennessay and 
Patterson (1995). A broader and more detailed treatment of number systems and 
arithmetic operations can be found in books on digital arithmetic such as Parhami 
(2000), Knuth (1998), Omondi (1994), Koren (1993), Scott (1985), Cavanagh (1984), 
Wasser and Flynn (1982), Kulisch and Miranker (1981), Spaniol (1981), Gosling 
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(1980), and Hwang (1978). Some of the papers cited in this book as well as other 
papers are reprinted in a comprehensive two-volume collection (Swartzlander 
1990). Oklobdzija (1999) presents an extensive collection of papers on high- 
performance circuits, logic, and system design, many of them related to digital 
arithmetic. A survey of digital arithmetic in the 1950s and 1960s, when many of 
the most important ideas in number representation, algorithms, and implemen- 
tations were introduced, appears in Garner (1965). A view of the several levels 
involved in the specification and implementation of arithmetic processors is pre- 
sented in Avizienis (1971). A theoretical treatment of basic digit sets for radix 
representation is given in Matula (1982). A classic book on residue arithmetic 
is Szabo and Tanaka (1967). A tutorial on residue number system appears in 
Taylor (1984), and a collection of papers on residue number system arithmetic is 
provided in Soderstrand et al. (1986). Numbers, various representation systems, 
and their long history are the subject of many books (Gazale 2000; Guedj 1996; 
McLeish 1991; Ifrah 1985; Dantzig 1954). Sweitz (1987) describes how arithmetic 
was done in the 15th century. There is also a dictionary of curious and interesting 
numbers (Wells 1997). 
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We begin by considering the addition of two positive fixed-point operands in 

fixed-radix representation. We first present algorithms and implementations for 

conventional representation and then consider the case of redundant representa- 

tions. The adders can then be used for addition of signed operands in alternative 
representations, such as sign-and-magnitude and two's complement. 

The algorithms and implementations we present are for radix 2. However, 

this includes other power-of-two radices with binary coding of the digits, since 

in that case the bits of the representation are the same as those of a radix-2 

representation. 

A binary n-bit adder, shown in Figure 2.1(a), has two operands 0 < x, y < 

2 n - 1 and carry-in Cin E {0, 1} aS inputs, and produces as outputs the sum 

0 < s < 2 n - 1 and carry-out Cout ~ {0, 1} such that 

x + y + Cin m 2ncout + s 2.1 

The solution to this equation is 

s --  (x + y + Cin ) mod 2 n 

-- / 1 if(x + y + Cin ) ~ 2 n 
C out 

I 0 otherwise 

= [(x + y + Cin ) / 2  n ] 

2.2 

For n -- 1, the adder reduces to a primitive module called fu l l -adder  (FA) with 

three binary inputs xi ,  yi ,  and ci and two binary outputs si and Ci+ 1 indicated 
in Figure 2.1(b), such that 

Xi -~" Yi + Ci - - 2 c i + 1  + si 2.3 

51 
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X Y xi Yi 

Cou, I i. ci. %1 I I_ ci 
~1 ADDER I - I FA I- 

.t [ 
S si 

(a) (b) 

F I G U R E  2.1 (a) An n-bit adder. (b) 1-bit adder (full-adder module). 

with solution 

5i = (Xi + Yi -+-Ci) m o d  2 

Ci+ 1 = L(xi -+-Yi  +ci)/2] 
2.4 

Adder Schemes 
In this chapter several addition schemes are presented which provide trade-offs 

between delay and other characteristics, such as area and energy dissipation. 
Because of this no scheme can be considered as superior, but they provide alter- 
natives from which to choose in a specific context with specific requirements and 

constraints. 
The most common implementations are of the fixed-time type. That  is, the 

adder has no signal to indicate when the addition is completed, and therefore the 
worst-case delay has to be considered. On the other hand, variable-time adders 
have completion signals so that the result of the addition can be used as soon as 

the completion signal is asserted. 

We consider both carry-propagate adders (CPA), which produce the re- 

sult in a conventional fixed-radix number system, and redundant adders, in 

which the result is in a redundant number representation. As we discuss later, 

these redundant adders have a lower delay that is independent of the number of 

operand bits. 

There are many schemes of carry-propagate adders, with the main objective 

of reducing the delay in obtaining carries. Among them we study the following: 
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�9 Switched carry-ripple adder 

�9 Carry-skip adder 

�9 Carry-lookahead adder 

�9 Prefix adder 

�9 Carry-select adder and conditional-sum adder 

Redundant  adders are characterized by limited carry propagation (indepen- 

dent of the number  of bits of the adder). The  main types are: 

�9 Carry-save adder 

�9 Signed-digit adder 

Different adder schemes are sometimes combined to achieve delay/area con- 

straints, resulting in h y b r i d  adders.  These adders are not discussed in this book, 

but references to them are included at the end of this chapter. 

2~  About Carries 

The production of the bit S i (0  < i < n -- 1) in the addition s = x + y can be 

decomposed into the following two steps, as illustrated in Figure 2.2: 

PI . . . . . . . .  

I 
I 
| 

Con t = c. : 
! 

! 

C O = Cin 

,' Step 1" 
' Obtain carries ! 

i i 

I C n - 1  e e e  C i 

Yn-'ll 

0 0 0  

X i 

1 

I 
1 

S n -  1 S i 

eee  ICl Co 

Y'll Y~ 
. . . . .  

e e e  

_ _ _  

s 1 s o 

Step 2: 
Compute sum bits 

F I G U R E 2 .2  Steps in addition. 
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Obtaining the carry ci. This carry represents the influence of bits x j  and yj  

for j < i on s i. That is, 

Ci = F (X i -1 ,  . . . ,  XO, Y i - 1 ,  . . . ,  Yo, Cin) 

More specifically, calling 

and 

we have 

(i) 
i 

- -  ~ x j 2  j 

j=O 

(i) 
i 

- -  ~ y j 2  j 

j=0  

2.5 

~ x(i--1) _~_ y(i--1) + Ci n 

C i ~ 2i 2.6 

2. Computing the sum bit S i from the input bits X i and yi and the carry 
obtained in Step 1. Specifically, 

Si - - ( X i  "]-Yi  + Ci) mod 2 2.7 

Since the sum b i t s / a t  posit ion/depends only o n x i ,  Y i ,  and ci; that is, it is a 
local function, once the carries are known all sum bits can be computed in 
parallel. 

Consequently, the main objective of all methods for reducing the time of 
addition for conventional representation is to speed up the process for obtaining 
all carries. We now discuss several general observations that are commonly used 
in various approaches for computing carries. 

At position i of the addition, consider the relation between the carry-out 
(Ci+1) and the carry-in (ci). From expression (2.6), we can see that there are three 
mutually exclusive cases, as summarized in Table 2.1. The determination of the 
particular case depends only on the local variables xi and yi and can be performed 
in parallel (for all i) by the following switching expressions: 

Case Kill: 

ki  t t I - x i y  i - ( x i  + y i )  2.8 
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Case xi Yi 

Kill (ki = 1) 

Propagate (Pi = 1) 

Generate (g i  - -  1) 

0 0 

0 1 

1 0 

1 1 

T A B t E 2.1 Carry-out cases. 

Xi + Y i  

0 

1 

1 

2 

Ci+l 

0 

ci 

ci 

1 

Comment  

Kill (stop) carry-in 

Propagate carry-in 

Propagate carry-in 

Generate carry-out 

Case Propagate: 

Pi - -  x i  (~ Yi 2.9 

Case Generate: 

gi - -  x i  Yi 2.10 

Consequently, the carry-out of position i can be expressed in terms of the carry-in 

to that position as 

C i + I  - -  gi  + Pici  = x iYi  + ( x i  (~ y i )c i  2.11 

From the identi tygi  + Pici  = gi  + (gi + p i ) c i  and naming Pi + gi  - a i ,  we get 
an alternative expression for the carry-out 

C i + 1  ~ gi  + a ic i  2.12 

which is somewhat simpler to implement  than (2.11). The variable a i corresponds 
to the combined case when xi + yi is 1 or 2. Since ai -- k~, we call it "alive." 

Similarly, 

! ! 

C i + l  = ki + p i c i  2.13 

From expressions (2.11) and (2.13) we observe that carries propagate from least- 

significant to most-significant bit (right to left), forming carry chains of two types: 

1-carry chain consisting of carry - 1 and 0-carry chain consisting of carry = 0. 

The following example illustrates these chains: 
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xi 

yi 

Ci+l 

9 8 

1 0 

0 0 

e k 
a 

0 ~ - - 0  

7 6 5 4 3 2 1 0 c i n = O  

1 0 1 1 1 1 0 0 

0 1 0 1 0 0 1 0 

P P P g P P P k 
a a a a a a a 

1 + - - 1  + - - 1  +-- 1 0 +-- 0 +-- 0 +-- 0 

Observe that a 1-carry chain begins always with a gi = 1 (or Cin = 1) 

and propagates to the left over all consecutive positions j > i where  p j = 1. 

Similarly, a 0-carry chain begins with ki = 1 (or cin = 0) and propagates to the 

left over all consecutive positions j > i where  p j  = 1. Moreover,  the chains are 

independent .  1 

Expressions (2.11) and (2.12) can be general ized to consider a group of  bits, 

by replacing the bit-generate gi ,  the bit-propagate Pi, and the bit-alive ai by the 

corresponding group variables. Tha t  is, 

Cj+I = g(j,i) + p(j,i)Ci --- g(j,i) +a(j,i)ci 2.14 

This  expression indicates that Cj+l -- 1 i fa  carry is generated in the group of  bits 

f rom i to j or if a carry comes in to that group and is propagated (or kept  alive) 

by the group. 

F r o m  the definition of  the carry, 

1 if Y~=i(Xv + yv)2 v-i > 2 j+ l - i  
- -  - 2 .15 

g(j,i) 0 otherwise 

1 if Y~=i(Xv -t-yv)2 v-i = 2 j + l - i  - 1 2.16 

P(j,i) = 0 otherwise 

Fora(j,i)  we observe that p (j,i) = 1 i f fPk = 1 for all k in /  < k < j .  Tha t  is, 

J 
P (j,i) = A N D ( p  v) 2.17 

1. As discussed later, these carry chains have an effect on the delay of the adder. In some 
circuit technologies, all carry signals are cleared before the operation. In such a case, 0-carry 
chains need not be considered for the delay. A similar situation occurs with the 1-carry chains 
if all carries are preset to 1. 
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f e e-1  d 

__L_ " "  J L " ' "  J . . . . . . . . . . . . . . . . . . . . . . .  

g(f,e) a(f,e) g(e-l,d) a(e-l,d) 

GA 

gL aL gR aR 

'= . . . . . . . . . . . . .  i 
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i i 
i i 
i i 
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i I 
i I 
i i 

I I 
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! i 
! 

, A :  
i i 
i ! 

gout aout 

(a) (b) 

F I G U R E  2.3 Computing (g(f ,a),  a(f,a)). 

Therefore, it is easy to verify that the last part of expression (2.14) is satisfied if 
we define 

J 
a( j , i )  = AND(av) 2.18 

U " - I  

By making i = 0 in expression 2.14, we obtain 

Cj+l  - -  g(j,O) + p(j ,o)Co - -  g(j,O) + a(j,O)CO 2.19 

That  is, to compute Cj+ 1 it is sufficient to compute the pair (g(j,0), P( j ,o ) )  or the 
pair (g(j,0), a (j,0)). 

Moreover, as shown in Figure 2.3, the computation of the variables for the 
range of bits ( f ,  d) can use the values of these variables for the subranges (f ,  e) 
and (e - 1, d), with d < e < f .  Specifically, from the definitions we obtain the 
following switching expressions: 

g ( f , a )  - -  g ( f , e )  + P ( f , e ) g ( e - l , d )  "-- g ( f , e )  + a ( f , e ) g ( e - l , d )  

a ( f ,d)  - -  a ( f ,e )a  (e-l,d) 2.20 

P (f ,a)  - -  P (f,e) P (e-l,d) 
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EXAMPLE 2.1 

These expressions 2 are the basis for linear and treelike structures to obtain all the 

carries. These structures are the main topic of this chapter. 

Once all the carries are obtained, the sum bits are computed in parallel as: 

S i "~ Xi f~  Yi f~  c i  - -  P i  ~ ci  2.21 

We now illustrate the use of these expressions to obtain bit 13 of the sum 3 of 

the following 16-bit operands (Cin -- 0): 

x -- 01101001011100[0011 

y -  1011ll l01[0001[l l l0 
m 

First we need to obtain the carry c13. To do this we divide the operands in 

groups of four bits, and for each group we obtain (in parallel) the values of 

the g and p variables (we use here the p variables, although in a practical case 

the a variables might  be preferable). F rom expressions (2.15) and (2.16) 

P(12,12)- 1, P ( l l , 8 ) -  1, k (7 ,4) -  1, g ( 3 , 0 ) -  1 

Note that since k, P,  and g correspond to mutually exclusive situations, the 
other variables in the group have value 0. 

Now we use expressions (2.20) to combine two adjacent groups. We obtain 

P(12,8)-  1, k (7 ,0) -  k(7,4)+ p(7,4)k(3,0)- 1 

and finally 

k(12,0) -- 1 

resulting in 

C l  3 m g(12,0) q- P(12,0)Cin ~ 0 

2. The expressions can be generalized to the case in which the subranges overlap; that is, 
subranges (f, e) and (h, d), with h > e. 
3. Of course in the addition case all bits have to be obtained; alternative ways of doing this are 
the topic of this chapter. 
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2~ 

Now, the sum bit is 

S13 =X13 ~)Y13 ~)'5'13 = 0 

Basic Carry-Ripple Adder (CRA) and FA 
Implementation 
We review here the carry-ripple adder, which corresponds to the basic (carry- 
propagate) addition algorithm. As shown in Figure 2.4, this adder consists of 
an array of 1-bit adders ( f u l l -adders  or FAs) defined by expressions (2.4). The 
correctness of this adder implementation can be shown by induction, using the 
definition o f c i  given by expression (2.6). 

Consider now the delay of the addition. Since there is no completion signal, 
it is necessary to consider the worst-case delay. As shown in Figure 2.4, this worst 
case corresponds to the delay of the propagation of the carry through n - 1 bits 
plus the largest delay between the propagation of the carry through the last bit 
or the computation of the sum bit Sn_l. Consequently, calling tc the delay from 
the inputs of the full adder to the carry output and ts the delay from the inputs 
to the sum output, the (worst-case) delay of the adder is given by 

TCRA = ( n -- 1) tc + max(tc, ts ) 2.22 

The largest component of the delay is (n - 1)to. Since this is linearly dependent 
on n, this adder is slow for large n. The actual value of the delay depends on the 
technology and on the implementation. The main advantage of this adder is the 
simplicity of its cells and of the connections among them. 

F I G U R E 2 .4  Carry-ripple adder. 
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2 .2 . ]  Implementations of Full-Adder 

Let us now consider implementations of the full-adder. From expression (2.4), 
we get the following tabular description: 

xi yi ci ci+1 $i 

0 0 0 

0 0 1 

0 1 0 

0 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 

0 0 

0 1 

0 1 

1 0 

0 1 

1 0 

1 0 

1 1 

Minimal sum of products expressions for these functions are 

tCt t t t t 
Si --- x i y  i i + x i y i c i  + x i y i c i  + x i y i c i  

Ci+l  ~ x i Y i  + XiCi + y i c i  

2.23 

These expressions are the basis for the two-level implementation shown in 
Figure 2.5(a). 

An alternative implementation is based on the use of expression (2.11), 
namely, 

Ci+I = g i  + P iC i  2.24 

Moreover, s/ - -  ( x  i "~- Yi + Ci) mod 2 indicates that 

$i = Xi ~]~ Yi ~ c i  - -  P i  f~  ci  2.25 

These expressions are the basis for the implementation shown in Figure 2.5(b). 
The submodule producing Pi and gi (or g5 for the implementation with a NAND 
gate shown in Figure 2.5c) is called a half-adder (HA) because it performs the 
addition of two bits (instead of three for a full-adder); the sum bit is P i and the 
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~ --f>o--* x; 
yi -.---[2x>-~y~ 

p 

Yi , 
ci 

p 

xi 
Yi , 

ci 

p 

Yi 
c i ~  

q 

~ S i 

(a) 

Xi 

Yi 
xi  

Ci ~ 0 ~  ci+l 
Yi 
Ci C i+ 1 

Half-adder (HA) 

I 

L Igi 

I I 

HA 

I T i 
I 

I 

I 

(b) 

=si 

~ " ' ~  Ci+ 1 

3~ =si 

~ -~ Ci+ 1 

(0 

F I G U R E  2 , 5  Implementation of full-adder. (a) Two-level network. (b) Multilevel network 

with XOR, AND, and OR gates. (c) Multilevel implementation with XOR and NAND gates. 

carry bit is gi ,  as shown in the following table: 

xi  

0 

0 

1 

1 

Yi g i  

0 0 

1 0 

0 0 

1 1 

Pi 

0 

1 

1 

0 

The implementation of a full-adder using two half-adders and one NAND 

gate requires fewer gates than the two-level network; moreover, although the 
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Input 

ci 

xi 

Yi 

(standard loads) 

1.3 

1.1 

1.3 

Size: 7 (equivalent gates) 

F rom To 

ci 

xi 

Yi 
ci 

xi 

Yi 

Si 

Si 

Si 

Ci+I 

Ci+I 

Ci+I 

L: load on the output 

tpLH 

(ns) 

0.43 + 0.03L 

0.68 + 0.04L 

0.68 + 0.04L 

0.36 + 0.04L 

O.73 + 0.04L 

0.37 + 0.04L 

Propagation delays 

tpHL 

(ns) 

0.49 + 0.02L 

O.74 + 0.02L 

O.74 + 0.02L 

0.40 + 0.02L 

0.71 + 0.02L 

0.64 + 0.02L 

tp (average) 

(ns) 

0.46 + 0.03L 

0.71 + 0.03L 

0.71 + 0.03L 

0.38 + 0.03L 

0.72 + 0.03L 

0.52 + 0.03L 

11' A B I. �9 2.2 Characteristics of the full-adder in a family of CMOS gates. 

two-level implementation has fewer logic levels, the carry delay (from carry-in 
to carry-out), which is critical for the delay of the carry-ripple adder, is smaller 
in the two half-adders case than in the implementation of Figure 2.5(a) because 

it corresponds to the delay of two two-input gates. 

Using the implementation with two half-adders, the worst-case delay of the 
carry-ripple adder is 4 

T c m =  txoR + 2(n - 1)tNAND + max(2tNAND, tXOR) 2.26 

The first txoR corresponds to P0. Note that the delay of P i for i > 0 is not in the 

critical path because all pi's are computed simultaneously. 

Most families of standard cells include a full-adder module. For instance, in 

the CMOS family we are using as an example in this book, the full-adder module 

has the characteristics listed in Table 2.2. 

4. This expression does not include the effect of the load on the gates output (see Exercise 2.1). 
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2.3  Reducing the Adder Delay 
The delay of the carry-ripple adder can be reduced by the following four ap- 
proaches: 

1. Reducing the carry delay t~. This is achieved in the switched carry-ripple 
(Manchester) adder. 

2. Changing the linear factor n to a "smaller" factor (such as n / k  or log n). 
This is achieved by the carry-skip adder, the carry-lookahead adder, the 
prefix adder, the carry-select adder, and the conditional-sum adder. 

3. Including a completion signal so that the addition time corresponds to the 
actual addition and not to the worst case. 

4. Changing the number representation system. We explore in this chapter 
the use of redundant representations. 

We now consider each of the adder schemes mentioned above. 

2.4  Switched Carry-Ripple (Manchester) Adder 
The main idea is to use a fast circuit for propagating carry chains. As discussed 
in Section 2.1, a 1-carry chain starts in position with gi = 1 and propagates to 
the left over consecutive positions with p j  = 1. Similarly, a 0-carry chain begins 

in position with ki = 1 and propagates to the left over consecutive positions with 

p j  = 1. Since propagate Pi, generate gi, and kill ki variables can be obtained 
in parallel as functions of xi and yi only, all chains begin at the same time. By 
providing a fast circuit path to perform propagation of chains, the total carry delay 
is reduced. Such a circuit may consist of transmission gates or special transistors. 

As discussed in Section 2.1, there are the following mutually exclusive cases: 

Xi -~- Yi gi Pi ki tTi+l 

0 0 1 

0 1 0 

1 0 0 

0 

ci 

1 

As a consequence of these disjoint situations, the carry-out can be produced by 

a switch network as shown in Figure 2.6. Since the three situations are disjoint, 
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(a) 

Ci+ 1 

cc I (Chain control) GKP 
. . . . .  

- I 

Yi xi 
. . . .  

I 
Pi 

~]-~Ci 

Yn-1 Xn-1 Yn-2 Xn-2 Yi Xi 

I I i I I I 
I cc II  cc I I Cc I 

l<...c 
Cou t Cn-1 Ci+l 

Yl Xl 

I I 
cc II 

C2 

Yo Xo 

I 
cc ] 

(b) 

F ! G U R B 2.S Switched carry-ripple network (Manchester circuit). 

Cin 

only one of the three switches per bit is closed. The switches for all bits are set 
simultaneously and then the carry propagates through the closed switches in the 
horizontal path. 

2 . 4 . 1  Delay 

The delay consists of three components: the setting of the switches (switches of all 

bits are set simultaneously) with delay tsw, the propagation of the carry through 

(n - 1) bits (the propagation delay of a switch is tp), and the production of the 

sum bit. That  is, 

TSRA --  tsw + (n -- 1)tp + ( n / m ) t b u f  + ts 2.27 

where the term ( n / m ) t b u f  corresponds to the buffers required each m bits to 
restore the signal. The scheme is effective if tp is small. 
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2~ Carry-Skip Adder 
The carry-skip adder is obtained by a modification of the carry-ripple adder. 
The objective is to reduce the worst-case delay by reducing the number of FA 

cells through which the carry has to propagate (see expression (2.21)). To achieve 

this, the adder is divided into groups ofm bits and the carry into group j + 1 is 
determined by one of the following two conditions: 

1. The carry is propagated by group j .  That is, the carry-out of group j is 

equal to the carry-in of that group. This situation occurs only when the sum 
of the inputs to that group is equal to 2 m - 1. Calling x (J) and y(J) the 

integers corresponding to these inputs, the group propagate signal, defined 

in Section 2.1, is 

p(j)  _ [ 1 ifx (j) + y(J) - - 2  m - 1 

[ 0 otherwise 
2.28 

2. The carry is not propagated by the group (that is, it is generated or killed 

inside the group). 

Consequently, to reduce the length of the propagation of the carry, a skip 
network is provided for each group ofm bits so that when a carry is propagated by 
this group, the skip network makes the carry bypass the group. The rn-bit adder 
is shown in Figure 2.7(a), and a network of these modules implementing an n-bit 
adder is indicated in Figure 2.7(b). The carry into group j + 1 is described by the 
following expression, 5 

(j+l) "(J) (P(J)) '  (J) P(J) 2.29 
C in - -  ~ o u t  + C in 

At the bit level, the carry is propagated by the group when it is propagated by all 
the bits in the group. That is, 

m - 1  
P (J) - -  AND p; 2.30 

i = 0  

where the index 0 < i < m - 1 is for a generic group. 

5. In many descriptions of the carry-skip scheme, an AND-OR network is used instead of the 
multiplexer, resulting in Cln J+l) = c~J~+ CI j) P(J). However, to obtain the expected speedup 
with this implementation, it is necessary that all transient c(J) be O, as discussed further in --out 

Example 2.3. 
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CSK-m adder 
! p(J) 

(j+ 1), 
Cin ! ; C(oJu~ 

' I 11~- 
I 

x ( J )  y(J) 

t m t m 
m-bit carry-ripple adder 

(group j) 

s(j) t m 

(a) 

r I 
c (J) in 

Module (n/m - 1) Module j Module 0 

m t m t m ~A~CS~! 
A *4 

~ ~ 
(b) 

F I G U R E  2.7 Carry-skip adder: (a) A group with carry bypass (CSK-m adder). (b) n-bit carry- 

skip adder. 

2 , 5 ~ 1  Delay 
Since there is no completion signal, the worst-case delay has to be considered. To 

identify this worst-case delay it is important  to notice the following: 

~ As indicated in Section 2.1, the addition process produces several carry- 

propagation chains. Each of these chains is initiated in a bit with p = 0, 

propagates through consecutive bits with p -- 1, and terminates in a bit 

with p = 0. These chains can propagate a 0-carry or a 1-carry and therefore 

can start with (x i ,  y i )  - -  (0, 0) or (1, 1). An example of  these propagation 

chains is shown in Figure 2.8. Note that the carry advances in all chains 

simultaneously. 
�9 In a carry-skip adder, a chain is initiated in a group and can either 

terminate in the same group, or skip zero, one, or more groups, and then 

terminate in another group. Tha t  is, the carry in a chain can at most travel 

inside two groups: the initiating group and the terminating group. 
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c16 6'7 C3 Cl 

c8 c4 c22 
C12 C 9 C 5 
C13 C10 C6 4 

C14 el 1 
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I G r o u p 3  I I G r o u p 2  I [ G r o u p l  I I G r o u p 0  I 
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~ Carry-ripple path 

Group size m = 4 

FIG U R E 2.8 Carry chains in carry-skip adder. (MUX delay not included.) 

As a consequence of the property above, the worst-case delay is produced when a 
carry is generated in the first bit of the adder (no propagate in the first group), and 

propagated through all bits up to but not including the most significant bit. That 

is, it skips all groups except the first and last and terminates in the last bit of the 

last group (to produce the sum). This critical path is illustrated in Figure 2.9(a) 
and (b). 

The worst-case delay is then 

TCSK - -  m tc + t m . x  + - -  - -  2 t m . , +  ( m  - -  1)tc + ts 
m 

E X A M P L E  2 , 2  Consider the case n - 32, rn - 4. To simplify, consider t~ - ts = tmux = 8.  

From the expression we obtain 

TCS K - -  1 5 8  

In contrast, the delay of the corresponding carry-ripple adder (expression 
(2.21)) is 328. �9 

We now illustrate that the use of an AND-OR network, shown in Figure 2.10, 

instead of a multiplexer can produce a delay as large as that of the carry-ripple 

adder. 
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Group 3 Group 2 Group 1 Group 0 

I I I  I I  I I  I 
X 1 1 1 01 1 0 0 1  0 0 0 1  0 0 1 
Y 0 0 0 10 0 1 10 1 1 10 1 1 1 

15 12 8 4 0 
! ~ ! ! I ! ! ! ! I ! ! ! ! I ! Posi t ion 

c 1 

C 2 2 

c 3 

c4 4 

c 8 c 5 

c12 c 9 c 6 6 

c16 c13 c10 c7 

c14 Cll 8 

c15 
Group size m = 4 

(b) 

F I G U R E  2 . 9  (a) Critical path in carry-skip adder. (b) Il lustration of  the worst-case situation 

for n = 16. ( M U X  delay not included.) 

(j+l) ] (j) 

ci, m-bit c a r , - r i pp l e  addor  _. _ %, 

( g r o u p  j )  I "  

I 

(J), 

p(J) 

G- 
F ! G U R E 2.10 Carry-sk ip  adder  using AND-OR for bypass. 
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E X A M P L E  2 . 3  Consider the case in which the carry-skip adder is implemented with an AND- 
OR network instead of multiplexers and that the following two additions are 
performed, one after the other without clearing the carries left at the end of 
the first addition. 

Operation 1 

x 0000 1111 0000 1111 

y 1111 0000 1111 0001 

c 11111 1111 1111 111- 

Cin ~ 0 

Operation 2 

x (change last bit) 0000 1111 0000 1110 

y (change last bit) 1111 0000 1111 0000 

c 00000 0000 0000 000- 

t in  --- 0 

Now consider how this change of carries is produced. We consider the se- 
quence of events, assuming that tp, g ~ tc  - -  tAND-OR --- 1. 

�9 First (at t -- 0) the inputs are changed (all bits simultaneously, in the 
example only bit 0 changes). 

�9 At time t -- 1 the p and g s  of all bits are produced (only bit 0 changes 

f r o m g -  l t o k =  1). 
�9 At time t - 2, the carry C l - 0 is produced. 
�9 This carry is propagated through the 4-bit carry-ripple adder, so that at 

t -- 5 we obtain c4 - 0. Up to here it is as expected in the carry-skip 
adder. 

�9 Now, since for all bits in the second group p - 1, the carry skips the 
second group and a 0 appears at the input of the OR gate. However, the 
other input to the OR gate is still 1, since all the carries in the second 
group are still 1 (the 0-carry has just entered that group). Consequently, 
the skip network is not effective in this case. The carry-in to the third 
group will become 0 only after this 0 has propagated through the second 
group and appeared at the input of the OR gate. 

�9 This same process will occur for all groups and the delay of the adder 
will be the same as the worst-case delay of the carry-ripple adder, u 
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2~5 ,2  

EXAMPLE 2 ,4  

One way to use the AND-OR network and produce the desired speedup is to initialize 

all carries to 0 and assure that no glitches occur at the carry-out of the groups. 

This can be accomplished by having a precharge phase, used in dynamic logic. 

G r o u p  S ize  

As shown in expression (2.30), the delay of the carry-skip adder depends on the 

size of the group m. Differentiating this expression with respect to m, we obtain 

mopt = x / ( tm ,x /2 tc )n  (minimum delay) 
2.32 

Topt ~ x/8tmuxtcn 

which is proportional to x/~. 

V a r i a b l e  G r o u p  S i z e  

The previous analysis assumes that all groups are of the same size. However, this 

does not produce the minimum delay. This is due to the fact that, for instance, car- 

ries generated in the first group have to traverse more skip networks to get to the 

last group than carries generated in some internal group. So we now consider the 

case in which the groups can have different sizes. Because of this, to determine the 

worst case we need to compare the delay of all carry propagation chains. A particu- 

lar chain is initiated in group i and terminates in group j with j > i, being prop- 

agated by the j - i - 1 groups in between. Consequently, if group i has size m i ,  

TCSK = ma.x((mi + m j  -- 1)re + ( j  -- i -- 1)tmux) + tmux + ts 2.33 
t , . l  

with Y~mi - -  n. Because of the term j - i - 1, the worst-case delay can be 

reduced by reducing the size of the groups close to the beginning and end, as 

illustrated in Figure 2.11. 6 

The  effect of variable group size on the worst-case delay is illustrated for 

n = 60 and tc = ts = tm,x - -  ~. 

m = 6  

m i  = 4 , 5 , 6 , 7 , 8 , 8 , 7 , 6 , 5 , 4  

TcsK = 218 

TcsK = 178 

6. Further details in Guyot et al. (1987) and Chan et al. (1992). 



Carry-Lookahead Adder (CLA) 71 

2 , 6  

2,6=1 

F ! G U R S 2.11 Opt imal  distribution of  group sizes in carry-skip adder. 

Further reduction of the worst-case delay can be obtained by putting several 
groups into blocks and providing carry-skip around blocks. This process is gen- 
eralized to multilevel carry-skip adders (see Exercise 2.9). 

Carry-Lookahead Adder (CLA) 
The basic idea of this adder is to compute several carries simultaneously. In the 
extreme, all carries could be computed at the same time. As stated in expression 
(2.6), if we call x (i) and y (i) the integers represented by the bit-vector from bit 0 
to bit i; that is, 

i 

X (i) __ y ~  Xv2 v 2.34 

v=0 

and similarly for y (i), the carry is computed by the following expression: 

C i - -  1 if(x(i-1) q_ y ( i -1 )  + c 0 )  >_ 2 i 2.35 

This results in a switching function of 2i + 1 variables. It is known that any 
such function can be implemented by a two-level network (for example, NAND- 
NAND). However, for large i this implementation is impractical because of the 
large number of gates with large number of inputs. Because of this, in the carry- 
lookahead adder the input vector is divided into groups and the carries inside a 
group are computed simultaneously. 

One-Level Carry-Lookahead Adder (1-CLA) 

Let us consider first the one-level carry-lookahead adder. As shown in Figure 
2.12, the input vector is divided into groups ofm bits and the groups are connected 
as in a carry-ripple adder. However, in contrast to the carry-ripple adder, after 
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_x(k-1) .~(k-1) _X (j) .~ (j) 

fmfm fmfm 
cn I CLA I_ . . . ~  ] CLA 

~ [ k - 1  ~-" I J 

- fm f m k n /m  

s(k-1) _s (j) 

(o) y(o) 

m 

_X(1) .y(1) _X 

fmf m fmf 
I1 Czm] CLA 1_ cm ] CLA I_ Co 

" " ~  I 1 r I o v 

i m f m 
S(1) S (0) 

F I G U R E  2.12 One-level carry-lookahead adder. 

the input carry to the group is known, all carries inside a group as well as the 

output carry of the group are computed simultaneously. Consequently, if we call 

tgroup the delay of this calculation, we obtain the worst-case delay 

n 
T1_c~ = --tgroup + ts 2.36 

m 

Now let us consider the implementation of the group module. To simplify the 

notation, we index the bits of a generic group from 0 to m - 1 and call the carry 
into the group co. We could implement directly the switching function resulting 
from the arithmetic expression (2.34) in a two-level network. However, it can 
be shown that the number of gates required for m > 4 would be too large for 
typical implementation. Because of this, it is more convenient to add another level 
producing the variables Pi, g i ,  anda i, which we already introduced in Section 2.1. 

That is, 

Pi  = x i  (~ Yi 

g i  = x i Y i  

a i ~ x i  + Yi 

2.37 

Consequently, as shown in Figure 2.13, the module consists of three parts: the 

computation ofpi ,  gi ,  ai ,  the computation of the carries in the carry-lookahead 

generator (CLG), and the computation of the sum s i = Xi  (~ Yi (~ Ci = Pi f~ Ci. 

The outputs A and G are used for the carry-lookahead adder with more than 

one level. 
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c4 ..------I~ 
! 

G ~--I--- 
A ~--I--- 

Y3 x3 

I t ...... 

I 
g31 a31 P3 

CARRY-LOOKAHEAD GENERATOR 

P3 c3 P2 c2 Pl Cl PO 

t 

Y2 x2 Yl Xl YO Xo CLA-4 

. . . . . . . . . . . . . . . . .  t:iit --/, 
g2] 2] P2 g l ~ P l  g 0 - ~ 0  

! 

! 

! 

! 

(CLG-4) -" ', co 
! 

! 

! 

! 

! 

! 

s 3 s 2 s 1 s o 

I~laUlll! 2.13 Carry-lookahead adder module CLA-4 (m = 4). 

N o w  we consider the computat ion of  the carries. The  switching expression 

for the carry-out of  a 1-bit adder is defined in (2.12) as 

Ci+l  = g i  + a i c i  2.38 

We determine expressions for all the carries in the group by substitution. For  
example, for a group size of  4 (m = 4), we get 

C1 - -  go  § aoco 

c2 - -  g l  §  = g l  §  §  - -  g l  §  §  
2.39 

We see that c2 -- 1 i fa  carry is generated in bit 1, or i fa  carry is generated in bi t0  

and alive (not killed) in bit 1, or if c0 -- 1 and it is alive in bits 0 and 1. Similarly 

then we can write 

C3 - -  g2 + a 2 g l  § a 2 a  lg0 § a 2 a  la0c0 

C4 m g3 + a3g2 § a 3 a 2 g l  § a 3 a 2 a  lg0 § a 3 a 2 a  laoco 

An implementat ion is shown in Figure 2.14. 

2.40 
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C L G - 4  

g3 a3 g2 2 tgl go t ao 
. . . . . . . .  a ~  . . . . . . . . .  

i _ A 

c 1 

c O 

F I G U R E  2.14 4-bit carry-lookahead generator CLG-4. 

This implementation is easily generalized to any number of inputs: ci+ 1 is 1 
if a carry is generated in bit i, or if it is generated in bit i - 1 and alive in bit i, 

and so on. The general expression is 

Ci+I "~ g i  + a i g i - 1  + a i a i - l g i - 2  + �9 �9 �9 + ( a i a i - 1  �9 �9 �9 a o ) c o  2.41 
or equivalently 

The implementation ofci+l requires 

�9 One oR gate ofi  + 2 inputs 

�9 i + 1 AyD gates with 2, 3, . . . ,  i + 2 inputs 

As can be seen, the number of gates and the number of inputs per gate increases 

with the size of the group. This limits the maximum group size for a practical 

implementation. 
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Delay 

The delay of this implementation is given by the following expression (see Figures 
2.12 and 2.13)" 

TI-CLa --  (Computeai,  gi )  + (Ripple between groups) -I- (Computes/) 

Consequently, calling tclg the delay of the carry-lookahead generator, 

n 
TI_CLA -- ta, g -~- mtclg q- ts 2.43 

As in the carry-skip adder, the dependency on n is now divided by the group size 
m. The delay of the one-level carry-lookahead adder is smaller than that of the 
carry-ripple adder as long as tclg is smaller than mtc.  Whether it is faster than the 
carry-skip adder depends on the relative values Oftc, tmux,  ta, g ,  and tctg and on 
the corresponding group sizes. 7 

2 . 6 . 2  Two-Level Carry-Lookahead Adder 

For large n the number of groups in a one-level CLA is large, resulting in a 
slow operation. To reduce the delay, apply the CLA principle among groups. As 
defined in Section 2.1, for each group we have two signals: A = 1 if a carry is 
alive in the group and G = 1 if a carry is generated by the group. Consequently, 
the carry-out of the group is described by the following switching expression: 

Cout = G + Ag'in 2.44 

The switching expressions for A and G are 

m--1 
A = ANDai  (group alive) 2.45 

i=0 

m - - l ( m - 1 )  
G -- OR ANDai  gj  (group generate) 2.46 

j = 0  i=j + l 

The implementation for a group of 4 bits is shown in Figure 2.14. 
A variation of the CLA adder, called the Ling adder, which reduces the 

complexity of producing the group generate, is considered in Exercise 2.18. 

7. The group for the carry-skip adder might be larger since the number of gates is smaller. 
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N o w  we define a section o fp  groups and determine with a C L G  the carry-out 

of  each group in the section. Tha t  is, 

c ~1) = G o  + Aoco 

C (2) = G1 + A1Go + A1Aoco 

, , .  

c (t') -- GI,_I + A t , - 1 G p - z  + " ' "  + ( A p - i A p - 2 " - "  Ao)co 

2.47 

Once the carries out of  the groups are produced, these carries are used by the 

first-level C L A  modules to produce the bit carries and the sums. Figure 2.15 

shows a 32-bit adder with two-level lookahead (with p = m = 4). 

Note  that the C L A  module is used twice: first to compute A and G (which are 

independent  of the carry-in to the group) and then, once the carry-in is known,  

to compute the internal carries and the sum. Moreover, in this case, the carryout 

of  the C L A  module is not used. 

F I G U R E  2.15 Two-level carry-lookahead adder (n -- 32). 
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2 . 6 . 3  

Delay 
The delay is given by the following expression (see critical path in Figure 2.15): 

n 
T2_ci~ -- ta,g + tA,a + ~ t c l g  + tclg + ts 2.48 

p m  

This delay is smaller than that of the one-level CLA because of the factor n ~pro 

instead of n / m .  

Three and More Levels 

The scheme can be extended to three levels by having lookahead between sections. 
In general, for L levels oflookahead, the critical path corresponds to the following: 
(to simplify the notation we consider the case in which the groups at all levels 
have the same size m) 

�9 afirstlevel tocomputea i ,  p i , a n d g i  (Pi not in  the critical path) 
�9 L - 1 levels ofcarry-lookahead generators to compute the As and Gs 
�9 n / m  L carry-lookahead generators connected in a ripple fashion to compute 

carries of sections at level L 
�9 L - 1 levels of carry-lookahead generators to compute the carries of bits 

(the last of these included in the CLA module) 
�9 one level of exclusive-oR gates to compute the sum 

The corresponding delay is then 
n 

TL_c~ -- t~,g + ( L  - 1)tA, a + m----Etclg + ( L  -- 1)tdg + ts 2.49 

Moreover, since the same module is used to compute the A, G signals and the 
corresponding carries, the number of CLG modules is 

/" ( m  ~ )  m/'-lz,( Nclg -- ~ -- n 2.50 
m m - - l )  

i 1 " ~  

For L -- 2, m = 4, and n -- 32 this results in Nclg "- 10, as shown in Figure 2.15. 
The maximum number of levels is obtained when there is only one section 

at level L. That, is 

L 
m ~ g /  

OF 

L = log m n 2.51 
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EXAMPLE 2 . 5  

T h e  resulting delay is 

T m a x - C L A  - -  ta,g + (log m n -- 1)tA,G + (log m n)tctg + ts 2.52 

T h a t  is, the delay has a logari thmic dependence  on n. Making  tA,G - -  tdg, we get 

that  Tmax-CLA is proport ional  to 2 log mn.  

Moreover,  in this configurat ion with m a x i m u m  n u m b e r  of  levels, the n u m b e r  

of  C L G  modules  is 

n - 1  
- -  2.53 Nmax-dg --  m -- 1 

F i g u r e  2.16 i l lustrates a three- level  c a r ry - l ookahead  adde r  for n - 8 and  

m - 2. T h e  delay is 

TCLA8_2 - -  ta,g 71- 2tA,G + 3tdg + ts 2.54 

proportional to 2 log 2 8. 

Carries from CLG-2 modules 

C (3) _. C 6 C (2) = C 4 C (1) = C 2 

x~ ~ 1  x ~ ~ ]  xl ~11 ~_o ~0 

/ s: I s :  s, / so 

c~"lA ~' G~I)~(I)~ C4 G(1 l) ~(11) c~l, lA~l, 
I_ I II r 

a~ 1 ) I A ( 1 ) ~  c(3)= c6 * 

c8 I 
-. [ C L G - 2  

0 

I_ 
I- 

~ C (1) = C 2 

* Carry-out is not used 

~ -~--c 0 

F I G U R E  2 . 1 6  Three-level carry-lookahead adder (n = 8, m = 2). 



P r e f i x  A d d e r  7 9  

2~6o4 

2 . 7  

Choice of Group Size and Number of Levels 

As can be seen the group size and the number of levels affect both the delay and 
the number of modules. A suitable choice depends on the technology and on 

the adder requirements. With MSI technology, the size of the group was mainly 

determined by the number of pins in a package. Moreover, the best size was the 

maximum that could be included in a chip since this reduces the number of chips 

as well as the number of signal hops between chips. On the other hand, with VLSI 

technology, in which a whole adder fits in a chip, the constraints are different, and 
simplicity of cells and regularity of connections become the most critical. Because 
of this, groups of size two are quite popular. 

Prefix Adder 
The prefix adder is a structure that is based on considering the carry computation 
as a prefix computation. In general, a prefix combinational network of n inputs 

xo,  x2,  . . . ,  Xn-1  uses the associative (arbitrary) operator o to produce the vector 

of outputs described by 

Zi  m X i  0 X i _  1 0 . . .  0 X 1 0 X 0 2.55 

As indicated in Section 2.1, for the carry computation we have 

zi  = (g{i,0), a(i,0)), xi  = (g i ,  a i )  2.56 

and the operator (implemented by a cell) has as input two pairs of bits (gL, g R) 

and (a/., a R) and as output one pair (gout, aout). It is described by the switching 
expressions 

gout = g I. + a L g  R 2.57 
El out ~ a L a R 

where as before, g anda -- k' correspond to generate and to alive signals, respec- 
tively. 

With this cell, a variety of networks are used to produce the carries. They are 

all based on the fact that the carry c i corresponds to the generate signal spanning 

the bit positions ( -1)  to i - 1. We call this generate signal g(i-1,-1) so that 

Ci = g(i--1,-1) 2.58 

where (g-I, a_l)  "- (co, co). 
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(a)  (b)  

FIGURE 2.t7 Composition of spans in computing (g, a) signals. 

A prefix adder is then an interconnection of the above-mentioned cells 

to produce g(i-1,-1) for all i. These carries are then used to obtain the sum 

bits as 

S i = Pi ~]~ Ci 2.59 

To obtain the carries the cells are connected in a recursive manner to produce 
the g signals that span an increasing number of bits. That  is, beginning with the 
variables g and a of each bit, the first level of modules produces g and a for 
groups of two bits, the second level for groups of four bits, and so on. In general, 

if the right input spans the bits [right2, right1] and the left input spans the bits 

[left2, left l] with right 2 + 1 >_ le./~ 1 then the output spans the bits [left 2, right 1] 
as illustrated in Figure 2.17. For instance, for right = [5, 2] and left -- [8, 4], the 
output spans the bits [8, 2]. 

An array of cells for an 8-bit adder is shown in Figure 2.18. The outputs of 

the cells are labeled with a pair of integers corresponding to the initial and the 

final bit that is spanned by the output. Because each level produces a doubling of 

bits spanned, for n power-of-two, the number of levels is 

L = log 2 (n) + 1 2.60 

where the additional level is due to the carry-in co. In the figure for eight bits 

there are four levels. Note that the additional level due toc0 does not increase the 
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F I G U R E  2 .18  8-bit prefix adder. (Modules to obtain Pi,gi ,  a n d a i  signals not shown.) 

overall delay because the computation of c8 is in parallel to the calculation of the 
sum bits. The expression for the delay is 

Tp A = ta, g ~- log 2 (n) tcell + tXOR 2.61 

Since each level (except the last) has n /2  cells, the number of cells is 

N -- (n/2)  log 2 n + 1 2.62 

(not including the gates to produce gi  and ai nor the XOR gates). 
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Since the cells are simple, their delay and area are small, resulting in an effec- 
tive implementation. The main disadvantage of this implementation is the large 
fanout of some cells (as well as the long interconnection wires). For example, in 
the 8-bit adder there is a cell with internal fanout of four, so that in general for 
an adder of n bits the maximum fanout is n/2. The large fanout and long inter- 

connections produce an increase in the delay, which can be reduced by including 

buffers. However, the delay of these buffers might still be significant. In such a 

case, the large fanout can be eliminated by two approaches, or a combination of 

both: 

1. Increasing the number of levels 

2. Increasing the number of cells 

We now illustrate an example of each of these approaches. 

: 2 . 7 . 1  Increasing the Number of Levels 

The fanout can be reduced by increasing the number of levels, as shown in 

Figure 2.19. This is achieved by reducing the parallelism in the determination of 

the carries. For instance, the calculation ofgl6,3 ) is obtained from g~5,3) instead of 
g(4,3). The resulting number of levels in the limit (fanout = 2) is 

L = 21og2(n - 1) + 1 2.63 

where the last 1 corresponds again to the stage with one cell, due to co. The 
number of cells is the same as for the basic scheme. Of course, the disadvantage 
of the scheme is the added delay of the additional levels. To reduce the over- 
all delay, a choice is made between the maximum fanout and the number of 
levels. 

2~7o2  Increasing the Number of Cells 

The maximum fanout is reduced to two (without increasing the number of 

levels) by the structure shown in Figure 2.20. This structure is constructed as 
follows: 

Level 1 is formed of cells having as inputs neighboring bits. So, groups are 

formed with bits c0 and 0, with bits 0 and 1, with bits 1 and 2, and so on. 
Consequently, for n bits there are n cells, instead of the n/2 cells required 
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F I G U R E  2 . 1 9  8-bit prefix adder with maximum fanout of three and five levels. (Modules to 

obtain Pi,gi ,  andai signals not shown.) 

in this level for the "basic" array. T h e  ou tpu t s  are labeled as indica ted  

above. 

Level  2 combines  ou tpu t s  of  cells o f  level 1 whose  indexes  differ  by 2. T h a t  

is, c0 and  1, 0 and  2, and  so on. T h e r e  are n - 1 cells at this level. 



84 e x A p 1" E R 2 Two-Operand Addition 

(gt., at.) (gR, aR) 

g a 2 ut = gt. + at. glr 
( out' out) aou t=a  L a  R 
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P0 

F I G U R E  2 . 2 0  8-bit prefix adder with minimum number of levels and fanout of two. 

(Modules to obtain Pi,gi, and ai signals not shown.) 

�9 Level 3 combines outputs of  cells of  level 2 whose indexes differ by 4. That  

is, co and 3, 0 and 4, and so on. There  are n - 3 cells. 

�9 In general, level/~ combines outputs of  level (k - 1) whose indexes differ by 

2 k-1. It has n - (2 k-1 - 1) cells. 

As in the basic scheme there are logz(n ) + 1 levels. Note  again the single cell in 

the last level, because of  input co. As can be seen, the fanout of  all cells is two and 
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the connections are regular. 8 The  number  of cells is 

N - -  n + (n - 1) + (n - 3) + (n - 7 ) . . .  + (n - (n /2  - 1)) + 1 og2nl (o 1) 
= ~ (n - - (2  i -  1)) + 1 - - ( n  + 1)(log2n ) -- 2 i + 1 

i=0 i=0 

= (n + 1)(log2n ) - - ( n  -- 1) + 1 

= (n) (log 2 n -- 1) + log 2 n + 2 2.64 

As can be seen from the previous expression, the number  of  cells of  this scheme is 

about twice that of  the basic scheme. If  the number  of  cells is too high, it is possible 

to use an intermediate scheme, which has an intermediate max imum fanout as 

well as an intermediate number  of  cells (see Exercise 2.22). 

Prefix Adder with m-Bit Group 

The prefix adder can be generalized to use cells that produces the (g, p)  pairs of  a 

group ofm inputs. This would reduce the (minimum) number  of  levels to log mn. 

However,  the cell complexity and delay increases with m. Details are given in the 

references at the end of the chapter. 

2~ Carry-Select and Conditional-Sum Adders 
These two schemes have the same principle and are based on the fact that the 

main component  in the delay of  the carry-ripple adders is the propagation of  the 

carry, so that to obtain the sum of bit / it is necessary to wait until the carry has 

propagated from bit 0 to bit i. Because of  this, the idea of these schemes is to 

compute in parallel two conditional sums: one for a 0-carry and one for a 1-carry, 

and then select among them when the carry is available. The  two schemes differ 

in the recursive structure; in that sense the carry-select adder is like the one-level 

lookahead and the conditional-sum adder like the maximum-level  case. 

The  basic principle is to divide the adder into groups ofm bits and to compute 

for each group two conditional sums and carry-outs. If  we consider a generic group 

8. However, the connection span increases with the level, so that buffers might still be needed 
because of the capacitance of these wires. 
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Fill u RE 2.21 (a) Obtaining conditional outputs. (b) Combined conditional adder. 

in which we label the bits from 0 to m - 1, we get 

(c ~ , S ~ - -  A D D ( X ,  Y, co -- 0) 2.65 

(c 1, S 1) -- A D D ( X ,  Y ,  co - -  1) 

where X, Y, and S are m-bit  vectors. 

Then,  when the carry-in of the group is known, select from these two forms 

(c S O ) if c 0 - - 0  2.66 
(era, S ) - -  ( c ~ ,  S 1) i f c 0 - - 1  

The  two m-bit  adders for the same group (Figure 2.21 (a)) can share components. 

Because of this, it is better to define a module (Figure 2.21 (b)) that has as input 

the two m-bit  operands and produces two (m + 1)-bit results. We call this mod- 

ule an m-bit  conditional adder ( C O N D - A D D E R )  and use it in the subsequent 

structures. 

Carry-Select  Adder  

In the carry-select adder the conditional principle is applied in a linear structure, 

as shown in Figure 2.22. It consists of an m -bit conditional adder module for each 

group ofm bits and ( n / m )  - 1 multiplexers. 

The  delay is 

TcsEL - -  tadd, m + - -  --  1 tmu, 2.67 
m 

where tadd, m is the delay of the m-bit  conditional adder. 
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x(k-1) y(k-1) 
k = n/m g~ m 9~ m 

I ~ o ~ o ~ l  
I ADDER I 

tm+l~ m+l 

Cn < tm+l  coo 

u 

s(k-1) 

x(i) y(i) 

+m tm 
ADDER I 

fm+l~m+l 

MUX I +11 .'4-'o.~ I 

S (i) 

X(1) y(1) X(0) y(0) 
t m ~ m  ~ m t m  

I ADDER I ADDER ~ CO 
fm+l~m+l m 

MUX I_ 
I- 

t 
m+l 

S(1) S (0) 

F I G U R S 2 . 2 2  Carry-select adder. 

XL YL 

~ n12 ~ n12 

CONDITIONAL 
ADDER 

 c ,sO, 

I MUX 

n / + l + 1 1 ~  n / 2 

(c1, S 1) 

XR YR 

CONDITIONAL 
ADDER 

n/2 n/2 

I I 1 1 o so 

I Mux I 

n / + l + 1 1 ~  n / 2 

(c ~ S ~ ) 

F I G U R E 2.23 Doubling the number of bits of the conditional sum. 

2 . 8 , 2  C o n d i t i o n a l - S u m  A d d e r  

In the conditional-sum adder, the conditional principle is applied recursively. 
That is, two groups are combined to form a double-length conditional result as 
follows (see Figure 2.23): 

1. Decompose. 

X = (XL,  XR) 

Y =(YL, YR) 
2.68 
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2. Compute concurrently. 

(c O, S o) = ADD( XL, YL, O) 

(c 1, S 1) -- ADD(XL, YL, 1) 

(c ~ S ~ = ADD( XR, YR, O) 

(c~, S 1) = ADD(XR, YR, 1) 

3. Combine to obtain double-length conditional results. 

2.69 

(cO, SO) _ { (c~ (S~ S~ ) i fc~ = 0 

(c[, (S1L, S ~ ) if c~ 1 

, S O ( 
(C 1, S 1) -- (c1, (SIL, $1 ) )  

2.70 

ifc~ = 0 

ifc~ = 1 

Note that the right portion of the output comes directly from the corre- 
sponding right input, without going through the multiplexer, whereas the 
left portion is selected by the corresponding carry-out of the right portion. 
A numerical example is as follows: 

2.71 

X L = 0 0 1 1  

YL - 1010 

(c ~ S ~ - - (0 ,  1101) 

(cl, S~) = (0, 1110) 

Combining we obtain 

XR = 0111 

YR = 1001 

(c o, S~ = ( 1, 0000) 

(c 1, S~) = (1, 0001) 

(c 0, S 0) _ (0, 11100000) 

(C 1, S 1) = (0, 11100001) 

A 16-bit conditional-sum adder is shown in Figure 2.24. 
We observe the following: 

�9 The span of conditional bits doubles each selection level. 
�9 The initial group size is ofm bits (limit is m = 1). 
�9 For n bits there are lOgE(n/m) selection levels 
�9 Ifcin is applied in the last selection stage, the number of 2-to-1 multiplexers 

is roughly n at each level, ignoring multiplexing of the carry-outs. IfCin is 
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Y15-12 

X15-12 

I 
I COND- 

ADDER I 

I 

[ MUX I MUX r 

Yll-8 

Xll_8 

COND- 
ADDER] 

q6 ~ 

MUX 
C 8 

I. 
I-" 

S15- 8 

]/?-4 
x7_4 

"--tS--t 5 
MUX [~ 

/ 

-' 4 

Y3-0 
X3_o 

I ADDER ]-- Co 
5 

m 

$7_ 4 $3-0 

FIGURS 2.24 16-bit conditional-sum adder (m = 4). 

available in the beginning, each successive selection stage doubles the 
number of correct least-significant bits of the sum, resulting in a decreased 

number of MUXes. 
�9 There is a large fanout for mux select signals. For instance, the select signal 

in the last level goes to n /2  + 1 MUX inputs. 

An example of the addition process with co available at the beginning is 
shown in Figure 2.25. The bold carries control the multiplexers. 

Delay 
The delay is formed by the delay of the m-bit adder plus the multiplexers. That 

is ,  

Tcond-sum - -  tadd-m JI- (log2(n/m))tmux 2.72 
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FIGURE 2.25 Conditional-sumaddition foreightbits withm = 1: (a)Template. (b)Example. 
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Y3 x3 Y2 x2 

I 
I FA 

I Latch 

FA 

Yl Xl Yo Xo 

FA --I-- FA 

S 3 S 2 S 1 S O 

F I G U R E  2 . 2 0  Pipelined carry-ripple adder (for group size of 1 and n - 4). 

C O 

2 = 9 

l ~  

Pipelined Adders 
The throughput of the adder can be increased by pipelining. To do this, pipeline 
registers are introduced to shorten the worst-case carry path. For example, a 

C RA adder is divided into groups of bits and latches are introduced, as shown 
in Figure 2.26. Most latches are used to synchronize inputs and outputs since 
different parts (groups) are processed at different cycles. The throughput R is 
determined by the delay of one group; that is, 

1 
R -- 2.73 

tgroup 

Adders such as conditional-sum and prefix adders are pipelined by introducing 
registers between the stages. In this case, no latches are required for synchroniza- 
tion of inputs and outputs. 

Variable-Time Adder 
Up to now we have considered fixed-time adders in which, although the actual 
addition time might be variable, it is necessary to consider the worst-case delay 
because there is no signal indicating that the operation has terminated. In contrast, 

the variable-time adders have a completion signal. 

In order to make use of the variation in delay, the adder has to be incorporated 

in a system in which the initiation of the next operation can be triggered by the 

adder completion signal. Such systems are called asynchronous (or self-timed). 
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The addition time is variable because of two factors: 

1. Variation in the delay of the components. This can be due to the fabrication 

process and to environmental factors, such as temperature. 

The actual input values. As discussed before in the carry-skip adder, the 
addition time depends on the longest propagation chain, and this length is 

dependent on the values of the inputs. 

Related to these two factors, we consider now two types of variable-time adders. 
The first is only concerned with the first factor, whereas the second takes both 

into account. 

. 

2 . 1 0 . 1  Type 1" With Self-Timed Carry Circuit 

As shown in Figure 2.27, this is a modification of the carry-ripple adder in which 

there are two carry signals: 

The coding is as follows: 

0 1 
c i c i 

0 0 

0 1 

1 0 

1 1 

c o 0-carry 

c] 1-carry 

6" i 

not determined (yet) 

1 

0 

* this case does not happen. 

Such a coding, known as double-rail coding, is typical of asynchronous design. 

Cn_ 1 n 

STFA 

en_l 

F 

c i c o 

STFA " ' "  

c ~ co ~ 

STFA = full-adder module 
with self-timed carry circuit 

STFA ~ STFA 

F I G U R E 2.27 Variable-time adder: Type 1. 
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Before each addition, a clearing step is performed that makes 

c o - c] = 0 (not determined yet) 2.74 

Then, the operation is started by setting 

! 
C O ~ CO, C~ -- CO 2.75 

The carry signals propagate through all n bits, and the addition finishes when 

1 o _ 1 2.76 F = c n + C n 

This signal indicates the completion of addition only if the delay of the sum of 
the last 1-bit adder is smaller than the delay of the carry of that adder. 

To assure that F = 1 is produced by the propagation of the carry signals 
through the whole adder, the expressions for the carry signals have to be modified 

t o  

C0+l - -  k i ( c  0 +C]) + pi  cO = kic] + (p i  + ki)C 0 

C~+ 1 - -  gi (c o+ c])  + p ic]  --  gicO + (p i  + g i )c ]  
2.77 

where as before, 

! 
ki - x~yi,  gi  - xi yi ,  pi  - xi ~]~ yi 2 . 7 8  

Note that both terms in the expressions depend on the carry-in so that the output 
carry can only change when the input carry pair is different from (00). This 
avoids initiating a carry chain at bit i > 0 and therefore that F could be 1 before 
finishing the addition (which depends on the longest carry chain). 

The sum is computed as 

$i = Pi ~ C) 2 . 7 9  

In this scheme, the carry propagates through all bits, independent of the value of 
the operands. Consequently, the addition time is 

n - 1  

Tvar_l --  ~ tc,i 
i=0  

2.80 

where tc,i is the actual  delay of the carry network of bit i. This contrasts with the 
carry-ripple adder, in which the delay corresponds to the worst case, which has 
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2,10o2 

to utilize the worst-case delay of the carry network, 
n--1 

T c ~  -- ~ max(tc ) -- n • max(tc ) 
i=0 

where max(tc) is the worst-case delay of the carry-out signal. 

2.81 

Type 2: With Parallel Carry Completion Sensing 

In this case we want to make use of the fact that the time of addition corresponds 

to the actual longest carry-propagation chain. The organization is as shown in 
Figure 2.28. 

Note that there are also two carries, but there are two differences with respect 

to the Type 1 adder: 

1. The carry-propagation chains should propagate simultaneously. This 

requires that the carries be defined by the following expressions: 

C0+l - -  ki + pi cO 2.82 

C)+ 1 - -  gi +pic) 
Note that while in the Type 1 adder the carry ci+l always waits for the 

carry ci; in this case the carry s is defined right away when either ki orgi 
is 1, initiating the carry-propagation chain. 

4 1 

CSFA .oo SF ~ 1 7 6  SF CSFA 

CSFA = full-adder module with 
carry completion sensing 

F I G U R E 2 .28  Variable-time adder: Type 2. 
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2. The addition finishes when the carries in all bits are defined. That is, the 
completion signal is 

n--1 

F = A NoD (c~ 2.83 

The implementation of this signal requires an n-input AND gate. This 
might be implemented as a tree of [log m n ] levels of m-input gates. 

As in the Type 1 adder, a reset step is required before each addition operation. 
The addition time is determined by the longest propagation chain. Consequently, 
the worst-case time is similar to that of the carry-ripple adder. However, the 
average time depends on the distribution of the operand values. For uniformly 
distributed operands, it has been shown that the average length of the longest 
carry-propagation chain is approximately log2(5n/4). In a particular situation, it 
is necessary to determine the average from the specific distribution. 

E X A M P L E  2 . 6  Consider the following operands for an addition. The propagation chains are 
indicated by the letters a,  b, c, d, and e. 

X 0 1 1 0 0 0 1 1 1 0  0 1 1 0 1 0  

Y 1 0 1 0 1 1 0 0 1  1 1 0 0 1 1 0 

+ a a a b c c c c c d d d d d d e Propagation chains 

Here the longest propagation chain is d. This determines the addition 
delay. �9 

We have presented variable-time adders based on the carry-ripple adder structure. 
However, it is possible to use as a basis any of the other adder structures studied 
in this chapter (see references at the end). 

Two's Complement and Ones' 
Complement Adders 
We have discussed several adder schemes for addition of positive integers (actually 
unsigned fixed-point numbers) in a radix-2 representation. We now discuss how 
these adders are used for addition of signed numbers in two's complement and 
ones' complement representations. 



96 r H ~ pT E R 2 Two-Operand Addition 

As shown in Chapter 1, the use for two's complement representation is 

straightforward: the n -bit sum output of the adder is the result, and the carry-out 

is discarded. Moreover, the overflow is detected from the most-significant bits of 

the operands and the result. 
For ones' complement addition it is necessary to add the carry-out. We now 

consider how this addition is done for a carry-ripple adder and for a prefix adder. 

For a carry-ripple adder the carry-out is connected to the carry-in (end- 

around carry) as shown in Figure 1.3. This produces a combinational network 

with a loop, so that a sequential behavior or oscillations can occur. To study this 

issue we consider two situations: 

The operands have at least one position in which X i ~ Yi = 0. In such a 

case, the carry loop is initiated and terminates in that position, effectively 

breaking the loop. In the following example this occurs for position 3. 

X 

Y 

7 6 5 4 3 2 1 0  

0 1 0 0 1 1 0 1  

1 0 1 1 1 0 1 0  

S 0 0 0 0 1 0 0 0  

cout=cin= 1 

2. All positions are such that X i ~ Y i --- 1. In this case, the result of the addition 
corresponds to the value 0. The actual representation of the sum depends on 
the value of the carry in the loop: if it is 0, then the output is 111 . . .  1, and if 
it is 1, the output is 000 . . .  0, which both represent 0 in ones' complement. 

However, in this case there might be an oscillation. This occurs if 

initially (when the operation is initiated) some carries are 1 and others are 0. 

This pattern of carries goes around the loop producing an oscillation in the 

output. To avoid this oscillation it is necessary to set the initial carries to a 

common value (either all 0 or all 1). This requires a "preset" phase in the 

operation of the adder. 
The fact that the carry chain is effectively broken by a pair for which 

xi ~ yi = 0 indicates that the delay of this modified adder is the same as 

the delay of the carry-ripple adder, since the worst-case delay is still 

determined by a carry propagation through n - 1 full-adders. 

For the prefix adder, the end-around carry approach could also be used. How- 

ever, if the carry-in is included at the top of the array, as shown for instance in 
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(g7,a7) (g6,a6) (g5,a5) (g4a4) (g3 a3) (g2a2) (gl,al) (go, ao ) 

Prefix network 

(Notes: no C in input; 
last level consists 

of "circle" modules) 

1 - - - - - -  

g(7,0) g(60) g(5,0) g(4,0) g(30) g(2,0) g(1,0) 
a(6,0) a(50) a(40) a(30) a(20 ) a(10) 

noaooo~ T X T T T T I Tl /  
~ I ' [  I ' l  I '1 ] '1 I '1 I '1 : 

c 7 c 6 ] J Co 

P P5 P P 3 ~  P 2 ~  P l ~  P 0 ~  

s 7 s 6 s 5 s 4 s 3 s 2 s 1 s 0 

FIGURE 2.29 Implementing ones' complement adder with prefix network. (Modules to 
obtain Pi, gi, and a i signals not shown.) 

Figure 2.20, this end-around carry would significantly increase the delay (see 
exercise 2.31). Consequently, a modification of the adder is more effective, in 
which the carry-in is added in an additional level. Figure 2.29 shows the result- 
ing adder. Note the high load on the end-around carry signal, which affects the 
overall delay. 

2,1:2 Adders with Redundant Digit Set 
We now consider adders in which the result is represented using a redundant 

digit set. The operands might be in conventional representation, or one or both 
also use a redundant set. The objective of having the output in redundant repre- 
sentation is to reduce the addition time by reducing the length of the maximum 
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X[i] 1 S[i] 1 

I I @ i+1]  

u I 

Cycle time Cycle time does not 
depends on precision depend on precision 

(a) (b) 

F I G U RE 2 .30  Accumulation with (a) nonredundant and (b) redundant representation of 

sum.  

carry-propagation chain. We consider the two main redundant digit sets: carry- 

save and signed-digit. 

These adders are used whenever the output in redundant representation is 
suitable. Typical cases of this are in accumulation (Figure 2.30), muhioperand 
addition, multiplication, division and square root, and other recurrences. These 

uses are described in the following chapters. 
The redundant representation has some disadvantages. One disadvantage is 

the increase in the number of bits required for the representation, which depends 
on the degree of redundancy. Another disadvantage is that some operations, such 
as magnitude comparison and sign detection, are difficult to perform in redundant 
representation. 

2 . 1 2 ~ I  Carry-Save Adder (CSA) 

The basic idea is to perform an addition of three binary vectors using an array of 

1-bit adders (full-adders 9) but without propagating the carries. As shown in 

Figure 2.31, the output is represented by two binary vectors called the carry 

vector and the pseudo-sum vector (or just sum, for short). In terms of the numbers 

9. In this application FA implementation with 2 HAs might not be effective because of a 
longer delay for sum than for carry. 
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Xn-1 Yn-1 Zn-1 Xi+l Yi+l Zi+l xi 3~ Z i Xo Yo Zo 

i l l  l i i  nil 
FA �9 �9 �9 FA FA �9 �9 �9 

il II FI 
vci+2 vci+ 1 VCl VCo 

vc n = Cou t 

(a) 

X Y Z 

Co.,_- I csA L tin 
I I- 

v c  v s  

(VCo=Cin) 

(b) 

F I G U R E 2.31 Carry-save adder: (a) Bit level. (b) Bit-vector level. 

Cin 

I 

represented by the binary vectors, we can write 

x + y  + z - - v c  + v s  - - v  2.84 

Consequently, the sum v of the three numbers x, y, z is represented by the two 
numbers v c  and v s .  This representation is redundant  since several combinations 
of the values of vc and vs  represent the same number  v. Another way of viewing 
this representation is to consider the corresponding bits of the vectors representing 
v c  and vs  as a digit in the radix-2 representation of v. Since these bits are added 
to obtain the result, they have three possible values : 0, 1, 2. Tha t  is, the carry-save 
representation corresponds to a radix-2 representation with digit set {0, 1, 2}. 

Since the carry output of the full adder of weight i has w e i g h t / +  1, the carry 

of bit 0 is vco  = 0. Consequently, it is possible to include a carry-in Cin such that 

b'C 0 - -  Cin 2.85 

The carry-out Cou t corresponds to the carry output of the last full-adder. That  is, 

C out - -  V C n 2.86 
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EXAMPLE 2 . 7  The following example shows the carry-save addition of three numbers. 

X 0 1 1 1 0 1 0 0 

Y 0 0 1 1 1 0 1 1 

Z 1 0 1 0 1 0 1 0 

VS 1 1 1 0 0 1 0 1 

(Cou,, VC ) 0 0 1 1 1 0 1 0 1 

digit value 0 1 2 2 1 0 2 0 2 

t /CO ~ Cin 

The carry-save adder produces a reduction from three binary vectors to two 
binary vectors. This is called a 3-to-2 reduction, and the adder a [3:2] adder. 

Uses 

The following two possibilities exist for the three input vectors: 

�9 Three conventionaloperands 
�9 One conventional operand and one carry-save operand (this is the case, for 

example, for the computation of accumulation) 

On the other hand, if two carry-save operands are to be added, producing a carry- 

save result, a 4-to-2 reduction is needed. In this case the adder is called a [4:2] 
adder. This reduction can be implemented by two CSAs, as shown in Figure 2.32. 
To reduce the delay, a special network can be designed (see Exercise 2.33). 

We discuss in subsequent chapters the cases in which these situations occur. 

Xi Yi Wi Zi 

II l l  Ill 

VSi + 1 VC i + 1 V~ VC i 

F I G U R E  2.32 [4:2] adder. 
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E X A M P L E  2 . 8  

Addition Time 

The time of carry-save addition (3-to-2 reduction) corresponds to the delay of one 
full-adder, independent of the number of bits. The 4-to-2 reduction implemented 
as in Figure 2.32 has a delay of two full-adder delays. However, as shown in 
Exercise 2.33, it can be implemented with a delay of only three XOR gates in the 
critical path. These delays are significantly smaller than those of carry-propagate 
adders. 

Conversion to Conventional Representation 

In some instances, it is necessary to convert a carry-save representation to con- 
ventional. This conversion is performed by using a carry-propagate adder with 
the two operands being the carry vector and the pseudo-sum vector. That is, 

V -- ADD(VS, VC, O) 2.87 

High Radix Carry-Save Representation 

One of the disadvantages of the carry-save representation is that the number of 
bits is doubled. This has an effect on the number of wires and on the number of 
cells required to store the value. To reduce the number of bits, it is possible to use 
a high-radix carry-save representation. Calling r the radix of the representation, 
the (pseudo) sum vs is represented in radix r and the carry vc has one bit per 
radix-r digit. 

The following example illustrates the addition of one carry-save (radix-8) 
operand and one conventional operand to produce a carry-save (radix-8) result. 
Note that the addition is performed per radix-8 digit and the carry-out is 
"saved" in the carry vector. 

XS 

XC 

Y 

V S  

Coup, VC) 

1 0 1 

1 

0 1 0 

1 0 1 

1 

0 0 1 

1 0 0 

0 

1 1 1 

'~ VC 0 --- Ci n 
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F I G U R E 2 .33  Radix-8 carry-save adder. 

The  corresponding implementation is shown in Figure 2.33. Of  course, this high- 

radix implementation results in an increase in delay: from the delay of one full- 

adder (for the radix-2 case) to the delay of a radix-r adder. 

2 .12~2  Signed-Digit Adder 
In this case the result of the addition uses signed digits, which is a fixed-radix 

representation with digit values from a signed-integer set. Tha t  is, 

n--1 

x "-- ~ Xi ri 2.88 
0 

with a digit set 

D - - { - b , . . . , - 1 ,  O, 1 , . . . , a }  2.89 

with the restriction a + b + 1 > r .  Ifa + b + 1 - r ,  the representation is nonre- 

dundant,  whereas if a -+-b + 1 > r ,  it is redundant.  In most cases, a symmetric 

digit set is used, that is, a - b. For this case, a redundant  representation has 

a > (r - 1)/2. In the sequel, we restrict our discussion to symmetric digit sets. 

Addition Algorithm 

The objective of the signed-digit addition algorithm is to eliminate the carry 

propagation. To achieve this the following two-step procedure is used: 
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�9 Step 1. Compute interim sum (w) and transfer (t) such that 

x + y  = w  + t  2.90 

At the digit level this corresponds to 

Xi ~- Yi - -  Wi -J -r t i+l  2.91 

That is, the transfer digit acts like a carry to the next position. 

�9 Step 2. Compute s = w + t, which is performed as 

S i = W i Jr ti 2.92 

This step should be performed without producing a carry. Consequently, as 

illustrated in Figure 2.34, the transfer digit propagates just one position. As 
shown, the result has n + 1 digits, the most-significant one corresponding to 

X 

nt 
SDA 

nt 
. . . . . . . . . . . . . . . . . . . . . . . . .  

S 
(a) 

Y 

nt 

Xn-1 Yn-1 

I 
I 

tnl 

I 

xi Yi xi-1 Yi-1 

I 

o o o  

ADD [ 

1 
Sn-1 

I 
I 

ti+l ] 

I 

I I 

iwiy 
~~176 

1 
s n s i 

TW 

xo yo 

I I 
I 

] Step 1 TW 

Wo~._..-.--t o 

I I ~oo I . 
1 
s o 

wi-1 ti_ 1 tl ] 
~ ' ~ - ~ 1 7 6  

ADD 

1 
si-1 

(b) 

F I G U R E 2 .34  Signed-digit addition. 
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a "transfer-out." Moreover, a "transfer-in" can be included as the transfer 

digit to the adder of the first digit. 

Since 

- a  ~ s i _~ a 2.93 

to assure that no carry propagation is produced in the second step, it is necessary 

that the decomposition in the first step be done so that 

- a  + t -  ~ W i ~ a  - t  + 2.94 

whcre 

- t -  ~ ti+l ~_ t + 2.95 

The specific addition algorithm depends on the representation of the operands. 

We now consider the following three cases: (A) both operands in signed-digit 

representation, (B) one operand conventional and the other signed digit, and 

(C) both operands in conventional representation. 

Case  A :  T w o  S i g n e d - D i g i t  O p e r a n d s  

This is the most general case and results in the most complex algorithm. We 

consider the case in which the digit sets of both operands and of the result are the 
same, namely, from - a  to + a .  In this case we have 

--2a ~___ X i ~- Yi ~ 2a 2.96 

Since X i -[- Yi --  r t i+l  + Wi and wi ~_ a - t +, we obtain for the largest values 

2a < r t  + + a - t + 2.97 

Therefore, a ~ (r - 1)t +, and becausea < r,  

- 1  ~ ti+l ~ 1 2.98 

and the algorithm becomes 

(ti+l, wi)  -- I 

(0, xi + Yi) 

(1, x i -[- Yi - - r )  

(--1, xi + Yi + r )  

i f - a  + 1 ~ X i + Y i  ~ a  -- 1 

if Xi -[- Yi ~ a 

if X i -~- Yi ~ --a 

2.99 
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We now determine a bound on a that has to be satisfied for the above 

algorithm. Consider the case x i  + y i  - a .  Since 

W i  - -  ( X i  -~- Yi - - r t i + l )  < a - -  1 2.100 

for this case it is necessary to have t i +  1 E 1, resulting in 

W i = a - r 2.101 

This is negative, so it is necessary to verify that W i > --a + 1. Therefore, 

a - - r  _>- -a  + 1  2.102 

so that 

2a _>r + 1  2.103 

o r  

a > (r + 1)/2 2.104 

Note that this value is larger than the min imum value for redundant  represen- 
tation. 

EXAMPLE 2 . 9  Consider  an addit ion operation with operands and results in a signed-digit  
radix r - 10 representat ion wi th  a - 6. 

This  pair ( r ,  a ) satisfies-a the bound above. The  first step requires - 5  _< 
w i  _< 5 a n d - 1  _< ti  < 1. 

m 

X 2 1 6 3 4 

Y 1 3 2 6 2 
m m m 

W 1 4 2 1 4 
E 

T 0 0 1 1 1 
m m 

S 1 3 3 0 4 �9 

Note that (2.104) is not satisfied for radix-2 with digit set { -1 ,  0, 1}. Since 

this case is important, a modification is developed as follows. 
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F I G U R E 2 .35  Double recoding method for signed-bit addition. 

Modified Signed-Digit Addition for r=2. We consider two approaches: the 
double-recoding approach and the approach that uses information from the pre- 

vious digit position. 

Method 1: Double recoding. The signed-digit addition can be viewed as a recod- 
ing from the digit set ofxi + yi (which is {-2,  . . . ,  2}), into the digit set of the 
result {-1 ,  0, 1}. In this method, two recodings (or signed-digit additions) are 

performed, as follows: 

1. The first recoding is from the digit set ofxi + yi, namely, {-2,  - 1 ,  0, 1, 2} 
to an intermediate set, for instance {-2,  - 1 ,  0, 1 }.10 

2. The second recoding transforms this intermediate digit set into the radix-2 

signed-bit set { -  1, 0, 1}. 

Both recodings are accomplished by applying the signed-digit addition algorithm. 
Figure 2.35 illustrates this method; as can be seen, the critical path is increased 

with respect to single signed-digit addition. 

10. The alternative intermediate digit set {-1, 0, 1, 2} is also possible. 
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The two recodings are defined as follows: 

Recoding 1 

Xi -~- Yi = 2hi+l + Z i E {-2,  - 1 ,  0, 1, 2} 2.105 

such that hi E {0, 1} and zi ~ {-2,  - 1, 0}. 

Consequently, the result of this recoding (addition) is 

qi  = 2;i -~- k i 2.106 

with qi E {-2,  - 1 ,  0, 1}. Note that the computation ofqi does not have to be 
done explicitly; that is, it can be kept as zi and hi .  

Recoding 2 

qi  = 2ti+l -+-w i E { - 2 , - 1 ,  0, 1} 2.107 

such that ti ~ {-1,  0} and wi E {0, 1}. 
Consequently, 

Si - -  Wi  -+- ti E {-1,  0, 1} 2.108 

Method 2: Using information from previous digit position. As before, 

1. Xi + Yi = 2ti+l + W i 

2. S i - -  Wi  -Jl- ti 

The critical values in step 1 are ]xi Jr- Yi[ = 1 because in this case it is not possible 

to satisfy the condition for ti+l and wi so as to produce a carry-free second step. 

However, in each of these cases two combinations of (ti+l, wi )  are possible, and 
we use information from the previous digit position to choose between them, as 
follows. 

Consider first the case xi + yi -" 1. The two possible combinations are 

(ti+l, w i )  -- (0, 1) and (ti+i, w i )  = (1, - 1 ) .  If we know that the transfer digit 
ti from the previous digit position will not be 1, then we can choose the first 
combination. Similarly, if we know that it cannot be - 1 ,  then we can choose the 
second combination. Consequently, we define the condition Pi, which gives us 
the required information, as follows: 

l 
0 if(xi, yi)  both nonnegative 

Pi - (which implies ti+ 1 ~ 0) 2.109 

1 otherwise (ti+ 1 ~ O) 
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Xi Yi P i_ l~Yi - l jp  ~ I yi-2 

, ,  I I 
Y 

F I G U R f 2.36 Signed-bit addition using the information from previous digit. 

EXAMPLE 2 . 1 0  

By symmetry, this information is also useful for the case X i -~- Yi = -- 1. Using Pi, 

the first step results in the following table: 

xi +Yi 
2 

1 

1 

0 

- 1  

- 1  

- 2  

Pi-1 ti+l wi 
w 

O(ti > O) 
l(ti < O) 

O(ti > O) 
l(ti ~ O) - 1  

1 

- 1  

1 

0 

1 

The module-level implementation of this algorithm is shown in Figure 2.36. 

m m 

X 0 1 1 1 1 1 0 1 1  

Y 0 1 1 0 1 0 1 0 1  

P 0 0 0 0 1 0 0 1 0  

n m 

W 0 0 0 1 0 1 1 1 0  

T 0 1 1 0 1 1 0 0 1 0  

D 

S 1 1 0 0 1 1 1 0 0  �9 
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E X A M P L E  2 . 1 1  

C a s e  B :  B o t h  O p e r a n d s  C o n v e n t i o n a l  

This  is the other extreme case, resulting in the simplest a lgori thm. In this case the 

d i g i t s e t o f t h e o p e r a n d s i s 0  < x i ,  yi ~ r - 1 .Consequent ly,0 < x i + Y i  <_ 2r - -2 .  

We now determine  the bounds t i+l E [ t - ,  t +] and w i  E [w- ,  w+].  Since the 

sum is always positive, we get t -  -- 0. To de te rmine  t + and w +, consider the 

m a x i m u m  value o f x i  + yi m 2r - 2. Tha t  is, 

r t  + + w  + > 2 r - 2  2.110 
m 

To satisfy the condition (2.93), we make  w + - a - t +, resulting in 

t + > 2  a 2.111 
- r - 1  

Tha t  is, 

t+  - l 1  i fa  - - r - 1  
/ 2 otherwise 

In summary,  ti+l and W i are bounded as follows: 

2.112 

0 < ti+l < t + --a ~_~ W i ~ a - - t  + 2.113 

The  a lgor i thm for a -- r - 1 is 

if X i -~- Yi < r --  2 

if X i -~- Yi > r --  1 

(0, X i + Yi) 

(ti+l, W i ) -  (1, X i + Y i - - r )  

On the other hand the a lgor i thm for r + l  , -T- < a < r - - l i s  

if X i -~- Yi <- a -- 2 

i f a -  1 ~___X i + Y i  < r  + a - - 2  

if r + a -- 1 < X i Jr-Yi 

(0, X i -~- Yi) 

(ti+l, W i ) =  (1, X i + Y i - - r )  

(2, X i -~ Yi --  2r) 

2 . 1 1 4  

2.115 

Operands"  convent ional ;  result: s igned-digi t ;  r - 10, a --  6. 

X 2 1 9 0 4 1 

Y 4 3 9 9 3 4 

W 4 4 2 1 3 5 

T 1 0 2 1 1 1 

S 1 4 6 1 0 2 5 
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In this case, the algorithm is valid also for r -- 2. The algorithm is 

-- I 0 if  xi + y i  ~ 1 
w i  

I - 1  ifxi + yi m 1 
2.116 

0 if X i -]- Yi -- 0 
ti+l - 1 if  xi + Yi >-- 1 

2.117 

Case C: One  C o n v e n t i o n a l  O p e r a n d  a n d  One  S igned  D i g i t  

This is an important situation that appears in the implementation of, for example, 

multiplication and division, discussed in Chapters 4 and 5, respectively. In this 

case 

--a < X i + Y i  < a  + r  -- 1 2.118 

Because of this range, the first step of the procedure can be performed with 
0 < ti ~ 1, so that the procedure is a straightforward extension of Case B. That 

is, 

(0, X i _ql_ Y i )  

( t i+ l ,  w i ) -  (1, X i + Y i - - r )  

i f - a  < ( x  i .qt_ Yi) < a -- 1 

if (X  i -~ Yi) > a 
2.119 

For radix-2 the algorithm reduces to 

w i - -  { 0 
--1 

if IX i + Yi l  ~ 1 

if ]X i "]-Yi[--  1 
2.120 

0 
ti+l -- 1 

if X i -~- Yi < 0 

i f x i + Y i  > 1 

As usual, this is followed by the second step: 

2.121 

S i - -  W i  -~- ti 2.122 

B i t - L e v e l  I m p l e m e n t a t i o n  o f  the  R a d i x - 2  A l g o r i t h m s  

We now present bit-level implementations of the radix-2 cases. These implemen- 

tations depend on the coding used for the signed digits. Since in many cases, the 
result is used as the operand in the subsequent operation, the coding for both 
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the operands and result should be the same. If we call d the signed digit and d + 
and d -  the two bits of the representation, a suitable coding is described by the 
following arithmetic expression: 

d = d + - d -  2.123 

This corresponds to the following table (note the two representations of 0): 

d + d -  d 

0 0 

1 - 1  

0 1 

1 0 

First consider the Case C algorithm (one conventional operand, one signed 
digit). The conventional operand x has digit setxi E {0, 1 }, while the signed-digit 
operand y has digit yi  represented by y+ ~ {0, 1} and Y7 ~ {0, 1}. 

The first step of the algorithm (expression (2.119)) maps onto the following 
switching expressions 11 ( W  i corresponds to w T- and t i to  ti+): 

W i  - -  Xi f~  Y +  @ Y]- 2.124 

t i + l  - - -  x i Y i  + + x i ( y ~ - ) '  + y + ( y ] - ) '  

m 

Since w i  - -  w i < 0 and ti - -  t + > O, the second step is trivial, so that 

s i + = ti , s i - -  W i  2.125 

As shown in Figure 2.37, the implementation consists of a full adder with one of 
the inputs and one of the outputs complemented. 

Case B is a straightforward simplification of the implementation of Case C, 
making y~ -- 0. 

Now consider implementation of Case A (both operands signed digit). We 
implement the double recoding approach. It consists of two levels of full adders 
as shown in Figure 2.38. Note that the variable z i  in the algorithm is mapped 
into the two signals vi  and y~ in the implementation. Note also that the value 

Xi "~- Yi - -  0 is recoded to either ( h i + l ,  Zi)  - -  (0 ,  0) or (hi+i, Zi)  - -  (1 ,  -2 ) .  

11. This can be determined from a table of the switching functions. 
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+ y~- xi Yi 

l 

s. + s7 
l l 

~-1 Yi+l YTt-1 

l 
FA I 

til~ I ~i-1 
S +  - i-1 ~-1 

t/_i 

F I G U R E  2.37 Radix-2 signed-digit adder: one operand conventional, one operand redun- 

dant, result redundant. 

X + X:- Y+ Yf- X/+l X--1 Yi+l Yf--1 l l 

hi+) I ~ J  ~0,y jZi_lj ~i-1 {0,1} 

�9 

1 i_1 ti_l 
{0,1}, ~ {-1,0} 

s. + s_ S+_l s i_ 1 
l l 

F ! 6 U R [ 2.38 Radix-2 signed-digit adder: both operands and result redundant. 

2o13 C o n c l u d i n g  R e m a r k s  

We have presented several adder schemes, which differ in characteristics such as 

delay, area, and energy dissipation. Although the structures are different, these 

adders are unified by the properties of the carries, as outlined in Section 2.1. 
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Because of this, in many cases a structure can be converted into another by 
manipulation of these carry properties, and other similar structures can easily 
be developed. We have also illustrated the use of completion signals to have 
variable-time adders; these take advantage of the fact that not all additions have 
the same delay and their implementations correspond to typical asynchronous 
combinational systems. Finally, we have considered redundant adders, which 
have carry-propagation chains of very limited length (one or two digits), inde- 
pendent of the adder width; these produce fast adders with low area and are used 
in many algorithms that contain the very common addition operation and where 
conversion to conventional representation does not eliminate the advantage of 
using the redundant adder. Examples are multioperand addition, multiplication, 
division, and square root, as discussed in the following chapters. These redundant 
adders also point to the fact that the addition algorithm is strongly dependent on 
the representation of operands and result. 

As characterization measures we have used delay and number of modules. 
For delay, we considered expressions in terms of delays of modules and, in some 
cases, in terms of delays of primitive gates. These measures are rough first-order 
estimates, which are somewhat independent of the specific implementation and 
do not include important considerations, such as the effect of interconnection 
wires and the load on the signals. 

None of the adder structures is superior in all aspects since this is an example of 
the usual trade-offbetween delay and area. Moreover, the specific characteristics 
depend on many factors, such as the technology used, the primitive cells available, 
and the design tools. As a consequence, for a particular application, it is necessary 
to explore the design space to obtain a suitable implementation. 

Although detailed analysis, depending on the physical implementation, is 
required to compare the schemes accurately, it is informative to classify them 
according to the complexity with respect to the number of bits. A summary of 
this is given in Table 2.3. With respect to the delay, we can distinguish the usual 
(iterative) linear structures, with delay proportional to n/m, and the treelike 
structures, with delay proportional to log m n, where m is the number of bits 
handled by each module. This is typical of switching functions of n variables. 
The particular properties of the adder are used to share substructures to produce 

the complete sum vector. 
The basic linear structures are the carry-ripple (within -- 1) and the one-level 

carry-lookahead, which corresponds to a carry-ripple with radix 2 m. A variation 
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Scheme 

Delay 

proportional to 

Area  

proportional to 

Linear structures: 

Carry ripple 

Carry lookahead (one level) 

Carry select (one level) 

Carry skip (one level) 

Logarithmic structures: 

Carry lookahead (maximum levels) 

Prefix 

Conditional sum 

Completion signal (average delay) 

Redundant 

n 

n/m 
n/m 

2 log m n 

log m n 

log2(n/m) 

(log2n)/m 
constant 

n 

(kmm)(n/m) =kmn 
(kmm)(n/m) =kmn 
n 

(kmm)(n/m) = kmn 
((kmm) log m n)n 
(kin + log2(n/m))n 

kmm(n/m) = kmn 
n 

T A B L E 2.3 Summary of delay and area complexities for adder schemes. 

of this radix-2 m case is the carry-select, in which the carry between digits is used 

to select among two conditional sums. The carry-skip structure is an alternative 

that makes use of the characteristics of the longest carry chain. 

The carry-lookahead concept can be extended to produce multilevel looka- 
head structures of varying depths, up to a tree-type structure of depth proportional 

to log m (n). Actually, the number of levels is 2 log m (n), since a second pass is re- 
quired to obtain the carries inside the modules. Various tree-type structures can 
also be obtained by considering the carry computation as a prefix computation; 

these structures are very regular, and it is easy to develop alternatives that trade 

off the signal load, the number of levels, and the number of cells. 
The carry-select concept can also be extended to a treelike structure. Note, 

however, that in this case, the number of levels is proportional to log2(n/m) (not 

log m n) since the selection is done by considering the two possible values of the 

carry between consecutive blocks. 

In the variable-time case, a suitable measure of delay is the average delay. 

This delay depends on the distribution of input values. Usually the value is given 

for a uniform distribution, although other distributions might better represent 

some applications. In the text we have considered the case of a carry-ripple adder; 
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in practice other adder structures can be used as the basis for the variable-time 

case. 
The redundant adders have a constant delay, independent of the adder width. 

Since this constant is quite low (between one and two full-adders, for the radix-2 

case), these adders are significantly faster than those for conventional represen- 

tation. 
With respect to the area, we use as measure the number of cells. To take into 

account the effect of the added complexity introduced by using a fast radix-2 m 

module, we consider that the area of an m-bit module has a complexity km m times 

the complexity of the radix-2 module. For the case of the multiplexers used in the 

carry-select and conditional-sum adders we use k m =  1. For the linear structures, 

we see an increase in area as the group size increases. In the logarithmic structures 

we observe that the lookahead adder has an area proportional to (kin m )r/ ,  whereas 

for the prefix adder it is proportional to  (km m)11 log m r/. The additional area of 

the prefix case is due to a reduction of the delay by a factor of two; this is an 

example of the trade-off between delay and area. 

We do not discuss the complexity with respect to energy, since this is highly 

dependent on circuit technology. Several studies on the energy of adders have 

been reported in the literature, but at this time there is no general model that can 

be used to compare adder schemes in a way that is relatively independent of the 

technology. 

2 . 1  

2 . 2  

Exercises 
Carry-Ripple Adder 

In the full-adder implementation with two half-adders, the load on the carry-in 

is larger than the load on other signals. Since the delay of the carry-out signal is 
affected by this load, it is convenient to reduce it. One possibility is to include an 

inverter in the carry-in input to the xoR gate producing si and to change the xoR 
to an XNOR. Determine the effect of this modification on the delay of the carry-out 

signal, using the characteristics of Table 2.4 (average delay). 

Determine the delay of a 32-bit adder using the full-adder characteristics of 

Table 2.4 (average delays). 



Gate 

Type 

AND 

AND 

AND 

OR 

OR 

OR 

NOT 

NAND 

NAND 

NAND 

NAND 

NAND 

NAND 

NOR 

NOR 

NOR 

NOR 

NOR 

NOR 

XOR + 

XOR + 

2-OR/NAND 2 

2-AND/NOR 2 

2-MUX 
. . . .  

Fanin 

2 

3 

4 

2 

3 

4 

1 

2 

3 

4 

5 

6 

8 

2 

3 

4 

5 

6 

8 

2* 

3* 

L: load on the gate output 

Propagation Delays 

tp L H tp HL 

(ns) (ns) 
0.15 +0.037L 0.16+0.017L 0.16 

0.20+0.038L 0.18+0.018L 0.19 

0.28+0.039L 0.21+0.019L 0.25 

0.12+0.037L 0.20+0.019L 0.16 

0.12+0.038L 0.34+0.022L 0.23 

0.13 +0.038L 0.45+0.025L 0.29 

0.02+0.038L 0.05+0.017L 0.04 

0.05+0.038L 0.08+0.027L 0.07 

0.07 + 0.038L 0.09 + 0.039L 0.08 

0.10 + 0.037L 0.12 + 0.051L 0.11 

0.21 + 0.038L 0.34 + 0.019L 0.28 

0.24+0.037L 0.36+0.019L 0.30 

0.24+0.038L 0.42 +0.019L 0.33 

0.06+0.075L 0.07+0.016L 0.07 

0.16+0.111L 0.08+0.017L 0.12 

0.23+0.149L 0.08+0.017L 0.16 

0.38+0.038L 0.23 +0.018L 0.32 

0.46+0.037L 0.24+0.018L 0.35 

0.54 + 0.038L 0.23 + 0.018L 0.39 

0.30+0.036L 0.30+0.021L 0.30 

0.16 + 0.036L 0.15 + 0.020L 0.15 

0.50 + 0.038L 0.49 + 0.027L 0.50 

0.28 + 0.039L 0.27 + 0.027L 0.28 

0.19 + 0.036L 0.17 + 0.025L 0.18 

0.17+0.075L 0.10+0.028L 0.14 

0.17+0.075L 0.10+0.028L 0.14 

0.20+0.050L 0.22+0.050L 0.21 

* different characteristics for each input 

tp (average) 

(ns) 

+ 0.027L 

+ 0.028L 

+ 0.029L 

+ 0.028L 

+ 0.025L 

+ 0.032L 

+ 0.028L 

+ 0.033L 

+ 0.039L 

+ 0.045L 

+ 0.029L 

+ 0.028L 

+ 0.029L 

+ 0.046L 

+ 0.059L 

+ 0.083L 

+ 0.028L 

+ 0.028L 

+ 0.028L 

+ 0.029L 

+ 0.028L 

+ 0.033L 

+ 0.033L 

+ 0.032L 

+ 0.052L 

+ 0.052L 

+ 0.050L 

+ XNOR same characteristics as XOR; for full-adder characteristics see Table 2.2 

Load 
Factor Size 

(standard (equivalent 

loads) 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.1 

2.0 

1.1 

2.4 

2.1 

1.0 

1.0 

0.5 

gates) 

2 

2 

3 

2 

2 

3 

1 

1 

2 

2 

4 

5 

6 

1 

2 

4 

4 

5 

6 

3 

T A B L E  2 . 4  Characteristics of a family of CMOS gates. 

116 
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2 . 3  Design a radix-4 full adder using the CMOS family of gates shown in Table 
2.4. Compare delay and size with a 2-bit carry-ripple adder implemented with 
(radix-2) full-adders (use average delays). 

2 , 4  

Switched Carry-Ripple Adder 

Compare the delay of a 32-bit switched carry-ripple adder with that of a 32-bit 
standard carry-ripple adder (using the two-half-adders implementation and the 
characteristics of gates shown in Table 2.4). To model the delay of the switched 
carry-ripple case, assume that the delay of the switch (setting or propagation) is 
equal to that of one 2-input NAND gate (with load of 2) and that to restore the 
signal a buffer (of delay equal to 1.5 of the delay of a 2-input NAND gate) has to be 
introduced at 4-bit intervals. 

2 , 5  

2 , 6  

Carry-Skip Adders 

Draw a diagram of carry chains similar to that of Figure 2.8 for the addition of 
the following bit-vectors: 

X 0100110001110110 

Y 1011011010001100 

As in Example 2.3, determine the delay of the second addition for the following 

two consecutive additions: 

Operation 1 

x 0000 0111 0000 1111 
y 1111 0000 1111 0001 

Operation 2 

x (same) 0000 0111 0000 1111 
y (change last bit) 1111 0000 1111 0000 

2 . 7  Derive the expressions for the optimal group size and optimal delay for a carry- 

skip adder with fixed-size groups. 
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skip l c ' 

2 . 8  

2 . 9  

b8 b7 b6 t b5 

lb 

I 
b411 b3t 

k i p l a  

b2 bll I 
[I bO ~in 

Delays: 
all bi have the same carry delay 
t_MUX = delay for propagating carry through MUXes 
t_skipl = delay for generating skipla, skiplb, or skiplc signals 
t_skip2 = delay for generating skip2 signal 

F I G U R E 2 . 3 9  Two-level  ca r ry-sk ip  adder.  

2 . 1 0  

Determine the delay of a 64-bit carry-skip adder for the following cases: 

(a) fixed-size groups of eight bits 
(b) optimal fixed-size groups according to the characteristics of Tables 2.2 (for 

the full-adder) and 2.4 (for the MUX) 
(c) an implementation with variable-size groups that produces a smaller 

worst-case delay than (b) 

Consider the two-level carry-skip network shown in Figure 2.39 (Turrini 1989). 

Determine the worst-case delay for an 9-bit adder and for a 36-bit adder (using 

four of these modules) and assuming that & - tmux  = (~. 

(a) Determine the worst-case delay for an n-bit two-level carry-skip adder. 
Assume fixed-size groups ofm bits/group and p fixed-size sections ofs m 

bits/section; that is, n = p s  m .  Assume that tc - -  t m u x .  

(b) Using the expression obtained in (a) determine the optimal group size m 
form = s .  

2 .11  

2 . 1 2  

Carry-Lookahead Adder 

Determine the number of equivalent gates, the maximum gate fanin and fanout, 

and the critical delays of a carry-lookahead generator (CLG) for m - -  4 and 
m - -  8. Use N A N D  and NOR gates and the gate characteristics of the family in 

Table 2.4. 

A block carry-lookahead module BCLA generates only the MS carry bit in a group 

as shown in Figure 2.40. Show a one-level structure (similar to a one-level CLA) 
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F I G U R E  2.40 BCLA module. 

2 . 1 3  

2 . 1 4  

2 . 1 5  

2 . 1 6  
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for a 32-bit adder constructed only from these BCLA modules, half-adders, and 
full-adders. Determine its worst-case carry delay using the characteristics of the 
gates in Table 2.4. Compare with a carry-skip adder with group size of four. 

Using expression (2.40), determine the four carries in a CLG-4 for the following 

bit-vectors: X = 0101, Y = 1001,c0 - 1. 

Using expressions in Section 2.7.2, determine the carries for a two-level lookahead 
adder with 4-bit groups for the following input vectors: 

X 0110111010111001 

Y 1 O010000111 O0101 

Draw a diagram similar to Figure 2.15 for a 64-bit three-level carry-lookahead 
adder. 

Derive the expression for the number of CLG modules for an n-bit CLA adder 
with L levels and groups of size m. 

For a 128-bit adder and using groups and sections of four bits, compare the delay 

for one-level, two-level, three-level, and four-level carry-lookahead adders for 

the case t d g  - t A ,  G - -  6 ta  ,g - -  3 t s  . 

Ling's adder (Doran 1988; Ling 1981) uses a more efficient recurrence for carries 

compared with the recurrence used in the carry-lookahead adders discussed in 
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2 . 1 9  

2 . 2 0  

2 .21  

2 . 2 2  

2 . 2 3  

2 . 2 4  

Section 2.1. The expressions used there are 

Pi - -  x i  (~ Yi, gi  - -  x iY i ,  C i + I  - - -  gi + p i c i ,  $ i  - -  C i  (~ Pi 

Ling defines a new "carry" function hi -- tTi+ 1 + tTi, resulting in the following 

adder expressions: 

ti = x i  + Yi, gi  = x iY i ,  hi  --  gi  + t i - l h i - 1 ,  $ i  - -  ti E]~ hi  + g i t i - l h i - 1  

(a) 
(b) 

Show that Ling's expressions produce the correct sum. 

Consider the expressions for a group of four bits and show that Ling's 
approach is more efficient than the conventional one with respect to the 

number of gates and fanin. 

Prefix Adder 

The prefix adder shown in Figure 2.18 includes a carry-in. Draw the modified 

structures for the case in which there is no carry-in. 

Using the prefix adder of Figure 2.20, perform the addition of the bit-vectors 

X - -  01010111, Y = lll00111, a n d c 0 -  1. 

Using a prefix adder as a basis, design a network that produces simultaneously 
s -- x + y  andz - x + y  + 1. This network is useful in rounding for floating-point 
addition. 

Give a diagram like Figure 2.20 for a 16-bit prefix adder with the minimum 

number of levels and a maximum fanout of four. To do this, you might want to 
begin with two schemes: one with a maximum fanout of eight and the other with 
a maximum fanout of two, and then interpolate. 

Carry-Select Adder 

Design a conditional-adder module of four bits (see Figure 2.22) to be used in 

the first stage of a carry-select adder. In your design, share the logic between the 

adder with the carry-in 0 and the adder with the carry-in 1. Specifically, base your 

design on the carry-ripple scheme. 

Using a carry-select adder with 4-bit groups, perform the addition of the following 

bit-vectors: X = 0111100010101010, Y -- 1010101110110010, and c0 = 0. 
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2 . 2 6  

2 . 2 7  

2 . 2 8  

2 . 2 9  

A variation of the carry-select adder computes the carries into each group sepa- 

rately from the sums, using a faster network, such as lookahead. This reduces the 
the worst-case delay and also allows a more effective use of variable-size groups. 

To evaluate this approach determine the optimal size of groups in a carry-select 

adder and the corresponding worst-case delay for the following two cases: 

(a) Carries between groups are generated by a linear (iterative) network. 

(b) Carries between groups are obtained by a tree (lookahead) network. 

Define first the relevant delays. 

Conditional-Sum Adder 

Using a conditional-sum adder with 2-bit groups, perform the addition for the 

following bit-vectors: X = 01010111, Y = 10101111, c 0 = 0. 

Consider the following two schemes for adding two binary operands of length 
n = 2P bits. Scheme A forms conditional sums over groups of n /4  bits using 

carry-ripple adders and then applies the conditional-sum method to obtain the 

final sum. Scheme B forms n/4-bit  sums using the conditional-sum method 

within groups and ripples the carries between the groups. That  is, the i th group 

requires the carry from the group i - 1 in order to produce the correct sum and 

carry-out. If the delay of a full-adder is 28 and that of a 2-to-1 multiplexer is 8, 

determine the value of p for which scheme A is faster than scheme B. 

Consider a variation of the conditional-sum adder, called the conditional-carry 

adder. In this variant, only the carries are computed using the conditional ap- 
proach. These carries are then used to compute the sums as S i = X i ED Yi G ci. 

(a) Design a 16-bit conditional-carry adder, initial group size of 1, and the 
incoming carry c0. Show the necessary logic details (which you can abstract 
as modules). Label all signals. Indicate the critical path. 

(b) Compare the design with a 16-bit conditional-sum adder with respect to 
the cost (type and number of modules) and the delay in the critical path. 

Variable-Time Adders 

Using variable-time adders of both types discussed in this chapter, perform 

the addition of the following bit-vectors: X - 1000100111, Y - 0111000110. 

The adder cells have an actual delay 15% smaller than the worst-case delay, and 
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the delay of the A N D  gate to determine the completion signal (for an 8-bit adder) 
is equal to the delay of one adder cell. 

Determine the actual delay in both cases and compare with the delay of the 

carry-ripple adder. 

2 . 3 0  (a) 

(b) 

2.31  

Consider a 32-bit carry-select adder consisting of four groups of size 8. 
Suppose that each group is implemented as an 8-bit Type 1 variable-time 
adder. Design the rest of the network so that the whole adder behaves as a 

Type 1 adder. 
Compare the design in (a) with a 32-bit Type 1 adder that is based on the 
carry-ripple adder scheme. 

Ones' Complement Adder 

Determine the delay of an n-bit ones' complement adder implemented connecting 
the carry-out with the carry-in in the scheme of Figure 2.20. Compare with the 
adder that includes an additional stage to add the carry-out (Figure 2.29). 

2 . 3 2  

2 . 3 3  

Redundant Adder 

Perform the addition of the following 4-bit vectors using 

(a) a [4:2] adder composed of two levels of [3:2] adders 
(b) a [4:2] adder composed of the cells of Figure 2.41: 

0111110000110011 
1110001001101101 
1010101010101010 
1010111101110111 

(a) 

(b) 

Consider implementing a cell for the [4:2] adder using full-adders. 
Determine the connections between the full-adders and inputs so that the 
delay in the critical path is the smallest. Use the average delays of a 
full-adder given in Table 2.2 and assume the load of 1 for the outputs of 

the [4:2] adder. 
Show that the scheme of Figure 2.41 implements a cell for the [4:2] adder. 
Determine the average propagation delays using Table 2.4 (average delay) 
and compare with the results obtained in (a). 
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F I G U R E  1.41 Alternative implementa t ion  of a cell for the [4:2] adder. 

Design a radix-8 carry-save adder using a radix-8 cell composed of three full- 
adders. 

Perform the radix-8 carry-save addition of the following two operands (one carry- 
save and one conventional): 

I01110110011 
1 1 0 1 

011100111011 

Describe an algorithm and an implementation for the addition of two radix-8 
carry-save operands. 

Perform a radix-4 signed-digit addition for the following two operands: X = 
02131011, Y -- 10131110. 

Give arithmetic expressions for a radix-4 signed-digit adder with inputs ai, bi  

{ - 2 , - 1 ,  0, 1, 2} and output s i ~ { - 2 , - 1 ,  0, 1, 2}uall  minimally redundant 
digit sets. Define all intermediate variables and their digit sets. Specify the corre- 
sponding blocks without going into design details at the binary level. Compare 
this adder with a radix-4 signed-digit adder with the maximally redundant digit 
set {-3,  -2 ,  -1 ,  0, 1, 2, 3}. 

Perform a radix-2 signed-digit addition for the following two operands: X - 
01 i 1 T01 i, Y - 10101 i i 1. Use both approaches described in the chapter. 
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2 . 4 0  

2 .41  

2 . 4 2  

2 . 4 3  

2 . 4 4  

2 . 4 5  

2~  

Derive high-level and binary-level expressions for the double recoding algorithm 
resulting in the redundant adder implementation shown in Figure 2.38. 

Design a three-operand adder with two operands x and y in the two's complement 
form with the digit set {0, 1 } (MS bit is in the set {-1, 0}), and the third operand 
z and the sum s in the signed-digit form with the digit set {-2,  -1 ,  0, 1, 2}. 

Design the adder using the recoding approach. Show the recoding equations 
and all intermediate digit sets. Show the block diagram of your design. Discuss 
the critical path. 

Develop an addition algorithm for conventional radix-4 operands with the digit 
set {0, 1, 2, 3} and the sum with a - 2 using 

(a) Method 1 (double recoding) 
(b) Method 2 (recoding with information from the previous position) 

For each design estimate the delay (logic levels) and compare with the addition 
using a - 3 in the digit set for the sum. 

Perform the radix-2 signed-digit addition of one signed-digit operand and one 
conventional operand using the implementation of Figure 2.37 for the following 
operands: X - 01110110, Y -- l l l00Tll .  

Perform the radix-2 signed-digit addition of two signed-digit operands using 
the implementation of Figure 2.38 for the following operands: X -- 01111100, 
Y - -  11111111. 

Complexity of Adders 

Consider an implementation of an n-input adder using modules of no more than 
m inputs. Show that the minimum number of levels of these modules is O (log m n). 
Hint: Consider the implementation of a switching function of n variables. 

Further Readings 
As is apparent from the text of this chapter, there is a variety of adders that 
have been developed in the last 50 years. The literature on these adders is very 
extensive; we give here a list of some of the most relevant papers, because of their 
historical significance and/or because they provide additional insight as well as 
more detailed information on implementations. 
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Overviews and comparisons of different adder structures are given in 
Sklansky (1960b), Lehman (1962), Gosling (1971), Nagendra et al. (1996) and 
Zimmerman (1998). 

Switched-Ripple Adder 

The switched carry-ripple adder, also called the Manchester adder, was initially 
described in Kilburn et al. (1959). In today's technology it relies on the efficient 
implementation of transmission gates, as described in Fenwick (1987), Rabey 
(1996), and Weste and Eshragian (1993). 

Carry-Skip Adder 

The concept of the carry-skip adder is presented in Morgan and Jarvis (1959) 
and Lehman and Burla (1961) and was analyzed in Majerski (1967). It has been 
extended in a variety of ways; the main aspects considered are the determination 
of optimal group sizes for a variety of delay models and the extension to variable 
group-size and multilevel schemes (Oklobdzija and Burnes 1985; Guyot et al. 
1987; Turrini 1989; Kantabutra 1991; Chan et al. 1992; Kantabutra 1993a). The 
concept of carry-skip has been applied to switched carry-ripple adders in Chan 
and Schlag (1990). 

Carry-Lookahead Adder 

The carry-lookahead adder has been the most popular adder with logarithmic 
delay. Introduced in Weinberger and Smith (1958), it has led to numerous varia- 
tions (mainly in number of levels and group size) and implementations. A variant 
that simplifies the implementation for some technologies, called the Ling adder, 
was presented in Ling (1981). A general class, of which the Ling adder is a mem- 
ber, is discussed in Doran (1988). A CMOS implementation of the Ling adders is 
presented in Quach and Flynn (1992). 

Carry-Select and Conditional-Sum Adders 

The carry-select adder was introduced in Bedrij (1962) and its simplification in 
VLSI implementation is shown in Tyagi (1993). The conditional-sum adder was 
first presented in Sklansky (1960a). 
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Prefix Adder 

Prefix adders have become very popular because of their regularity and suitability 
for VLSI implementations. The initial paper describing addition as a prefix 
computation is Kogge and Stone (1973). A variation with larger fanout but fewer 
cells is presented in Ladner and Fisher (1980). In Brent and Kung (1982) a scheme 
is proposed with the minimal fanout of one. In Han and Carlson (1987) a good 
overview is given and higher radix prefix schemes are proposed. A design of area- 
time optimal adder is discussed in Wei and Thompson (1990). An analysis of the 
whole class of prefix adders and a comparison of different implementations is 
given in Knowles (1999). In Lynch and Swartzlander (1992) a variation is proposed 
for efficient adders with non-power-of-two width. 

Reverse Carry Adder 

An approach proposing reverse carries to overlap levels in a multilevel adder is 
presented and evaluated in Bruguera and Lang (2000). 

Variable-Time Adder 

Variable-time adders are an example of asynchronous and self-timed combina- 
tional networks, so the literature on these types of networks is relevant. Particular 
to adders, the carry-completion adder was described in Gilchrist et al. (1955), with 
recent VLSI realizations presented in Salomon (1987) and Ramachandran and 
Lu (1996). A self-timed carry-lookahead adder is presented in Cheng et al. (2000). 
A conditional-sum adder with completion detection is described in Martin and 
Hufnagel (1980). Asynchronous adders are evaluated in Franklin and Pan (1994) 
and Kinniment (1996). The sequential and indeterminate behavior of an adder 
with end-around-carry is examined in Shedletsky (1977). 

Redundant Adder 

Redundant adders, because of the nonconventional representation of the output, 
are used as building blocks for more complex operations, such as multioperand 
addition, multiplication, and division. Consequently, most references are found in 
the corresponding chapters. Carry-save addition was introduced in Estrin et al. 
(1956) in the context of sequential multiplication, following an observation of 
Burks, Goldstine, and Von Neumann. Apparently, Babbage articulated the idea 
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of "postponed" carries in the design of the calculating engine Randell (1975). 
Signed-digit representation, addition, and other basic operations were investi- 
gated in Avizienis (1960, 1961, 1962, 1964, 1966); the first extensive use of this 
representation was in the Illiac III computer as described in Atkins (1970). The 
relationship between radix-2 signed-digit adder and carry-save adder is discussed 
in Duprat and Muller (1991), where the term borrow save is used for the signed- 
digit case. The borrow-save coding was discussed as early as 1967 in Robertson 
(1967), where a deterministic procedure for the design of carry-save adders and 
borrow-save subtracters was proposed. Related work on the set transformations 
and design of adders/subtracters appears in Rohatsch (1967), Borovec (1968), and 
Chow and Robertson (1978). Later work on systematic procedures and operand 
coding for the design of redundant adders is presented in Parhami (1988), Carter 
and Robertson (1990), Bajard et al. (1994), Ercegovac and Lang (1997), and Phatak 
et al. (2001). Zero, sign, and overflow detection in signed-digit addition are dis- 
cussed in Parhami (1993). Issues of carry-save addition, such as overflow detec- 
tion and correction and saturation control, are presented in Noll (1991). Recoding 
(conversion) between digit sets provides another view in the design of redundant 
adders. General aspects of recoding are discussed in Kornerup (1994), Ercegovac 
and Lang (1996), and Kornerup (1999). 

Implementation of Adders 

The literature describing design and implementation of various types of adders is 
very extensive (for example, MacSorley 1961; Anderson et al. 1967; Bayoumi et al. 
1983; Ngai et al. 1986; Oklobdzija 1988; Naffziger 1996; Knowles 1999; Flynn and 
Oberman 2001). Application of the logical effort model in the design of adders 
is presented in Dao and Oklobdzija (2001). An energy-efficient adder design is 
described in Parhi (1999). Oklobdzija (1999) presents an extensive collection of 
papers on high-performance circuits, logic, and system design, many of them 
related to implementation of digital arithmetic schemes. 

Incrementer 

Incrementers, a special case of adders, are typically used in implementing counters. 
Schemes that achieve constant cycle time independent of the length are presented 
in Ercegovac and Lang (1989), Vuillemin (1991), Lutz and Jayasimha (1996), and 
Stan et al. (1998). 
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Hybrid Adder 

Hybrid adders combine several addition schemes to achieve implementation 
delay/area constraints. Hybrid adders using a carry-lookahead and carry-select 
schemes are described in Dobberpuhl et al. (1992), Lynch and Swartzlander 
(1992), and Kantabutra (1993b). A hybrid adder using carry-skip and carry- 
select schemes is discussed in Burgess (2001). Hybrid adders are also appropri- 
ate when the operand bits to the final adder in tree multipliers (discussed in 
Chapter 4) do not arrive simultaneously. In such a situation, a hybrid adder 
provides an efficient implementation as presented in Oklobdzija and Villeger 
(1995). 

Pipelined Adder 

A good discussion of general approaches to pipelined adders is presented in Dadda 
and Piuri (1996). Pipelined designs of several adder schemes are described in 
Unwala and Swartzlander (1993). Advanced design techniques using asynchron- 
ous circuits and wave pipelining are described in Singh and Nowick (2000) and 
Wong et al. (1993). 

Condition Detection Using Adder 

Adders are often used to detect conditions such as zero-sum. Such conditions are 
trivially obtained when the result is computed by full-precision carry-propagate 
addition. Schemes discussed in Weinberger (1978), Cortadella and Llaberia (1992), 
Vassiliadis et al. (1993), and Lutz and Jayasimha (1997) present various solutions 
to obtain conditions without using carry propagation. 

Serial Adder 

Digit-serial addition schemes and related literature are discussed in Chapter 9. 

Bounds on Delay 

Theoretical bounds on the delay of addition are presented in Winograd (1965), 
Spira (1973), and Brent (1970). 



Bibliography 129 

2ot6  Bibliography 
Anderson, S. F., J. G. Earle, R. E. Goldschmidt, and D. M. Powers (1967). The 

IBM 360/3 70 model 91: floating-point execution unit. IBM Journal of Research 
and Development, pages 34-53. 

Atkins, D. E. (1970). Design of the arithmetic units of ILLIAC III: Use of 
redundancy and higher radix methods. IEEE Transactions on Computers, 
C- 19(8):720-33. 

Avizienis, A. (1960). A Study of Redundant Number Representations for Parallel 
Digital Computers. PhD thesis, University of Illinois, Urbana. 

Avizienis, A. (1961). Signed digit number representations for fast parallel arith- 
metic. IRE Transactions on Electronic Computers, EC-10(9):389-400. 

Avizienis, A. (1962). On flexible implementation of digital computer arithmetic. 
In Proc. IFIP Congress, pages 664-70. 

Avizienis, A. (1964). Binary-compatible signed-digit arithmetic. In Proc. Fall Joint 
Computer Conference, pages 663-72. 

Avizienis, A. (1966). Arithmetic microsystems for the synthesis of function gen- 
erators. Proceedings of the IEEE, 54(12): 1910-19. 

Bajard, J. C., J. Duprat, S. Kla, and J.-M. Muller (1994). Some operators for 
on-line radix 2 computations. Journal of Parallel and Distributed Computing, 
22(2):336-45. 

Bayoumi, M. A., G. A. Jullien, and W. C. Miller (1983). An area-time efficient 
NMOS adder. Integration, 1:317-34. 

Bedrij, O. J. (1962). Carry-select adder. IRE Transactions on Electronic Computers, 
EC- 11 (6):340-46. 

Borovec, R. T. (1968). The logical design of a class of limited carry-borrow prop- 
agation adders. Technical report no. 275, Dept. of Computer Science, Uni- 
versity of Illinois. 

Brent, R. P. (1970). On the addition of binary numbers. IEEE Transactions on 
Computers, C-19(8):758-59. 

Brent, R. P., and H. T. Kung (1982). A regular layout for parallel adders. IEEE 
Transactions on Computers, C-31 (3):260-64. 

Bruguera, J. D., and T. Lang (2000). Multilevel reverse-carry adder. In Proceedings 
of the IEEE International Conference on Computer Design: VLSI in Computers 
and Processors (ICCD'00), pages 155-62. 



130 c::H.~'~:}::~ ~;~ Two-Operand Addition 

Burgess, N. (2001). Accelerated carry-skip adders with low hardware cost. In 
Proceedings of the 35th Asilomar Conference on Signals, Systems and Computers, 
pages 852-56. 

Carter, T. M., and ]. E. Robertson (1990). The set theory of arithmetic decompo- 
sition. IEEE Transactions on Computers, C-39(8):993-1005. 

Chan, E K., M. D. Schlag, C. D. Thomborson, and V. G. Oklobdzija (1992). Delay 
optimization of carry-skip adders and block carry-lookahead adders using 
multidimensional dynamic programming. IEEE Transactions on Computers, 
41(8):920-30. 

Chan, R K., and M. D. E Schlag (1990). Analysis and design of CMOS Manchester 
adder with variable carry-skip. IEEE Transactions on Computers, C-39(8): 
983-92. 

Cheng, E-C., S. H. Unger, and M. Theobald (2000). Self-timed carry-lookahead 
adders. IEEE Transactions on Computers, 49(7):659-72. 

Chow, C. Y., and ]. E. Robertson (1978). Logical design of a redundant binary 
adder. In Proceedings of the 4th IEEE Symposium on Computer Arithmetic, 
pages 109-15. 

Cortadella, ]., and ]. M. Llaberia (1992). Evaluation of A + B - - K  conditions 
without carry propagation. IEEE Transactions on Computers, 41 (11): 1484-88. 

Dadda, L., and V. Piuri (1996). Pipelined adders. IEEE Transactions on Computers, 
45(3):348-56. 

Dao, H., and V. G. Oklobdzija (2001). Application of logical effort for speed 
optimization and analysis of representative adders. In Proceedings of the 35th 
Asilomar Conference on Signals, Systems and Computers, pages 1666-69. 

Dobberpuhl, D. W., et al. (1992). A 200-MHz 64-b dual-issue CMOS micropro- 
cessor. IEEE Journal of Solid-State Circuits, 27(11):1555-64. 

Doran, R. W. (1988). Variants of an improved carry-lookahead adder. IEEE 
Transactions on Computers, C-37(9): 1110-13. 

Duprat, J., and ].-M. Muller (1991). Writing numbers differently for faster cal- 
culation. Technique et Science Informatiques, 10(3):211-24. 

Ercegovac, M. D., and T. Lang (1989). Binary counter with counting period of 
one half adder independent of counter size. IEEE Transactions on Circuits and 
Systems, 36(6):924-26. 

Ercegovac, M. D., and T. Lang (1996). On recoding in arithmetic algorithms. 
Journal of VLSI Signal Processing, 14:283-94. 



Bibliography 131 

Ercegovac, M. D., and T. Lang (1997). Effective coding for fast redundant adders 
using radix-2 digit set {0, 1,2, 3 }. In Proceedings ofthe 31st Asilomar Conference 
on Signals, Systems and Computers, pages 1163-67. 

Estrin, G., B. Gilchrist, and J. H. Pomerane (1956). A note on high-speed digital 
multiplication. IRE Transactions on Electronic Computers, page 140. 

Fenwick, R M. (1987). A fast-carry adder with CMOS transmission gates. 
Computer Journal, 30(1):77-79. 

Flynn, M. J., and S. E Oberman (2001). Advanced Computer Arithmetic Design. 
John Wiley & Sons, Inc., New York. 

Franklin, M. A., and T. Pan (1994). Performance comparison of asynchronous 
adders. In Proceedings of the International Symposium on Advanced Research in 
Asynchronous Circuits and Systems, pages 117-25. 

Gilchrist, B., J. H. Pomerene, and S. Y. Wong (1955). Fast carry logic for digital 
computers. IRE Transactions on Electronic Computers, EC-4:133-36. 

Gosling, J. B. (1971). Review of high-speed addition techniques. Proceedings of 
IEE, 118(1):29-35. 

Guyot, A., B. Hochet, and J.-M. Muller (1987). A way to build efficient carry-skip 
adders. IEEE Transactions on Computers, C-36(10). 

Han, T., and D. A. Carlson (1987). Fast area-efficient VLSI adders. In Proceedings 
of the 8th IEEE Symposium on Computer Arithmetic, pages 49-56. 

Kantabutra, V. (1991). Designing optimum carry-skip adders. In Proceedings of 
the 10th IEEE Symposium on Computer Arithmetic, pages 146-55. 

Kantabutra, V. (1993a). Accelerated two-level carry-skip addersma type of very 
fast adder. IEEE Transactions on Computers, C-42(11):1389-93. 

Kantabutra, V. (1993b). A recursive carry-look-ahead/carry-select hybrid adder. 
IEEE Transactions on Computers, C-42(12): 1495-99. 

Kilburn, T., D. B. G. Edwards, and D. Aspinall (1959). Parallel addition in a 
digital computerma new fast carry. Proceedings of the IEE, 106B:460-64. 

Kinniment, D. J. (1996). An evaluation of asynchronous addition. IEEE Transac- 
tions on VLSI Systems, 4(1):137-40. 

Knowles, S. (1999). A family of adders. In Proceedings of the 14th IEEE Symposium 
on Computer Arithmetic, pages 30-34. 

Kogge, P. M., and H. S. Stone (1973). A parallel algorithm for the efficient solution 
of a general class of recurrence equations. IEEE Transactions on Computers, 
C-22(8):783-91. 



132 C H A P T E R  2 Two-Operand Addition 

Kornerup, P. (1994). Digit-set conversions: Generalizations and applications. 
IEEE Transactions on Computers, 43(5):622--29. 

Kornerup, E (1999). Necessary and sufficient conditions for parallel, constant 
time conversion and addition. In Proceedings of the 14th IEEE Symposium on 
Computer Arithmetic, pages 152-56. 

Ladner, R., and M. Fisher (1980). Parallel prefix computation.Journal ofthe ACM, 
27(4):831--38. 

Lehman, M. (1962). A comparative study of propagation speed-up circuits in 
binary arithmetic units. Information Processing, pages 671-77. 

Lehman, M., and N. Burla (1961). Skip techniques for high-speed carry propa- 
gation in binary arithmetic units. IRE Transactions on Electronic Computers, 
EC-10:691-98. 

Ling, H. (1981). High-speed binary adder.IBM Journal Research and Development, 
25(3):156-66. 

Lutz, D. R., and D. N. Jayasimha (1996). Programmable modulo-k counters. 
IEEE Transactions on Circuits and Systems I: Fundamental Theory and Appli- 
cations, 43(11):939-41. 

Lutz, D. R., and D. N. Jayasimha (1997). The half-adder form and early branch 
condition resolution. In Proceedings of the 13th Symposium on Computer Arith- 
metic, pages 266-73. 

Lynch, T., and E. E. Swartzlander (1992). A spanning tree carry lookahead adder. 
IEEE Transactions on Computers, C-41 (8):931-39. 

MacSorley, O. L. (1961). High-speed arithmetic in binary computers. IRE Pro- 
ceedings, 49:67-91. 

Majerski, S. (1967). On determination of optimal distributions of carry skips in 
adders. IEEE Transactions on Electronic Computers, EC-16(1):45-58. 

Martin, N. M., and S. R Hufnagel (1980). Conditional-sum early completion 
adder logic. IEEE Transactions on Computers, C-29:753-56. 

Morgan, C. R, and D. B. Jarvis (1959). Transistor logic using current switching 
routing techniques and its application to a fast carry-propagation adder. 
Proceedings of the IEE, 106B:467-68. 

Naffziger, S. (1996). A sub-nanosecond 0.5 micron 64b adder design. Digest of 
IEEE International Solid-State Circuits Conference, pages 362-63. 

Nagendra, C., M. J. Irwin, and R. M. Owens (1996). Area-time-power tradeoffs in 
parallel adders. IEEE Transactions Circuits and Systems II: Analog and Digital 
Signal Processing, 43(10):689-702. 



Bibliography 133 

Ngai, T. F., M. J. Irwin, and S. Rawat (1986). Regular, area-time efficient carry- 
lookahead adders. Journal of Parallel and Distributed Computing, 3(1):92-105. 

Noll, T. (1991). Carry-save architectures for high-speed digital signal processing. 
Journal of VLSI Signal Processing, 3(1-2): 121-40. 

Oklobdzija, V. G. (1988). Simple and efficient CMOS circuit for fast VLSI adder 
realization. In Proceedings of the IEEE Symposium on Circuits and Systems, 
pages 235-38. 

Oklobdzija, V. G., editor (1999). High-Performance System Design: Circuits and 
Logic. IEEE Press, Piscataway, New Jersey. 

Oklobdzija, V. G., and E. R. Burnes (1985). Some optimal shemes for ALU im- 
plementation in VLSI technology. In Proceedings of the 7th IEEE Symposium 
on Computer Arithmetic, pages 2-8. 

Oklobdzija, V. G., and D. Villeger (1995). Improving multiplier design by using 
improved column compression tree and optimized final adder in CMOS 
technology. IEEE Transactions on VLSI, 3(2):292-301. 

Parhami, B. (1988). Carry-free addition of recoded binary signed-digit numbers. 
IEEE Transactions on Computers, C-37(11):1470-76. 

Parhami, B. (1993). On the implementation of arithmetic support functions for 
generalized signed-digit number systems. IEEE Transactions on Computers, 
42(3):379-84. 

Parhi, K. K. (1999). Low-energy CSMT carry generators and binary adders. IEEE 
Transactions on VLSI Systems, 7(12):450-62. 

Phatak, D. S., T. Geoff, and I. Koren (2001). Constant-time addition and simul- 
taneous format conversion based on redundant binary representation. IEEE 
Transactions on Computers, 50(11):1267-87. 

Quach, N. T., and M. J. Flynn (1992). High-speed addition in CMOS. IEEE 
Transactions on Computers, 41 ( 12): 1612-15. 

Rabaey, J.-M., A. Chandrakasan, and B. Nikoli~ (2003).Digital Integrated Circuits: 
A Design Perspective. Prentice Hall, Englewood Cliffs, New Jersey, 2 edition. 

Ramachandran, R., and S.-L. Lu (1996). Efficient arithmetic using self-timing. 
IEEE Transactions on VLSI, 4(4):445-54. 

Randell, B., editor (1975). On the Mathematical Powers of the Calculating Engine 
(C. Babbage). Springer-Verlag, New York, 2nd edition. 

Robertson, J. E. (1967). A deterministic procedure for the design of carry-save 
adders and borrow-save subtracters. Technical report No. 235, Dept. of 
Computer Science, University of Illinois, UrbanaoChampaign. 



134 c H A P T E R 2 Two-Operand Addition 

Rohatsch, F. A. (1967). A Study of Transformations Applicable to the Development of 
Limited Carry-Borrow Propagation Adders. PhD thesis, Department of Com- 
puter Science, University of Illinois, Urbana-Champaign. 

Salomon, D. (1987). A design for an efficient NOR-gate only, binary ripple 
adder with carry-completion detection logic. Computer Journal, 30(3):283- 
85. 

Shedletsky, J. J. (1977). Comment on the sequential and indeterminate behaviour 
of an end-around-carry adder. IEEE Transactions on Computers, C-26(3):271- 
72. 

Singh, M., and S. M. Nowick (2000). Fine-grain pipelined asynchronous adders 
for high-speed DSP applications. In Proceedings of the IEEE Computer Society 
Worksho p on VLS12000, System Design for a System-on-Chip Era, pages 111-18. 

Sklansky, J. (1960a). Conditional-sum addition logic. IRE Transactions on Elec- 
tronic Computers, EC-9:226-31. 

Sklansky, J. (1960b). An evaluation of several two-summand binary adders. IRE 
Transactions on Electronic Computers, EC-9:213-26. 

Spira, P. M. (1973). Computation times of arithmetic and Boolean functions in 
(d,r) circuits. IEEE Transactions on Computers, C-22(6):552-55. 

Stan, M. R., A. F. Tenca, and M. D. Ercegovac (1998). Long and fast up/down 
counters. IEEE Transactions on Computers, 47(7):722-35. 

Turrini, S. (1989). Optimal group distribution in carry-skip adders. In Proceedings 
of the 9th IEEE Symposium on Computer Arithmetic, pages 96-103. 

Tyagi, A. (1993). A reduced area scheme for carry-select adders. IEEE Transactions 
on Computers, C-42(10): 1163-70. 

Unwala, I. H., and E. E. Swartzlander (1993). Superpipelined adder designs. In 
Proceedings of the International Symposium on Circuits and Systems (ISCAS), 
volume 3, pages 1841-44. 

Vassiliadis, S., J. Philips, and B. Blaner (1993). Condition code predictor for fixed- 
point arithemtic units. IEEE Transactions on Computers, 42(7):825-39. 

Vuillemin, J. E. (1991). Constant time arbitrary length synchronous binary coun- 
ters. In Proceedings of the 10th IEEE Symposium on Computer Arithmetic, pages 
180-83. 

Wei, B. W. Y., and C. D. Thompson (1990). Area-time optimal adder design. 
IEEE Transactions on Computers, 39(5):666-75. 

Weinberger, A. (1978). High-speed zero-sum detection. In Proceedings of the 4th 
IEEE Symposium on Computer Arithmetic, pages 200-207. 



Bibliography 135 

Weinberger, A., and J. L. Smith (1958). A logic for high-speed addition. Nat. Bur. 
Stand. Circ., 591:3-12. 

Weste, N. H. E., and K. Eshragian (1993). Principles of CMOS VLSI Design: A 
System Perspective. Addison-Wesley Publishing Co., Reading, Massachusetts, 
2nd edition. 

Winograd, S. (1965). On the time required to perform addition. Journal of the 
ACM, 12(2):277-85. 

Wong, D. C., G. De Micheli, and M. J. Flynn (1993). Designing high-performance 
digital circuits using wave pipelining: Algorithms and practical experiences. 
IEEE Transactions Computer-Aided Design of Integrated Circuits and Systems, 
12(1):25-46. 

Zimmerman, R. (1998). Binary Adder Architectures for Cell-Based VLSI and Their 
Synthesis (Ph.D. dissertation). Series in Microelectronics, Vol. 37. Hartung- 
Gore, Konstanz, Switzerland. 





CHAPTER 3 Multioperand Addition 

In this chapter we consider algorithms and implementations for addition of 
more than two operands. That is, for m operands we want to obtain s such 
that 

m 

s - - y ~ x ( i )  
i=1  

3.1 

This operation is used in several algorithms. Examples are multiplication, re- 
currences, transforms, and filters. The implementations can be classified into 
sequential and combinational and, in the latter, into adder arrays and column 
reduction schemes. It is also possible to perform the operation partly combina- 
tional and partly sequential. Moreover, the combinational part can be pipelined 
for higher throughput. 

We consider here both the case in which the operands are magnitudes (pos- 
itive values) and signed values. For the latter, we consider two's complement 
representation, since this is the simplest and most frequently used. Moreover, the 
range of the result can be such that no overflow is possible, or this range might 
be restricted, in which case an overflow detection should be included. We discuss 
only the first case. 

The input operands are represented using bit-vectors, and the set of input bit- 
vectors forms a bit-array. We now discuss the bit-arrays for unsigned (magnitudes 
only) and signed (two's complement) operands. 

3.1 Bit-Arrays for Unsigned and Signed Operands 
Before considering the addition, we determine the bit-array to be added. In 
general, the range of values of each operand can be different, resulting in a 
nonrectangular bit-array. To simplify the notation, in this chapter we consider 
the case in which all operands have the same range of values and illustrate the 

137 
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ao ao ao a o . a  1 a 2 . . . a  n 
b 0 b 0 b 0 bo.b  1 b 2 . . . b  n 

c O c O c O Co.C 1 c 2 . . . c  n 

do do do do.d1 d2...dn 
e 0 e 0 e 0 e O.e  1 e 2 . . . e  n 
i ~ 1  

Sign extension 

r I G u R f 3 .  l Sign-extended array for m = 5. 

more general case only later in Example 3.2. However, the methods and techniques 

discussed are applicable to nonrectangular arrays, as presented in Chapter 4 for 
the important application of multiplication. 

Consider the case in which each of the m operands is represented by an n-bit 

vector. The bit-array to be added is then an n by m rectangular array, and the 

sum bit-vector has n + p bits with p - [log 2 m]. To perform the addition it is 

necessary to extend the range of the operands to n + p bits. For magnitudes this 

is trivial since the extension is done by adding most significant 0s. 

For two's complement representation, the extension consists of replicating the 

sign, as shown for m - 5 in Figure 3.1. To simplify the description that follows, 

we place the binary point after the "sign" bit and index as for fractions. That is, 
the operands are in the range - 1  < x < 1 - 2 -n, and the two's complement 
representation is 

X 0 . x l x 2  �9 �9 �9 X n  

with value 

n 

x = - - x o + ~ x i 2  -i 
i = 1  

The sign-extended operands are then 

3.2 

X - p X - ( p - 1 )  �9 �9 �9 X - l X 0 . X l X 2  �9 �9 �9 X n  3.3 

with X ' _  i - -  X 0 for 1 < i < p. 
To avoid the additional adder bits required by these sign extensions, we 

now present a way of reducing these extended bits. Since the sign position has a 
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negative weight, apply the following identity: 2 

( -x0 )  + 1 -  1 - ( 1 -  x 0 ) -  1 - x  0 - 1 

which transforms a signed operand as follows: 

X 0 .  X1  -1'2 X 3  " �9 " X n  

is replaced by 

! 
X 0 .  X l  X 2  X 3  . . .  X n 

- 1  

3.4 

The resulting bit-array is shown in Figure 3.2(a). Now we can add the array 

o f - l s .  Since we placed the integer point after the sign bits, the value of this 

array o f - l s  i s - m ,  which is represented by y y y . . ,  y in Figure 3.2(a). This 

bit-vector can be combined with the last row so that the total number  of rows in 

the array remains m. An example is shown for m = 5 in Figure 3.2(b). In this 

case, y yyy  -- 1011. Calling e 0 the sign bit of the fifth operand, we get 

e0 = 0 e0 = 1 
l 1011 + e  0 1100 1011 

t and both cases are included in the bit-vector le0 e0e0. 

3 ~  Reduction 
The inputs in mult ioperand addition are bit-vectors forming a bit-array. The  

primitive operation performed on the input bit-array is a reduction, which pro- 

duces an output bit-array with a smaller number  of bits, by adding the input bits. 

Two main reduction approaches are used: reduction by rows and reduction by 

columns. The modules used for reduction by rows are called adders, and those 

used for reduction by columns are called counters. We now discuss these modules 

and then use them for mult ioperand addition. 

2. Note the use of the bit inversion operation (denoted by x~) in an arithmetic expression. 
This should be interpreted in the intuitive way as converting a value 1 to 0 and vice versa. 
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S'. XXXX . . . X 

-i 

S'. XXXX . . . X 

-I 

eee 

S'i XXXX . . . X  

I S i. XXXX . X 

~ Reducedto 

S'. XXXX . . . X  

X  xxxx x 

S'. XXXX ...X 

: . . . . . . . . . . . . . . . . . .  ,2 
: 8 :. XXXX �9 . . X 
: I 
iY...Y...Y...Y...- : :..Y..:: 

(a) 

a '  0 . a l a  2 ... a n 
-1  

b" 0 . b l b  2 ... b n 

-1  
C' 0 . ClC2 ... Cn 

-1  

d" 0 . d l d  2 ... d n 
-1  
e '  0 . e l e  2 ...  e n 

-1 

Reduced to 

a 'o .  a l a 2  ... an 

b 'o .  b i b 2  ... bn 

c" O . c l c  2 . . . c  n 

d 'o .  d l d 2  ... dn 

. . . . . . . . . . .  , 

e'0::, e l e 2  ...  en 

................... Transformed to 

a '  0 . a l a  2 ... a n 

b ' o .  b i b 2  ... b .  

c" 0 . ClC2 ... Cn 

d ' o .  a i d 2  ... dn 

.!e.'o_f.o.e.o..i �9 e l e 2  ... e n 

( b )  

FIG U RE 3.2 Simplifying sign extension: (a) General case. (b) Example of simplifying array 

form = 5. 

3,2, '1 [p'2] Adders for Reduction by Rows 

The  adders in the reduction by rows can be either carry-propagate adders, which 

produce the output  in conventional representation, or redundant  adders, with 

redundant  output  either in carry-save or signed-digit form. Since the redundant  

adders have a smaller delay because of  the limited carry propagation, we con- 

sider only the latter. In Chapter  2 we considered two-operand redundant  adders. 
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In fact, the adder with one operand in carry-save and one operand in conventional 

representation can be used to add three operands in conventional representation 

and produces a result as the sum of two vectors. Therefore, it performs a 3-to-2 

reduction and is called a [3:2] adder. Similarly, the carry-save adder for two 

carry-save operands is a [4:2] adder. We now generalize this to a [p :2] adder. 

A [p :2] adder reduces p bit-vectors to 2 bit-vectors, as shown in Figure 3.3(a). 

The implementation consists of modules that have p rows ofk bits as input and 

produce two rows of k bits as output. To achieve this the module also produces 

2 

[p:2]adder _ _ , k _  _ i / , .  [p : 2] module .... 

: �9 . , .  : . . . :  
�9 . . .  �9 1 0  

... : ~ . . ;  ... ~ - ;  ... ~ . . . . .  
�9 " ' "  �9 " " " i �9 �9 10  01  �9 e l  �9 . . . .  , . . . . . ,  , . . . . . ,  t : . . . . . ,  ." ""... " 
�9 �9 ,e_ _ _ _o_,  ,o_ _ _ _e_,  / ,o_ _ _ _ o ,  �9 : 

�9 �9 �9 �9 �9 �9 �9 �9 �9 �9 
�9 " ' "  �9 �9 " ' "  �9 �9 " ' "  �9 �9 " ' "  �9 �9 " ' "  �9 

Input carries 
Output carries 

( a )  

hout 

t --" ' -- t  [p 

H 
L hi n 

I- 

z 
(b) 

F I G U R E  3.3 A [p:2] adder: (a) Input-output bit-matrix. (b) k-column [p:2] module decom- 
position. 
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k p ~  Max value p(2 I ' -  1) 

HW 

/ J  w Max value W 

J hin 
hou t / [ ' /  Max value H 

Max value 2kH [l~ 

z 

Max value 2(2 k -  1) 

F ! II U Ii E a.4 A model of a [p :2] module. 

carries, which are added in the next module. Consequently, a module also has 
carries as input. In order to have a limited carry propagation, the output carries of 
a module should not depend on the input carries of that module (Figure 3.3(b)). 

The complexity and delay of the module is determined by the number of 
columns k. Consequently, the number of columns of a group should be mini- 
mized. To determine the minimum number of columns k we consider the model 

of Figure 3.4, consisting of the following two modules: 

�9 Module HW, which computes the output carries h out and an intermediate 

sum w only in terms of the inputs 

�9 Module Z, which adds w and the incoming carries h in tO produce the 

output z 

Since the output signals (including the output carry) have to be able to represent 

at least the maximum input (including the carry), if we call H the maximum 

value of the carry (both in and out), we get 

p(2 k - 1) + H < 2kH + 2(2 k - 1) 3.5 
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so that 

H > p - 2  3.6 

Moreover, calling W the maximum value of w, the following three conditions 
have to be satisfied: 

1. Considering module HW, the outputs have to be able to represent the input 

p(2 k - 1) < W + 2kH 3.7 

which results in 

W > 2k(p - H )  - p  3.8 

2. In the same module, since w is the residual after subtracting the carry-out 
(which has weight 2k), 

W > 2 k -- 1 3.9 

3. For module Z, 

W + H < 2(2 k - 1) 3.10 

which results in 

W < 2(2 k) - ( H  + 2) 

These three conditions are summarized in 

max(2 k -- 1, 2k(p -- H)  - p)  < W < 2(2 k) - (H + 2) 

3.11 

3.12 

If we now use the minimum value of H (to minimize the number of carries), that 
is, H -- p - 2, this is reduced to 

max(2 k - 1 , 2 ( 2  k ) - p )  < W < 2 ( 2  k ) - p  3.13 

Consequently, 

resulting in 

2(2 k ) - p  > 2  k - 1  3.14 

2 k > p - 1 3.15 

So, for example, p = 4 results in H -- 2, k - 2, and W - 4 (from (3.13)). 

Table 3.1 gives the values of H,  k, and W for typical modules. Notice that 

as the number of bits p increases, so do also H,  k, and W, resulting in a more 
complex module with a larger delay. 
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P 

3 

4 

5 

6 

7 

9 

11 

H k W 

1 

4 

3 

10 

9 

7 

21 

T A B t t 3.1 Values of H, k, and W for typical modules. 

An implementation requires the coding of the variables h and w. Then the 

modules can be implemented using gate networks. Figure 3.5 shows the im- 

plementation of a [4:2] module. In this case, h = h i, i -Jr hi,2 (unary code) and 

w - 2c + 2b + a,  as shown in the figure. 

Another possible implementation uses a network of full-adders. Such an 

implementation for a [4:2] module is given in Chapter 2; Figure 3.6 illustrates 

this implementation for [5:2] and [7:2] modules. The internal carries are coded in 

a unary code, and w is represented by the signals with a dot. 

3 ~ 2 , 2  (p'q] Counters for Reduction by Columns 

The reduction by columns is done by modules that add a column of p bits of the 
same weight and produce q bits of adjacent weights. That is, 

p--1 q --1 

i =0 j =0 

3.16 

Consequently, the relation between p and q is 

2 q - l > p  3.17 

that is, 

q -- [log2( p + 1)] 
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hi+l,1 

r- 
E 

~_~ 
�9 -~ 8 
0 E 

o 

hi+],2 

inputs of weight 2 i inputs of weight 2 i-1 X,, X ',0' i,2 Xi-l,3 I I i_IX, i21,1I I Xi-l,O 

iOux'  iod 
| Xi-1, 0 a l l  ,x,,o,, T 

o 11 
MUXl .. 

z 

-r 
Xi-l,O i 

hi ] 
I ~. . . . .  ~._ _ _ ,  - ,1  

', ,, 
! _ 

, ,,a 
! 

i 
i 
i 

' . h i � 9  | ,  
i 
i 
i 
! 

', MUX y ," 

�9 denotes the bits representing w 
such that 

w = 2c + 2b + a 

No te  that  w < 4 s ince  ab  = 0 

F I G U R E  3 . 5  Gate network implementation of[4:2] module. 

hi-l,1 

t -  

E E =  

"E o 

hi-l,2 

The module to perform this reduction is called a (p :q] counter. Typical examples 
of these counters are (3:2], (7:3], and (15:4]. A representation ofa  (p:q] counter is 
given in Figure 3.7. 

Implementat ion o f  ( p :q ] Counters 

A (p'q] counter is a module with p inputs andq outputs. It can be implemented by 

a 2P x q ROM, a network of full-adders, or a specialized gate network. While flexi- 

ble, ROMs are relatively slow; thus the other two approaches are usually preferred. 
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Xo 

Xl 

+ Xp_ 1 

Yq-l... Yo 

p inputs (same weight) 

q outputs 
(a) (b) 

F I G U R E  3.7 (a) (p:q] reduction. (b) Counter representation. 

All inputs of weight (1) 

I I  I I I  

~ ( 2  (2)(2) 

F I G U R E  3.8 Implementat ion of (7:3] counter by an array of full-adders. 

The network of full-adders systematically uses the 3-to-2 reduction property 
of the full-adder. Consequently, a (3:2] counter is implemented by one full-adder 
and a (7:3] counter by a network of four full-adders, as shown in Figure 3.8. 

The delay of the implementation of a (p :q] counter with full-adders can be 
reduced by making use of the different delays for different input-output pairs. 
A systematic approach to do this might be to use half-adders as basic building 
blocks. 
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Specialized gate networks are suitable for intermediate values of p,  such as 7 

or 15, but become too complicated for larger p.  A gate network implementation 

of a (7:3] counter is described in the following example. 

EXAMPLE 3.1 We derive expressions and show a gate ne twork  for a (7:3] counter. T h e  inputs 

are the seven binary variables X - (x6, x5, x4, x3, x2, x 1, xo), and the output  

is 

6 

q - -  E x i  - -  4q2 + 2ql + qo 
i=o 

3.18 

We part i t ion the input  vector X into two subvectors X13 - -  (,t'6, x5,  x4,  x3) 

and XA - (x2, x 1, x0). T h e  partial sums corresponding to the subvectors are 

2 

qA - -  ~_~ x i  - -  2q/i  1 '~  qAO 

i=0 

6 

q13 - -  ~ X i  - -  4q132 + 2q131 + q13o 
i=3 

3.19 

For  the sum qA the switching expressions, corresponding to the sum and the 

carry outputs  of  a full-adder,  are 

qAO - -  X2 ~]~ X l @ Xo 

qA 1 ~ X2X 1 + x 2 x  0 + x lXO 
3.20 

For  the sum q13 we have 

q/30 -- x6 @ x5 @ x4 @ x3 

qB1 - -  [x6x5  + x6x4 + x6x3 + x5x4 + x5x3 + XaX3]" (x6x5xax3)' 

= [x6x5 + x4x3 + (x6 + x5)(x4 + x3)]" (x6x5xax3)' 

! 

= a �9 ( x 6 x 5 x a x 3 ) '  - -  aq132 

3.21 

qB2 - -  X6X5X4X3 
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Finally, q -- qA + q~ so that 

q o -- qBo �9 qAO 

ql - - (qB1 O qA1) ~ (qsoqAo) 

q2 -- qB2 + q81qA1 + (q~l @ qA1)(q~oqAo) 

= qB2 + aqA1 + (qB1 @ qA1)(qBOqAO) 

3.22 

An implementation after transforming the expressions to allow use of faster 
gates such as NANDs, NO Rs, AND-O R-INVERT, and o R-AND-INVERT is shown 

in Figure 3.9. 
Comparison of the delay of the critical path and the cost of the network 

shown in Figure 3.9 with that of the network of full-adders shown in Figure 3.8 
is left as Exercise 3.7. �9 

M u l t i c o l u m n  Coun te r  

It is possible to generalize the counter concept to the reduction of several columns. 
That is, counter 

(Pk-1, Pk-2, " ' ,  P0:q] 3.23 

reduces k columns with Pi bits in column of weight 2 i into q output bits. If we 
call aij the bit of column i and row j and v the value represented by the q-bit 
output, we get 

k-1 pi 
v -- ~ ~ a i j 2  i < 2 q - - 1  

i=0 j--1 

3.24 

An example is the (5, 5:4] counter shown in Figure 3.10(a). For this case, 

v < 5 • 2 + 5 • 1 - 15 - 24 - 1 3 . 2 5  
m 

A second example is the (1, 2, 3:4] counter shown in Figure 3.10(b). In this case, 

v < l x 4 + 2 x 2 + 3 x l - - l l  < 2 4 - - 1  3.26 
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3 . 3  

3 , 3 , 1  

3~  

3o4ol 

Sequential Implementation 
This implementation consists of one adder and a register. To have the cycle time 

independent of precision and usually equal to the delay of a few full-adders, 

redundant adders are preferred. Using a [p:2] adder each iteration adds p - 2 

operands for a total of [m/(p  - 2)] iterations. The algorithm is 

s[0] = 0 
for/ = 1 to [ m / ( p  - -2 ) ]  do: 
S[i] = S[i - 1] + ~-~i(p-2) l..~j=(i-1)(p-2)+l x(j);  

and the result is S [ [ m / ( p  - 2)]]. This result is in carry-save representation. If 

the result is required in conventional representation, it is converted at the end 

using a CPA. Figure 3.1 l(b) shows an example using a [p:2] adder. The case with 

p = 3 (carry-save adder) is shown in Figure 3.11(c). 

Unsigned and Signed Operands 
Depending on the type of operands (unsigned or signed in two's complement), 

the corresponding addition algorithm has to be used. In both cases, the range has 
to be extended by [log 2 m ] bits to accommodate the range of the result. For two's 

complement, the extension is done as discussed in Section 3.1. 

Combinational Implementation 
The whole multioperand addition can be performed by a combinational network. 
Two alternatives exist: reduction by rows, performed by an array of adders, and 

reduction by columns, performed by an array of counters. 

Reduction by Rows" Array of Adders 

The organization of the array of adders can be classified into two extreme classes: 

linear array and tree array. 

L i n e a r  A r r a y  

This corresponds to an unfolding of the sequential algorithm. If[p:2] adders are 

used, for an addition of m operands the array consists of [(m - 2) / (p  - 2)] 

adders, since the first adder now receives p operands and the rest receive p - 2. 
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Cycle time dependent on precision 

clk 

X[i] 1 

I Carry-propagate adder I 
$ S[i] 

._1 Register S I -I I 

I S[i-l]  

(a) 

Cycle time not dependent on precision 

I c II 

X[(i-1)(p-2)+l] 

X[i i -2)1 
e e e  

_,l 
[p:2] adder ~11 

J 

I 
To CPA to get S 

X[i] 

[3:21 adder 
C[i] ~ PS[i] ! 

To CPA to get S 
(b) (c) 

FIGURE 3.11 Sequential multioperand addition: (a) With conventional adder. (b) With [p:2] 

adder. (c) With [3:2] adder. 

This scheme is shown in Figure 3.12. The width of the adders increases to adapt 
to the width of the partial sum. As indicated before, the number of bits of the 

final sum is n + p, where p = [log 2 ml.  Moreover, for the two's complement 
case, the last adder has to include the additional extension, as explained in the 
previous section. The delay is equal to F(m - 2)/(p - 2)-]tfe:2l. 

A comparison of linear arrays using carry-ripple adders and [3:2] adders is 
left as Exercise 3.19. 
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p operands 

I 000 

p - 2 operands 

I"'1 
p - 2 operands 

I"-I 
I I  
�9 , ,  p - 2 operands 

I I I"'1 

TO CPA 

F I G U R E  3 .12  L inea r  ar ray  o f [ p : 2 ]  adders  for m u l t i o p e r a n d  addi t ion .  

Adder Tree 

Since addition is associative, it is possible to organize the array of adders as a tree 
which has fewer levels than the linear array. Again, the use of redundant adders 

is preferable for lower delay. 
The number of adders required for the tree is the same as that for the linear 

array. This is shown by an argument on the total number of inputs to the adders 

and the use of these inputs to accept the operands and connect to the outputs of 

other adders. We now show this for the case of using [p :2] adders. 
Calling k the number of adders, the total number of adder inputs is kp .  

These inputs are used for the m operands and for the 2( k - 1) adder outputs, 

since each adder has two outputs (and the outputs of one adder are used as the 

array output or the input to the conversion adder). That is, 

pk  = m + 2( k -- 1) 3.27 
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l 1 2 3 4 5 6 7 8 9 

ml 3 4 6 9 13 19 28 42 63 

T A B L E  3.2 [3:2] reduction sequence. 

[p:2] tree of c 
I levels ii2 

~r i -- / / 

F I G U R E  3.13 Construct ion o f a  [p:2] carry-save adder  tree. 

and 

k - p 2 [p:2] carry-save adders 3.28 

Now we consider the number  of adder levels. For this, we develop a recurrence 

for m l, the number  of adder operands that can be added with a tree o f l  levels. 

As shown in Figure 3.13, the ml-1 operands are divided in groups of two, so that 

each group corresponds to the outputs of one adder at level l. Since each adder 

has p inputs, we get 

L m l - l ~ + m l _ l m o d 2  3.29 ml = p  2 

where m l = p.  For instance, for p = 3 the resulting sequence is shown in 

Table 3.2 and for p = 4 we get m l = 2 l+1. 

In particular, calling L the total number  of levels to add m operands, this 

number  of levels is obtained from the recurrence (3.29) by making m L = m. For 

example, Figure 3.14 shows a [3:2] adder tree for m = 9, and Figure 3.15 a [4:2] 

adder tree for m = 16. 

An approximation of the number  of levels, which is good for large m l, 
is obtained by considering that for all levels the number  of operands is even. 



C o m b i n a t i o n a l  I m p l e m e n t a t i o n  1 5 5  

m=9 

L=4 

al al al aa_~L 
b 

.�84 ~1 c 
\ \  "1 Bit-vectortypes 

I I I a: (n-1 ..... 0) 
b: (n ..... 1) 

~ I I a : ( n + l  ..... :2) 
I I J e : ( n + l  ..... 0) 
I l l  3~ (n+2 ..... 1) 

I t3~a I I~ ~e 

a x x x  x x x  

a x x x  x x x  

a x x x  x x x  x x x  

a x x x  x x x  x x x  

b x x x  x x x  x x x  

b x x x  a x x x  

a x x x  b x x x  

b x x x  a x x x  

C X X X X  c X X X X  

d x x x  b x x x  

b x x x  

C X X X X  

d x x x x  

e x x x x x  c x x x x  

d x x x  e x x x x x  

d x x x  

e x x x x x  

f x x x x x  

FIGURE 3.14 [3:2] adder  tree for 9 operands  (magni tudes  w i t h n  = 3). 

X X X  

x x x Level 4 CSAs 

Level 3 CSAs 

Level 2 CSA 

Level 1 CSA 

II II 
[4:2] ADDER 

I 

II II 
i i E4:21AooER 

[4:2] ADDER I 

I [4:," 

II II 
I [4:2] ADDER I I [4:21 ADDER 

1 

[4:21 ADD 

FIGURE 3.15 Tree of[4:2] adders  for m = 16. 
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Since the best-case reduction per level is p /2 ,  for l levels we get 

pl 

ml ~ 2t_1 

and 

3.30 

l ,~ logp/2(ml/2) 3.31 

Selecting the Value p 

A larger p results in a smaller number of adder levels, in both the linear array and 
in the tree. However, the delay and complexity of the adder increase. Moreover, 

the connections between levels are more regular for values of p that are powers 

of two, as illustrated in Figure 3.15. Consequently, the best value of p depends 

on the requirements for the multioperand adder. 
As an example, we compare the use of trees of [3:2] and [4:2] adders for 

a multioperand addition for m = 16, with the reduction of delay as the main 

requirement. In general, calling T[4:21 and T[3:21 the delays using [4:2] and [3:2] 
adders, respectively, we get 

T[4:2] < T[3:21 if L[4:2] t[4:2] < L[3:2] t[3:21 3.32 

where  t[4:2] and t[3:2] are the delays of the corresponding adders. 
For m = 16 the number of levels of [4:2] adders is three, whereas for [3:2] 

adders it is six. Consequently, the [4:2] case has a smaller delay if T[4:2] < 2T[3:2]. 

3 . 4 , 2  R e d u c t i o n  by C o l u m n s  w i t h  (p'q] C o u n t e r s  

In this method the bit array is reduced by using several levels of (p :q] counters. 
As discussed before, a (p :q] counter reduces a column ofp bits to a bit-vector ofq 
bits. Since this is done to every column of the bit matrix, the result is the reduction 
of a matrix of p rows into a matrix ofq rows. This is illustrated in Figure 3.16 

for a (7:3] counter. 

Number of Counter Levels 

To reduce the whole bit-array to two rows, it might be necessary to use several 

levels of counters. If only (p:q] counters are used, then the whole array of m 

rows can be reduced to q rows by L levels of counters. The number of levels 
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0 

1 0 

0 1 

1 1 

1 0 

F I G U R E  3.16 Example of reduction using (7:3] counters. 

I 
(p:q] tree of ~_A 

I levels . . . . . .  f p  ml 

1,, Ip:ql I . . .  I Ip:ql I I  
~=~~q ~q~ ml-lm~ 

~ ~  ml-1 
(p:q] tree of 1-1 levels 

. . . . . . . . . . . . . .  iV . . . . . . . . . . . . . . . . . .  
F I G U R E  3.17 Const ruct ion  o f ( p : q ]  reduct ion tree. 

required is determined in a similar way as discussed before for the [p:2] adder. 
As before, calling m l the number of bits in a column that can be reduced using l 
levels, we obtain 

ml - - p  

[ m / - 1 ]  3.33 
ml --  p + ml -1  mod q 

q 

As shown in Figure 3.17, this is obtained by grouping the ml-1  operands into 
groups ofq operands and then using a (p:q] counter for each group. For large 
m l this results in 

l ~ logp/a (m l / q  ) 3.34 
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Number of Levels 1 2 3 4 

Maximum number of rows 7 15 35 79 

T A B L E  3 . 3  Sequence for (7:3] counters. 

ooo / ooo 15 

ooo ~ ooo 7 

Q 

g i g  ~ O O O  3 
�9 �9 �9 ~ ~ ~ �9 �9 

FIGURE S.18 Multilevel reduction with (7:3] counters. 

For instance, the sequence for (3:2] counters is the same as for [3:2] adders, given 

in Table 3.2, and for (7:3] counters the sequence is shown in Table 3.3. 

Figure 3.18 shows a multilevel reduction using (7:3] counters. 

Systematic Design Method 

If the number of bits in each column of the array is the same, the method of 

reduction by columns is similar to the reduction by rows. However, this is not 

always the case; in particular it is not the case in multiplication (discussed in 
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Full-adder 
(3:2] 

Half-adder 
(2:2] 

2 TM 2 i 

.11" 
o r  

2 TM 2 i 

. /"  
o r  

�9 denotes 0 or 1 

Diagonal outputs when 
representing separately 
sum and carry bit-vectors 
is preferable. 

Horizontal outputs when 
interleaving sum and carry bits 
is acceptable. 

F I G U R E  3 . 1 9  Full-adder and half-adder as (3:2] and (2:2] counters. 

the next chapter) and for the lower levels in a multilevel reduction. In the latter 

case, this is because the least-significant columns do not receive bits from the 

reduction of other columns of lower weight. As a consequence of this, the number 

of counters required for those columns is smaller. We now discuss a systematic 

design approach that uses the minimum number of counters. The basic idea is 

to place the counters in such a way that the reduction at level l of the reduction 

produces columns ofml-1 bits. 

Although the method can be used for any counter, we present it for (3:2] 

counters (full-adders). Moreover, we show that in some places it is advantageous 

to use also (2:2] counters (half-adders), instead of the more complex full-adders. 

The notation for using these counters is described in Figure 3.19. For this case 
the reduction sequence is as shown in Table 3.2. Therefore, the optimal reduction 
sequence is (3, 4, 6, 9, 13, 19, 28, 42, . . . ) .  

The first step in the process is to determine the number of levels and 
the corresponding reduction sequence. For instance, for m = 35 operands the 
number of levels is L = 8 and the sequence is 35, 28, 19, 13, 9, 6, 4, 3. 

Since, because of the carries, there might be a different number of bits in 
each column, the reduction is performed separately for each column. Consider 

that at a level l in the reduction process column i has e i bits, and in the reduction 

sequence the next reduction corresponds to m/_l bits. These m/_l bits are formed 

by the sum outputs of the full-adders and half-adders of column i plus the carries 

produced by the adders of column i - 1, plus the bits of column i that are not 

reduced but transferred to the next level. This is illustrated in Figure 3.20. 
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Column: 1 0 

Number of rows 

�9 "" 6 
Reduce 

Transfer 

�9 . .  4 

F ! G U R E 3.2O Reduction process. 

Since a full-adder uses as inputs three bits in column i and produces one bit in 

that column, the reduction per full-adder is two bits. Similarly, the reduction per 

half-adder is one bit. Consequently, calling f and hi the number  of full-adders 

and half-adders of column i, respectively, we have the following relation at level l: 

ei --  2 fi - h i  -+- f i - 1  7 I- h i - 1  = m l - 1  3.35 

resulting in 

2 fi + hi  = ei - -  m l - 1  -+- f - i  -+- h i - 1  = Pi 3.36 

As can be seen from this expression, the determination o f f .  and hi is a sequential 

process, with the initial conditions f -1  -- h-1 = 0. For instance if e0 = 19, then 

m l - 1  = 13 (next level in the reduction sequence) and 2f0 + h0 = P0 = 6. 
Expression (3.36) is used to determine the number  of full-adders and half- 

adders. Clearly, the solution that produces the min imum number  of carries to the 

next column is 

f "  = [p i  /21  h i  = Pi m o d  2 3 .37  

In the example above f0 = 3, h 0 = 0. 

This reduction process is described by a table, as illustrated in the following 

example. 

E X A M P L E  3.2 T h e  reduction by columns for m = 8 magni tudes  of  n = 5 bits is shown in 

Table 3.4. 
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l - - 4  

ei 

m3 

hi 

fi 

/ = 3  

ei 

m2 

hi 

fi 

/ = 2  

ei 

m l  

hi 

fi 

/ = 1  

ei 

mo 

hi 
A. 

6 5 4 3 2 1 0 

8 8 8 8 8 

6 6 6 6 6 

0 0 0 1 0 

2 2 2 1 1 

2 6 6 6 6 6 

4 4 4 4 4 4 

0 0 0 0 1 0 

0 2 2 2 1 1 

4 4 4 4 4 4 

3 3 3 3 3 3 

0 0 0 0 0 1 

1 1 1 1 1 0 

1 3 3 3 3 3 3 

2 2 2 2 2 2 2 

0 0 0 0 0 0 1 

0 1 1 1 1 1 0 

T A 8 L E S.4 Example of reduction process. 

T h e  resul t ing array of  ful l -adders  and hal f -adders  is shown in F igure  

3.21. It has 26 ful l -adders  and 4 half-adders .  For  the final 2-to-1 reduct ion,  a 

7-bit C P A  is needed.  

T h e  delay in the critical path is roughly 

T --  tcsa.tree "~- tcp A 

= 4tfa + tCPA(7) 3.38 
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EXAMPLE 3 .3  

F I G  U RE 3 . 2 1  Reduction by columns of eight 5-bit magnitudes. Cost of reduction: 26 FAs 

and 4 HAs. 

The total delay of the scheme consists of the delay of the reduction array and 

the delay of the final CPA. Since the delay of the CPA depends on the number of 
bits, a more aggressive reduction might be applied to reduce the precision of the 
final adder at the expense of additional counters (Exercise 3.22). 

Example with Nonrectangular Array and Operands 
with Specific Relations 

The discussion up to now only considers rectangular bit-arrays and does not 

take into account special relations among the operands. We here present a first 

example in which the operands are related, resulting in a nonrectangular array; 

in the next chapter we discuss the important case of multiplication. 

Design an array of full-adders and half-adders to compute 

f = a  + 3 b + 3 c + d  
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where the operands a, b, c, d are integers in the range - 4  to 3, in two's 
complement representation. 

We first determine the range of f .  Since each operand is in the range - 4  
to +3, we obtain 

- 4 + ( - 1 2 ) + ( - 1 2 ) - 4 - - - 3 2 < f < 3 + 9 + 9 + 3 - - 2 4  

Consequently f requires 6 bits. To perform the operation as an array of adders, 
we decompose 3b and 3c into 2b + b and 2c + c, respectively. 

We construct the bit-matrix, extended to the left to preserve the sign: 

a 

b 

2b 

6" 

2c 

d 

a2 a2 a2 a2 al ao 

b2 b2 b2 b2 bl b0 

b2 b2 b2 bl bo 0 

6"2 C2 6"2 6"2 6"I 6"0 

C2 C2 C2 Cl CO 0 

d2 dE dE dE dl do 

which can be transformed into 

2b 

2c 

! 
b2 

-1  

! 

6"2 

- 1  

! 
a 2 

- 1  

- 1  

bl 

! 

6"2 

- 1  

C1 

- 1  

a l  

b l  

bo 

6"1 

6" 0 

dl 

a 0  

b0 

C0 

do 
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and, finally, reduced to the following bit-matrix by noting that the sum of 
( -1)  entries is - 8  • 22, represented in two's complement by 100000. 

1 0 
! 

c 2 

! 

a 2 a l  a0 

b~ bl  b0 

b l  b0 
! 

c 2 Cl co 

Cl c0 

d~ dl  do 

The resulting bit-matrix is reduced to two rows by an array of full- and 
half-adders. The method described before produces Table 3.5. 

5 4 3 2 1 0 

/ - - 3  

ei 1 0 2 6 6 4 

m2 4 4 4 4 4 4 

hi 0 0 0 1 0 0 

f i  0 0 0  1 1 0 

l = 2  

ei 1 0 4 4 4 4 

ml 3 3 3 3 3 3 

hi 0 0 0 0 0 1 

f i  0 0  1 1 1 0 

/ = 1  

ei 1 1 3 3 3 3 

m0 2 2 2 2 2 1" 

hi 0 0 0 0 0 0 

f .  0 0 1 1 1 1 

* To reduce by one bit the width of the CPA. 

T A B L E S.5 Reduction for Example 3.3. 
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The corresponding network of adders is shown in Figure 3.22. The 
final stage consists of a carry-propagate adder of only four bits because 
the last output bit is produced in the previous level (in the figure a carry- 
ripple adder is used). The most significant bit of the result is f5 = 
1 @ c F 1 2  = (cF12) '  so that an inverter can be used instead of a 
half-adder. 
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The delay of the array is roughly 

T - -  3tfa + tceA(3) 

and the number of modules is 

N -  12FA + 3HA + I l N V  

3 , 4 , 3  Pipelined Adder Arrays 

The adder arrays can be pipelined to increase the throughput for the case of 
many (independent) multioperand additions. This is done by defining stages and 
separating them by latches as illustrated in Figure 3.23. The stage delay determines 

X[8,j] "'* 

Stage l I [4:2lADDER I 

Staee2 I t4:21AOOER I 

Stage 3 I t4:21ADDmR I 

Sta e4 I I 
s[j- 3] 

X[1,j] 

X[1,j- 1] 

X[ 1,j- 2] Stage 2 

1 Latches 

X[8,j] �9 �9 �9 X[ 1,j] 

I t4:z1AD~ I I [4:2]ADDER 

Stage 1 ~ + I I t 

I I 
s[j- 21 

Stage 3 

s[j - 3] 

SU-4] (a) (b) 

FIIIURt 3.iS Pipelined arrays with [4:21 adders for computing S[j] = ~[22=1X[i, j], 
j = 1 . . . . .  N: (a) Linear array. (b) Tree array. 
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the throughput R. That  is, 

1 
R = 3.39 

tstage 

The delay of the operation (also called the latency) corresponds to the sum of the 

delays of the stages. Consequently, the organization of the adders as a tree reduces 
the latency. 

If a conventional output is required, a conversion is needed. The conversion 

should be pipelined into stages of the same delay as the addition stages. 

3 ,5  Partially Combinational Implementation 
The combinational implementation is faster than the sequential because of the 
following two reasons: 

�9 In the combinational case it is possible to organize the adders in a tree 

structure and to organize this structure so as to reduce the critical path. 

�9 In the sequential case, the delay of each cycle has to include the delay of 
loading the partial result in registers. 

On the other hand, the combinational implementation requires a larger area. 

As a compromise, a mixed implementation can be used in which a set of k operands 

are added per iteration, so that m / k  iterations are required. Figure 3.24(a) shows 

the case in which an adder tree is used to add four operands per iteration. This 

a b c  d 

I I I 113121 

+t 
I ~P~l  - -  Latches 

s 

a b c d  

I Stage 1 

I Stage 2 

(a) (b) 

FIG U R E 3.24 Partially combinational scheme for summation of four operands per iteration: 
(a) Nonpipelined. (b) Pipelined. 
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requires a tree that adds six operands; we show the case in which the first level 
uses [3:2] adders and the second a [4:2] adder. 

The implementation can be pipelined for faster addition of m operands. A 

problem exists with the accumulation of the partial sum. If it is added at the top 

of the tree as indicated in Figure 3.24(a), pipelining is not possible. However, the 

partial sum can be added after the tree, as shown in Figure 3.24(b), resulting in 

an implementation with two levels of [4:2] adders. Although the nonpipelined 

implementation could also be done with two levels of [4:2] adders, this would 

increase the delay. 

A generalized network of [3:2] adders for reduction of q inputs at a time 

followed by accumulation is illustrated in Figure 3.25. Of course, adders with a 
higher reduction ratio, such as [4:2] adders, can also be used. 

q operands 
I I I 

�9 . .  I [a:2] 
,// 

I [3:2] I 

�9 ,m  Latches 

Reduction q-to-2 

Accumulation 

F I G U R E 3.25 Scheme for summation ofq operands per iteration. 
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:3.6 

3 , 1  

Exercises 
B i t - A r r a y s  for  T w o ' s  C o m p l e m e n t  

Determine the bit-matrix (as in Figure 3.2) for m -- 7. 

3 , 2  

3 , 3  

3 , 4  

3 . 5  

3 . 6  

Reduction by [p :2] Modules 

(a) 

(b) 

(c) 
(d) 

For the [4:2] module of Figure 3.5, show that the value ofw < 4. Show the 
input values for which w - 4. 

Since the network for both columns is the same, why is it necessary to 
consider two columns as the basic module when using the model of 
Figure 3.4 ? 
Show that the module is a [4:2] module. 
Compare the implementations of Figures 3.5 and 2.41, in terms of delay 
and number of equivalent gates. 

Show a linear array of [5:2] modules, implemented as in Figure 3.6(a), to 
reduce five 8-bit operands to two bit-vectors. Determine the critical path. Is 
there a carry-propagation chain? Compare with an array of [3:2] adders (carry- 
save adders). 

Design a [6:2] module with full-adders and determine the critical path. 

Design a [9:2] module with full-adders and determine the critical path. 

Using suitable CAD tools, synthesize [p:2] modules for p -- 4 and 7 at the gate 
level and compare with implementations using full-adder modules. 

3 , 7  

Reduction by (p :q] Counters 

(a) 

(b) 
(c) 

(d) 
(e) 

Determine the delay (average) of the critical path of the gate network 
implementing the (7:3] counter shown in Figure 3.9 using Table 2.4. 
Determine the cost of the gate network in (a) in equivalent gates. 
Determine the delay (average) of the critical path of the network of FAs 
implementing the (7:3] counter shown in Figure 3.8 using Table 2.2. 
Determine the cost of the network in (c) in equivalent gates. 
Compare and discuss your findings in (a), (b), (c), and (d). 
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3 . 8  

3 . 9  

Show a network of full-adders implementing a (15:4] counter. 

Determine how many levels of(15:4] counters are necessary to add 127 operands. 

3 . 1 0  

3 .11  

Sequential Implementation 

Show a design of the sequential multioperand addition scheme with the [3:2] 
adder of Figure 3.11(c) at the binary level using full-adders and registers. The 
operands X[i] are in the range [0, 127], and the maximum number of operands 
is 32. The CPA adder is a carry-ripple adder. On the logic diagram indicate all 
modules used and the precision in bits of all connections. Using a reasonable 
delay model, estimate the delay in the critical path. If a CRA is used instead of 
the carry-save adder, what is the increase in the delay in the critical path? Discuss 
change in cost. 

Repeat Exercise 3.10 for the operands X[i] in the range [-31, 31]. 

3 . 1 2  

3 . 1 3  

3 . 1 4  

Linear Arrays and Tree of Adders for Reduction by Rows 

Draw the linear arrays as in Figures 3.12 with p = 3 and p = 4 for m = 7 
(magnitudes). 

(a) 

(b) 

Design a network consisting of [5:2] and [4:2] adders to reduce 10 4-bit 
operands to two operands. 
Compare the network obtained in (a) with a [3:2] adder array in number 
of full-adders and delay. 

Estimate the delay of a linear array of adders to produce the sum of eight positive 
integers in the range [0, 255]. Make reasonable assumptions on the delay model 
in each case (see Chapter 2). The adders are of the following types: 

(a) 
(b) 
(c) 
(d) 
(e) 

Carry-ripple adder (CRA) 
Single-level carry-skip adder with a fixed group size of 4 (CSK4) 
Parallel prefix adder with minimum number of levels and fanout of two 
Carry-select adder 
[4:2] adder followed by a parallel prefix adder. 
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3 . 1 5  

3 . 1 6  

Design a linear array of [3:2] carry-save adders for m = 8 and n = 6 (two's 

complement) using full-adders and half-adders. The CPA is of a carry-ripple 

type. Estimate the delay in the critical path using a reasonable delay model. What 

percentage of the total delay is in the CPA? Using other modules as needed, design 

a faster CPA and discuss its effect on the overall design. 

(a) Show a bit-level design of a tree of carry-save adders followed by a CPA to 

add m = 6 operands with n = 4 bits each in the two's complement form. 

Determine the precision of each carry-save adder and the final CPA so that 

the correct sign and the range of the result is obtained. Label all modules 
and interconnections. 

Estimate the delay in the critical path using a reasonable delay model of 

the modules. 

(c) Give the values on all input and output lines for the following set of input 

operands: 

(b) 

a -- 1001 

b -- 0010 

c -  1110 

d --0101 

e -- 0011 

f -  1010 

3 . 1 7  

3 . 1 8  

3 . 1 9  

Two schemes are considered for reducing four n-bit operands to one. Scheme 

A uses three carry-propagate adders. Scheme B uses a [4:2] adder and a CPA. 

Determine under which conditions scheme B is not faster than scheme A. 

Add the following set of integers using [4:2] adders and a carry-propagate adder: 

+73, -52 ,  +22, - 127, -31 ,  + 17, +47, -80.  Use two's complement representa- 
tion. 

Bit-level linear arrays with carry-ripple adders and carry-save adders are shown 

in Figure 3.26. 
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F I G U R E  3.26 Linear array for multioperand addition of magnitudes: (a) With carry-ripple 

adders. (b) With [3:2] adders. 



(a) 

(b) 

Determine the delay in the critical path for each scheme. 
Under what circumstances is the scheme with [3:2] adders faster than the 
scheme with CRAs? 

Reduction by Columns 

Modify Figure 3.21 for two's complement representation. 

Show a table of the reduction by columns process for m = 9 and n = 6 for 
magnitudes and for two's complement. 

Compare the arrays in Figure 3.21 and in Figure 3.27 with respect to 

(a) 

(b) 
(c) 

the precision of the CPAs 
the delay in the critical path if CRAs are used as final-adder 
the number of FAs and HAS 
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3 . 2 3  

3 . 2 4  

3 . 2 5  

3 . 2 6  

Determine the critical path in each of the schemes shown in Figures 3.21 and 3.27 
using the following delay models for FA and HA modules: 

t F A ( a , b  ~ s) = 4r 

tFA(Cin "---> S) --- 2T 

tFA(a ,  b --+ Cout) = 37: 

tFA(Cin ~ Cout) - -  2~ 

tHA(a ,  b --+ s )  = 2~ 

tHA(a ,  b --+ Cout) = 1,: 

where r = t2-NAND. 

Design a network consisting of full-adders and half-adders to compute 

z = a - 3b + 5c 

where a, b, c are integers in the range [ -4 ,  3], represented in the two's comple- 

ment system. 

(a) What is the least number of bits necessary to represent z? 
(b) Show the bit-matrix before and after simplification. 
(c) Show your final network. Minimize the delay and the number of FA/HA 

modules in the reduction to two operands. 
(d) What is the minimum precision of the carry-propagate adder needed to 

produce the final result? Which type of CPA would be best suited? 

Design a network using reduction by columns to compute 

G = ] ( P 0 + 2 • 2 1 5 2 1 5  

- ( P 0  + 2  x P 7 +  P6)] 

where the inputs P i are positive integers in the range [0, 255]. If there is an 
overflow, the output is set to 255 (saturated). This function, known as the Sobel 

f i l ter ,  is used in processing grayscale images consisting of 8-bit pixels. 

Pipelined and Partially Combinational Implementations 

Design a pipelined linear array for addition of eight operands in the range [0, 63] 

similar to the scheme shown in Figure 3.23(a). 
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3 . 2 7  Show a pipelined implementation as in Figure 3.25 for six operands per iteration. 
Determine the time required to add 24 operands and compare with a nonpipelined 
scheme. 

3 .7  Further Readings 
The literature on the basic idea of carry-save addition with [3:2] and [4:2] adders, 
used in multioperand addition, is discussed in Chapter 2. Multioperand addition 
schemes for magnitudes and signed operands, [p :2] modules, and column counters 
are frequently discussed in the literature on multiplication (Chapter 4). 

A simplification of the sign extension in multioperand addition of operands 
in two's complement form, equivalent to the approach discussed in this chapter, 
is presented in Agrawal and Rao (1978). 

Reduction by Rows 

Early schemes for reduction by rows using [3:2] (carry-save) adders are described 
in MacSorley (1961), Bucholz (1962), and in Wallace (1964). The former scheme 
uses a tree of carry-save adders to add six summands per iteration in a radix-8 
sequential multiplier, while in the latter, frequently referred to as the Wallace tree, 
all summands are applied in parallel. A [4:2] adder with carry-save representation 
was discussed in Weinberger (1981). It is generalized in Lim (1978) to [p :2] adders, 
which are also called parallel compressors in Gajski (1980). 

Reduction by Columns 

A scheme for reduction by columns and the concept of parallel counters were 
introduced in Dadda (1965, 1976). In particular, a reduction scheme using a full- 
adder as a (3:2] and a half-adder as a (2:2] counter was developed. This method 
has been frequently used in reduction arrays in multipliers called Dadda mul- 
tipliers. In Stenzel et al. (1977) reduction by columns using (p:q] counters is 
discussed. A tree of full-adders proposed in Foster and Stockton (1971) imple- 
ments (p :q] counters. Implementation of parallel counters with partially analog 
counters is discussed in Swartzlander (1973). An implementation of (p:q] coun- 
ters using several tables and threshold switching functions is developed in Ho and 
Chen (1973). Another approach for implementing (p:q] counters is presented in 
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Svoboda (1970): a column of p entries consisting of ls and 0s is sorted so that a 
unique transition from l s to 0s produces a signal indicating the number of l s, 
which after encoding, produces q. 

Generalized Parallel Counters 

Generalized parallel counters and methods of synthesis of large counters from 
small ones are discussed in Meo (1975), Kobayashi and Ohara (1978), and Dormido 
and Canto (1981, 1982). 

Implementation 
A variety of circuit-level implementations have been developed. Gate networks 
with a minimal number of gates and interconnections for (3:2] counters (carry-save 
adders) are described in Lai and Muroga (1982). [p:2] modules at the transistor 
level for different p are developed in Song and Micheli (1991). Gate networks 
for [7:3] modules and (7:3] parallel counters are presented in Mehta et al. (1991). 
Implementations for [4:2] modules are presented, among others, in Nagamatsu 
et al. (1990), Kanie et al. (1994), and Makino et al. (1996) and for [5:2] modules 
in Kwon et al. (2000). A good discussion of VLSI cell designs for (3:2] and [4:2] 
modules is presented in Zimmerman (1998). Power-efficient design of [4:2] and 
[5:2] modules is discussed in Prasad and Parhi (2001). 

Bounds on Delay 

Bounds on delays and optimization techniques for networks of (3:2] and (2:2] 
counters are presented in Paterson and Zwick (1993). The complexity of multi- 
operand addition is presented in Atkins and Ong (1979). 

Miscellaneous Schemes 

Multioperand addition with conditional-sum adders is considered in Efe (1981). 
Variations on multioperand addition using different digit sets are explored in 
Parhami (1996). Pipelined m ultioperand adders are described in Yeh and Parhami 
(1996). 
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C H A P T E R  4 Multiplication 

In this chapter we consider algorithms and implementations of multiplication of 
signed integers in constant-radix representation (sign-and-magnitude and two's 
complement). These units are used for fixed-point multiplication (applying ap- 
propriate scaling factors) and are part of a floating-point unit, as discussed in 
Chapter 8. 

The multiplication operation is 

p - - x  x y  4.1 

where x (multiplicand), y (multiplier), and p (product) are signed integers. High- 
level descriptions of the algorithms for sign-and-magnitude and two's comple- 
ment are as follows: 

Sign-and-magnitude: Each operand is represented by a sign, with value + 1 
and -1 ,  and an n-digit magnitude, and the result by a sign and a 2n-digit 
magnitude. The high-level algorithm is 

sign ( p ) - -  sign ( x ) �9 sign ( y ) 4.2 

Ipl = I x l - l y l  

The representations of the magnitudes are 
n--I 

X - -  (Xn_ l ,  X n _ 2 , . . .  , x0) [x ] -- ~"~i=0 x i r  i (multiplicand) 

(0 < x < r n - - 1 )  

n-1 i (multiplier) Y - -  (Yn--1, Y n - - 2 , ' ' ' ,  YO) lyl- ~-~i=0 y ir  

(0 < y < r n -- 1) 
~-~2n-1 

P -- (P2n-1, P 2 n - - 2 , . . . ,  PO) ]P] Z..ai--0 Pi r* (product) 
(0 <_ p ~ r 2n --  2r n + 1) 

Two's complement: We consider here only the radix-2 case. Each operand 
is represented by an n-bit vector, and the result by an 2n-bit vector. 

4.3 

181 
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o 

This 2n-bit result is required because the range is 

- - ( 2 n - 1 ) ( 2  n - 1  - -  1) < p < ( - - 2 n - 1 ) ( - - 2  n - l )  - -  2 2 n - 2  4.4 

so that the most positive value is represented by a vector of 2n bits. 
IfxR, yR, and PR are the corresponding positive integer representa- 

tions of x, y, and p, respectively, the high-level algorithm is 

P R -  

XRYR 

22n - -  ( 2  n - -  XR)YR 

22n - -  XR( 2n -- YR) 

( 2  n --XR)(2 n --YR) 

ifx > 0 ,  y > 0  

if x < O, y > 0 

if x > O, y < 0 

if x < O, y < 0 

4.5 

As will be seen, this algorithm can be simplified when using the 
corresponding digit-vectors. 

In the next sections two types of algorithms are considered: 

Add-and-shift algorithm. For magnitudes, this algorithm is based on the 

following identity: 

n - 1  

x x y - -  ~ s  
i = 0  

4.6 

which is implemented by digit-by-integer multiplications (xy i ) ,  arithmetic 
shifts by i positions, and a multioperand addition. We consider the 
sequential and combinational variants as well as the adaptation to two's 
complement representation. 

Composition of smaller multiplications. 

Sequential Multiplication with Recoding 
This basic algorithm was reviewed in Chapter 1. We here extend it to include 
the recoding of the multiplier and consider radix-4 pipelined and higher-radix 
implementations. We consider first the sign-and-magnitude representation and 
then introduce the modifications for the two's complement representation. 
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4 o l o l  Sign-and-Magnitude 
As reviewed in Chapter 1, the basic algorithm for magnitudes is 

p[O] = 0 

p [ /  + 1] -- r - l ( p [ j ]  + (xrn)yj)  for j -- 0, 1 , . . . ,  n - 1 4.7 

p = p[n] 

The relative position of operands in the recurrence is illustrated in Figure 4.1. 
The execution takes n cycles, and each cycle corresponds to the delay of a 

digit multiplication (one digit of the multiplier times the whole multiplicand), 
the delay of addition, plus register delay. The delay of shift (constant by one digit 
position) is negligible since it is implemented by wiring. That is, 

T = n (tdigmult -F tadd + treg) 4.8 

This time is reduced if a redundant adder is used. As shown in Figure 4.2, this 
adder has one redundant operand and one conventional operand. If the result is 
required in conventional representation, it has to be converted. The conversion 
of the least-significant half of the product can be done during the shifting. 

i Mult ipl icand X r  n l ,. i 
, 
, 
, 

I i ,I L ,E i Vector-digi t  mult ipl ier [- 
,, ,, 

xr n yj I :: i 

p[j] ! ! 

I ' rp[j+l] , ~. k~ ii 

p [ j + l ]  i t  i 
, 

Mult ip l ier  Y 
i i 

Yj 

k~ Shift right 

F I G U R E 4.1 Relative position of operands in multiplication recurrence. 
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X 

I Register X 

I 

Y 

I Shift Y Register I 

REDUNDANT 
ADDER 

nonredundant 
redundant 

p[j+l] 

Register PH 

p[j] l 

ADDER 

=1~ CONVERTER 
Shift Register PL I 

i 

P 

F I G U R E  4.2 Sequential multiplier with redundant  adder. 

Radix 2 and Radix 4 
The simplest implementation is obtained if the multiplier is represented in radix 2, 
since the multiple of the multiplicand is either x or zero. However, the number of 
iterations is reduced by using a larger radix. When the radix is 2k, this is equivalent 
to considering k bits of the radix-2 multiplier per iteration. The main problem 
with this approach is the digit multiplication, since now the digit of the multiplier 
has 2 k values. 

For radix 4, this digit multiplication can be simplified by recoding the mul- 
tiplier into radix-4 digits with values (-2,  -1 ,  0, 1, 2) since the multiplication by 
these digit values is simple (complementation and shifting of the multiplicand). 
The recoding produces z such that 

z -- y, Z i ~ { - 2 , - 1 ,  0, 1, 2} 4.9 
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Since the sequential multiplication algorithm uses the digits of the multiplier 
from least significant to most significant, the recoding algorithm can also be 
sequential. In this case, the nonredundant digit set {-1,  0, 1, 2} can be used. 1 
This set allows a simpler implementation (fewer multiples) than the redundant set 
{-2 ,  - 1, 0, 1, 2, }. Calling vi the radix-4 digit of the multiplier (corresponding to 
two bits of the radix-2 multiplier), the recoding uses a carry bitci and is performed 

by the recurrence 

Zi  = P i  - t -  tTi - -  4ci+1 4 . 1 0  

The carry ci+ 1 is selected so that the value Z i = 3 is avoided. Consequently, when 
vi +ci  > 3 we produceci+l = 1 andzi = vi +ci  - 4 .  This recodingis described 
by the following table: 

Vi + Ci Zi Ci+l 

0 0 
1 0 

2 0 
- 1  1 

0 1 

Note that the recoding (of a magnitude) produces a final carry. This carry 
has to be considered as an additional digit. The carry is avoided if the number 
of bits of the multiplier is odd, so that the most-significant radix-4 digit of the 
nonrecoded multiplier has values 0 or 1 only. That  is, for an n-bit magnitude 
multiplier the number of radix-4 digits of the recoded version is [(n + 1)/2]. 

A radix-4 multiplier using this recoding is shown in Figure 4.3. This imple- 
mentation is pipelined into three stages as follows: 

�9 Stage 1: multiplier recoding 
�9 Stage 2: generating the multiple of the multiplicand 
�9 Stage 3: addition (using a redundant adder, illustrated with a carry-save 

adder) and shift (with conversion of the shifted-out bits). 

The number of bits of the carry-save adder and of register SCH is n + 3 since the 
n bits of the multiplicand are extended by one bit because of the multiple 2 and 

1. We later describe a parallel recoding algorithm, which requires the redundant digit set 
{-2, -1, O, 1, 2}. 
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2 
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FIGURE 4.3 Radix-4 sequential multiplier. The CONV module has an internal carry signal, 

which in the last step is used as a tin for the CPA. 
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Cycle 

Stage 1 

Stage 2 

Stage 3 

CPA 

0 

LOAD X 

LOAD Y 

0 

0 

0 

zo 

0 

0 

Zl 

Xzo 

0 

Z2 

Xzl 

PS[1] 

SC[I] 

z3 

Xz2 

PS[2] 

sc[2] 

F I G U R E 4 .4  Timing diagram. 

Z4 

Xz3 

PS[3] 

sc[3] 

m + l  

XZm_l 

PS[m - 11 

SC[m - 11 

m + 2  

PS[m] 
SC[m] 

Final product 

by another bit because the multiple is signed (in two's complement representa- 
tion); finally it is necessary to extend one more bit to accommodate the range of 
the result of the addition. 

The number of iterations is equal to the number of digits of the recoded 
multiplier, that is, m = [(n + 1)/2]. The execution is illustrated in the timing 
diagram shown in Figure 4.4. 

The recoding uses the two rightmost bits of the multiplier register (MI, M0) 
and the carry flag C. For this, the M register is shifted two bits per iteration. The 
signals are described as follows: 

0 select2x 
one  - -  M o  ~3 C - -  4.11 

1 select x 

0 
n e g -  M 1 C  + M 1 M o  - -  1 

select direct 

select complement 
4.12 

' M o C '  zero - -  M 1 M o C  + M 1 
{0 

1 

load nonzero multiple 

load zero multiple (clear) 
4.13 

Cnext = M 1 M o  § M 1 C  = neg  4.14 

Note that when zero = 1 the selection made by neg  is irrelevant. This allows a 
simpler expression for neg  and Cnext. Figure 4.5 illustrates a recoder implemen- 
tation. 
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E X A M P L E  4.1 

C 

M1 

mo 
- -  T T _ _T I 

one neg Cnext zero 

F ! G U R E 4,S Sequential recoder implementation. 

The generation of ( -1)x  is performed by a bit complement, and the added 
1 is placed in the least-significant bit of the carry vector, as follows: 

PS [j'] PSn+2 PSn+I PSn "'" PS1 PSo 

SC [j ] SCn+2 SCn+I SCn . . .  SC1 SCo 

--X Xtn+ 2 Xtn+ 1 X '  n . . .  X '  l X1o 

CSA Sn+2 Sn+l Sn " ' "  S1 S0 

�9 1"  Cn+2 r  r . .  C 1 

* For two's complement ofx. 

n -- 5 bits m - 3 radix-4 digits 

x - - 2 9  X = l l l 0 1  

y - -27  Y = 11011 
B 

Z = 2 1 1  ( z - - y )  ( - 1 = 1 )  

As discussed before, the carry-save adder has 8 bits (see Figure 4.6). 
The least-significant bits (PSI[ j] ,PSo[j])  and (SCI[j], SC0[j]) are added 
and shifted out, producing two final product bits per recurrence step. 2 
The final product consists of the lower 6 bits produced during the three 

2. See Exercise 4.3 for details. Note that in this example the conversion is simple because the 
digit to be converted is not larger than three; in general this might not be the case. 



Sequential Multiplication with Recoding 189 

CSA Shifted out 

PS[O] 00000000 

sc[o] oooooooo 

x Zo 11100010 

4PS[1] 11100010 

4SC[1] 00000001 

PS[1] 11111000 

sc[1] oooooooo 

X' Z 1 11100010 

11 

4PS[2] 00011010 

4SC[2] 11000001 

PS[2] 00000110 

SC[2] 11110000 

x Z2 00111010 

1111 

4PS[3] 11001100 

4SC[3] 01100100 

PS[3] 1111 O011 

SC[3] 00011001 

P 1100 

001111 

001111 = 783 

F l a U R E  4 . 0  Example of radix-4 sequential multiplication with carry-save adder. 

recurrence steps and the 4 upper bits obtained by a 4-bit CPA. Note that 
the least-significant bit of 4SC[j] (shown in boldface) is 1 when the multi- 
plier digit is negative so that the two's complement of the multiplicand is 
required. �9 

Higher Radices 

Sequential multiplication can be done using a multiplier representation with a 
radix higher than 4 to further reduce the number of iterations. The algorithm is 
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a direct extension of the radix-4 case. For instance, for radix 8 the multiplier can 

be recoded into the digit set {-3 ,  - 2 ,  - 1 ,  0, 1, 2, 3, 4} with a direct extension of 

the algorithm presented for radix 4. The main problem with the implementation 

of this multiplication is the generation of 3x. This can be done as a preprocessing 

step by addition of 2x plus x. 
The extension to even higher radices requires the preprocessing of more mul- 

tiples. An alternative is to use several radix-4 and/or radix-2 stages in one iteration. 

For instance, Figure 4.7 shows a radix-16 multiplication unit in which the mul- 

tiplier is recoded into a radix-16 signed digit vj in the set {-10, . . . ,  0, . . . ,  10}. 

This recoding is actually performed by recoding into two redundant radix-4 digits 

u j and wj such that 3 

vj -- 4uj -~- Wj Uj, Wj ~ { - 2 , - 1 ,  0, 1,2} 4.15 

The recurrence is 

q[j] = p [ j ] + x w i  

1 
p [ / +  1] - ~ (q [ j ]  + (4x)uj) 

4.16 

where p[ j] is the partial product, q [j] is its intermediate value, and x wj and 

4xuj are multiples of the multiplicand and shifted multiplicand, respectively. 
The use of a higher radix r -- 2k reduces the number of iterations to n /k .  

Due to a more complex iteration step for higher radices, the reduction of the total 

delay is less than k times with respect to radix-2 multiplication (see Exercise 4.8). 

Use o f  [p:2] Adder 

As discussed in Chapter 3, in a multioperand addition it is possible to use [p:2] 
adders. Since multiplication is a multioperand addition, this can also be done for 

multiplication. In such a case, p - 2 multiples of the multiplicand are used per 

iteration. For instance, in the radix-16 example of Figure 4.7, two multiples are 

used per iteration, so that a [4:2] adder can be used. 

3. The sequential radix-4 recoding algorithm can be used without increasing the cycle delay if 
the delay of recoding is not larger than the delay of a full-adder. 
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Radix- 16 
signed digit 

vj 
{-10 . . . . .  10} 

Register X 

/ 
wj 

I I 

SELECTOR 

(-2,-1,  0, 1, 2) multiple of X 

SELECTOR 

(-2, -1, 0, 1, 2) multiple of 4X 

4xuj 

Register SC 

xwj 

. . . .  t . . . . . .  t -  . . . .  
CSA 1 

] I RegisterPS I 

J~" 1 A [4:2] adder can be used 
instead of two [3:2] adders 

SC 

q[j]  

CSA 2 

. . . . . . .  

e s  1 6 p [ j + l ]  

n+3  (See comments in Section "Radix 4") 

x x . . . x x x  

C S A  1 x x . . . x x x  

X X . . . X X X  

o,se;"n extension ~ [ - k - - - ~ x  x . . .  x x x 
Ixxl X X  X X X  

I I 

x x . . .  x x x -q- = To shill conver ter  
C S A  2 

_r-- - - -  

X X . . . X X X  

X X . . . X X X  

X X . . . X X X  

To SC and PS x x . . .  x x x 
I I 

registers (shifted) I t_~ = To spill conver ter  
,l l  

FIGURIE 4.7' Radix-16 multiplication datapath (partial). 
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4o t ~2 Two's Complement 

We now describe the modifications required when the operands and the result 
are in two's complement representation. As indicated by the algorithm shown 
at the beginning of the chapter, one possibility is to transform the operands 
into sign-and-magnitude, perform the mtiltiplication, and then transform the 
result. However, this is not necessary when using the add-and-shift algorithm. In 
this case, the following modifications to the sign-and-magnitude algorithm are 
suitable. 

First, for operands of n bits (in two's complement representation) the range 
of the product is --(2 n-1 -- 1)(2 n-l) < p < (22n-2), requiring 2n bits in two's 

complement representation. 
Second, since the multiplicand is represented in two's complement, the addi- 

tion and shift operations are performed in this system, as discussed in Chapter 1. 
Third, the effect of the two's complement multiplier can be taken into account 

in the following two ways, both based on the relation of the multiplier value and 
its two's complement representation, namely, 

n-2 

y = --Yn-12n-1 -+- ~ Yi 2 i 4.17 
i=0 

which in radix 4 corresponds to 

n--3 
y - -  ( - 2 y n - 1  Jr- Yn-2) 2 n-2 + ~ Yi 2 i 

i--0 
m-2 

4 m-1 ~ 4 i 
- -  - -  /-"m - 1 "+" /"i  4 . 1 8  

/ 

i--0 

where m = n/2 (n even) and the radix-4 digit values are Vm--1 e {--2, -- 1, 0, 1} 
and vi e {0, 1, 2, 3}. 

Consequently the two alternatives are 

1. Subtracting instead of adding in the last iteration when the multiplier digit 
is negative. The subtraction is done by addition of the two's complement 
of the multiple of the multiplicand. 

2. Recoding the multiplier into a signed-digit set. 

For radix 2, this can be done by a modification of the recoding for sign-and- 
magnitude (extending the sign); however, in this case it seems preferable to use 
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4 ~  

the first approach. Consequently, we concentrate on the radix-4 case, in which 
the recoding is done anyhow to eliminate the multiple 3x. 

The sequential radix-4 recoding for sign-and-magnitude presented before 
has to be modified for the two's complement case. One possible modification is 
to extend the sign: one bit ifn is odd and a whole radix-4 digit if it is even. Then, 
as in two's complement addition, the carry-out of the extended digit vector is 
discarded. However, this increases the number of cycles when n is even. 

Two variations are possible to eliminate the need for the additional cycle: 

1. Consider the most-significant radix-4 digit as described by expression 
(4.18). Then, the recoding of the last digit is 

Vm_ 1 -+- Cm_ 1 Z m-1  

- 2  
- 1  

0 
1 

2 

- 2  
- 1  

0 
1 

2 

This requires a special recoder for the last digit. However, in terms of the 
bits of y and the carry, this recoder differs from the one for sign-and- 

magnitude only in the case Vm-1 + Cm-1 = --2 (that is, Yn-lYn-2 = 10, 

Cm-1 = 0). Consequently, the recoder is quite easy to modify for this case. 

Use the parallel recoder discussed for combinational radix-4 multiplication 
(see page 286). 

Combinational Multiplication with Recoding 
Instead of performing the multiplication in several cycles (iterations), reusing the 
hardware, in the combinational case the operation is performed in a single cycle. 
The combinational add-and-shift algorithm (actually shift-and-add) is based on 

n - 1  

p -- ~ xyir 
i=0 

4.19 

In this case, the multiplication is done in two steps" 

1. Generation of the (shifted) multiples of the multiplicand (x x yi) ri 

2. Multioperand addition of the multiples generated in step 1 
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We now consider each of these steps and then show the implementation of com- 
plete multipliers. 

4=2~I G e n e r a t i o n  o f  Mul t ip l e s  a n d  B i t - A r r a y  

The multiples are 

re[i] - xyi ri 4.20 

This corresponds to a multiplication of the multiplicand by one digit of the 
multiplier and an arithmetic shift left of i positions. Usually, the multiplicand is 
in radix-2 representation so that the result of this digit multiplication is a bit-vector 
and the shift is ofi • log 2 r bit positions. The set of these bit vectors, adequately 
range extended, forms a bit matrix that is added in the second step. 

Consider now the generation of the bit-matrix for the multiplier in radix 2 
and in radix 4. 

Radix 2 

For the multiplier in radix 2, the digit multiplication is especially simple since yi 
has only values 0 and 1. Consequently, each multiple is produced by a set of AND 
gates, as shown in Figure 4.8(a). The resulting bit-matrix for multiplication of 
magnitudes is shown in Figure 4.8(b). 

For multiplication in two's complement representation, two modifications 
are required: 

1. The range extension is done by replicating the sign bit of each of the 
multiples. Since the largest negative operand value is - 2  n-l, the maximum 
product positive value is 2 2(n-1). Consequently, to avoid an overflow, the 
array should produce a product represented by 2n bits, so that the extension 
should be performed accordingly. 

2. The multiple Xyn_l 2n-1 is subtracted instead of added. This is because, as 
already used in the sequential implementation, in two's complement 

n--2 
__ 2 n - 1  2 i y -Yn-1 + ~ Yi 4.21 

i=0 



Combinational Multiplication with Recoding 195 

Xn_l Xl XO 

re[i] 

(a)  

Xl Y3 

m[0] 

re[l] 

m[2] 

m[3] 

m[4] 

m[5] 

m[6] 

m[7] 

(b) 

F ! G U R E 4.8 (a) Radix-2 multiple generation. (b) Bit-matrix for multiplication of magnitudes 

(. = 8). 

The subtraction is done by complementation and addition. The comple- 
mentation is performed by a bit-complement plus the addition of 1. 4 

We now show how to construct a bit-matrix for radix-2 multiplication of two's 

complement operands x --  (Xn--1, X n - - 2 , - . - ,  X'0) and y - -  ( Y n - - 1 ,  Y n - - 2 , . . . ,  yo). 

4. Instead of doing this subtraction step, it has been proposed to recode the (two's 
complement) multiplier into the digit set {-1,  0, 1}. However, there seems to be no 
advantage in following this approach. 



196 c N A p T E R 4 Multiplication 

7 6 5 4 3 

x3yo x3yo x3yo x3yo x3yo 

x3yl x3yl x3yl x3yl x2yl 

x3y2 x3y2 x3y2 x2y2 xly2 
! ! ! ! t 

x3Y3 x3Y3 x2Y3 xlY3 XoY3 

Y3 

(a) 

2 

x2yo 

Xlyl 

xoy2 

1 

xlyo 

xoyl 

xoyo 

7 6 5 4 3 2 1 0 

(x3Y0)' 

(x3Yl)' x2yl 

(x3Y2)' x2Y2 xlY2 
! ! ! l ! 

(x3Y3) x2Y3 xlY3 XoY3 

Y3 

- 1  - 1  - 1  - 1  

(b) 

x2Yo 

x ly l  

xoY2 

xlYO 

xoYl 

7 6 5 4 3 2 1 0 

xoYo 

(x3Y2)' 
! 

1 (x~y3)' x2Y3 

y3 (x3y0)' x2yo 

(x3yl)' xzyl Xlyl 

x2Y2 xly2 xoy2 
! ! 

xly3 (x0Y3) 

xlyo 

xoYl 

xoyo 

(c) 

F I G U R E  4 . 9  Constructing bit-matrix for two's complement multiplier (n - 4). (a) Basic bit- 
matrix with each row sign-extended. (b) Bit-matrix after initial transformation. (c) Bit-matrix 
after final transformation. 

As mentioned above, to handle the largest positive product (--2n-1)(--2n-1), the 

bit-matrix has 2n columns. 
The bit-matrix after sign extension is shown in Figure 4.9(a). The increase 

in the number of bits due to the sign extension would complicate the addition 
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step. As discussed in Chapter 3, the effect of this sign extension can be reduced by 
applying the following identity in the sign position (which is of negative weight): 

( - s )  + 1 -  1 - ( 1 - s )  - 1 - - s ' -  1 4.22 

Consequently, 

is replaced by 

Xn--lYi Xn--2Yi . .  �9 XoYi 

(Xn--lYi) '  Xn--2Yi . . .  XoYi 

--1 

The bit-matrix resulting from this transformation has n + 2 rows as shown in 
Figure 4.9(b). The two extra rows can be eliminated as follows" 

1. The digit-vector in row 6 

(0, ( -1 ) ,  ( -1 ) ,  ( -1 ) ,  ( -1) )  

has value -15  • 23, which can be replaced by its two's complement 
representation, namely, 10001000. 

2. Precompute 

! 

xoY3 + y3 + 1 

in column 3, rows 4, 5, and 6, resulting in a carry y3 and a sum (x0y3)'. The 
carry is placed in row 1, column 4, and the sum in row 4, column 3. 

The application of this modification results in the final bit-matrix shown in 
Figure 4.9(c). Consequently, with respect to the array for magnitudes, only two 
additional bits are required. 

R a d i x  4 

To reduce the number of multiples and, therefore, the complexity of the mul- 
tioperand addition, it is convenient to consider the multiplier represented in a 
radix higher than 2. For radix 4 with conventional representation of the multi- 
plier digit, the values of the digit are 0, 1, 2, and 3. As discussed for the sequential 
case, the implementation of the multiple generation consists of an AND-OR net- 
work for each bit to select among the three possible multiples different from 0. 
The generation of the multiples x and 2x is simple, but the multiple 3x requires 
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an addition. As also done for the sequential multiplication, to avoid this multi- 
ple it is possible to recode the multiplier into a signed-digit set. To optimize the 
recoding we consider two cases: 

1. The bit-array is added by a linear array of adders. As discussed further in 
the next section, in this case each adder in the array has as operands the 
partial sum (of the previous additions) and one multiple. Consequently, the 
recoding can be done as in the sequential multiplication case (digit set 
{-1,  0, 1, 2}). This has the advantage of requiring only four values per 
digit. 5 

2. The bit-array is added by a tree of adders. In this case all the multiples are 
obtained simultaneously and applied as operands in the first level of the tree. 
Therefore, the recoding has to be done in a parallel fashion; that is, all digits 
of the recoded multiplier should be obtained simultaneously. In this case, 
the digit set is {-2,  - 1 ,  0, 1, 2} and the recoding algorithm is as follows. 

Parallel Radix-4 Recoding 

We present the high-level arithmetic algorithm using the same technique as for 
signed-digit addition in Chapter 2. Then we consider a bit-level implementation. 
We show that the recoding is correct for two's complement representation of the 
multiplier. If the multiplier is a magnitude, it should be extended by the sign bit 
equal to zero. 

Let us call vj a radix-4 digit of the multiplier (obtained by pairing consecutive 
bits of y). That  is, 

uj = 2y2j+l + Y2j j = (m -- 1 , . . . ,  0) m = n/2 4.23 

and 

Y,-1, Yn-2, . . . ,  Yl, Yo 

is the radix-2 representation of the multiplier. 
At the high level the algorithm has two steps: 

1. Obtain wj and tj+l such that 

Uj = Wj  "~- 4tj+l 4.24 

5. If a [p :2] adder is used, with p > 3, then the parallel recoding is needed. 
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~-1 

I A~ II A~176 I 

Zj Zj_ 1 

F I G U R E  4.,O Radix-4 parallel recoding from {0, 1, 2, 3} into {-2, -1, 0, 1, 2}. 

2. Obtain 

Zj --- W j  2t- t j  4.25 

For a parallel algorithm, the second step should be performed without carry 
propagation. This is achieved if 

- 2  ~ W j  ~_~ 1 0 ~ tj+l ~ 1 4.26 

Consequently, the algorithm is 

(0, vs) 
(tj+l, w j ) - -  (1, v j -  4) 

Zj m Wj + tj 

i f v j  < 1 

i f v j  > 2 
4.27 

As shown in Figure 4.10, digits j - 1 and j of the multiplier are involved in the 
generation of zj.  

We now show that the recoding algorithm is correct for two's complement 
representation. For this, consider the most-significant digit. The value of this 
digit is U m _  1 = --2yn-1 + Yn-2. On the other hand, the recoding algorithm 
uses b ' m _  1 = 2yn-1 + Yn--2 and produces Win-1 = U r n - 1 -  4tin. Since t m =  1 if 
/-"m-1 >-~ 2, we get 
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Yn- lYn-2  •m-1 Wm-1 Um-1 

00 

01 

10 

11 

0 

1 

- 2  

- 1  

0 

1 

- 2  

- 1  

Consequently, the algorithm is correct if we discard the transfer digit tm. 
We now consider a bit-level implementation. The radix-2 multiplier is 

Y = (Yn-1, Yn -2 , . . . ,  YO) Yi ~-{0, 1} 4.28 

and the recoded radix-4 multiplier 

Z = (Zm_l ,  Zm_2, . . . ,  Z0) Z i c {-2, -1 ,  0, 1, 2} 4.29 

From the high-level algorithm, bits y2j+l, y2j, y2j-1, y2j-2 are involved in the 
generation ofz j .  However, since tj+i -" 1 only when vj > 2, bit y2j-2 has no 
effect. Specifically, 

Zj --  Wj  -~- tj  = (Pj -- 4 t j+ l )  + t j  

Since p j  = 2y2j+l  + Y2j and t j  --- Y2j-1 ,  we get 

z j  - -  (2y2j+1 + Y2j -- 4y2j+1) + Y2j-1 = --2y2j+1 + Y2j + Y2j-1 

This bit-level recoding can be described by the following table: 

Y2j+l Y2j Y2j-1 z j  

4.30 

4.31 

0 0 0 

0 0 1 

0 1 0 

0 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 

0 

1 

1 

2 

- 2  

1 

1 

0 
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E X A M P L E  4.2 Following are two examples of the bit-level recoding: 

y = 01011110 y -- 10001101 
m u m 

z - - 1  2 0 2  z - - 2  1 1 1 

We implement the recoder with a representation of Zj by the triple (sign, one, 

two), as follows: 

�9 sign = 1 i f  z j  is negative 
�9 o n e -  1 i f  z j  is either 1 o r - 1  
�9 two --  1 i f  z j  is either 2 or - 2  

From the table we obtain the following switching expressions: 

sign = y 2j +1 

one ~ y2j ~ y2j-1 4.32 
l l I 

two -- Y2j+lY2jY2j-1 + Y2j+lY2jY2j-1 

The bit-level implementation of this recoder and the multiple generator are 
shown in Figure 4.11. The generation of the two's complement for negative 
multiples is produced by the signal sign, which controls the bit-inverter, and 
the signal c, which completes the two's complement operation. Note that the 0 
for (y2j+l, y2j, y2j-1) - 111 is obtained by a bit-vector 1 at the output of the 
bit-inverter and c - 1. 

The algorithm can be extended to higher radices in a straightforward 
manner. That  is, for z j  ~ { - ( r / 2 ) ,  . . . ,  + ( r / 2 )  } the recoding is described by 

I(O, v j )  i f v j  < ( r / 2 ) -  1 
(tj+l, w j )  -- - 4.33 / (1, v j - r )  i f v j  > r / 2  

Z j  - -  W j  -]- tj 

The bit-level implementation uses log2(r) + 1 bits of Y to produce z j .  

B i t - A r r a y  

Because of the recoding, the multiples of the multiplicand are signed; conse- 
quently, they are represented in the two's complement system (even for multipli- 
cation of magnitudes). For multiplication of n-bit operands the result has 2n bits 
so that the rows of the bit matrix have to be extended to 2n bits. The negative 
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Y2j+I 

V �9 

J 

I 
sign c 

�9 T 
I 

l 

Y2j-1 

I 
i _ l  

V 
l 

Multi )licand X 

twO 

sign I BIT-INVERTER I 

2x, x,  Z, o_, x,  2x  

me two "--  Bit-vector 

one 

(a) (b) 

F ! G U e E 4.11 (a) Implementation of parallel recoder. (b) Implementation of multiple 

generator. 

multiples are obtained by bit complement and addition of 1 (these additional bits 

are called c in what follows). The bit array is formed by the multiples (and the c 

bits). Because of the radix 4, consecutive multiples are shifted two positions. 

There are some differences in the array, depending on whether the operands 

are magnitudes or signed in two's complement representation. We now discuss 

both cases. 

For magnitudes, the multiplier is extended with a 0. Consequently, the num- 

ber of radix-4 digits (rows in the array) is [(n + 1)/27. Moreover, the most- 

significant radix-4 digit has to be positive (with value 0, 1, or 2), so that no sign 

bit nor c bit is needed for that row. 

As an example, the bit array for multiplication of 7-bit magnitudes is shown in 

Figure 4.12(a). To reduce elements of the bit array, we use similar modifications to 

those discussed for the radix-2 case and for multioperand addition. The resulting 

array is shown in Figure 4.12(c). 
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13 12 11 10 9 8 7 6 5 4 3 2 1 0 

XZO" Se Se Se Se Se Se e e e e 

X Z  1" S f  S f  S f  S f  f f f f f f 

xz2" Sg Sg g g g g g g g g 

xz3" h h h h h h h h Cg 

(a) 

! 
x z o "  Se e e e e 

' f f f f f f X Z l "  S f 

x z  2" s t g g g g g g g g g 

XZ3" h h h h h h h h cg 

- 1  - 1  - 1  

e e 

f f 

c f  

e e 

f f 

c f  

e e 

Ce 

Ce 

(b) 
! 

xzo" 1 1 Se Se Se e e e e e e 

' f f f f f f f f X Z  1" S f 

i 
xz2" s s g g g g g g g g c f 

xz3" h h h h h h h h c s 

e e 

Ce 

(c) 

F I G U R E  4 . 1 2  Radix-4 bit-matrix for multiplication of magnitudes (n = 7). There are 8 bits 

plus sign for each row because of the possible multiple 2. The result is a magnitude, no sign 

included. The - l's of the last row of (b) are combined with s ~ to form the first row of (c). 

A similar array is used for multiplication of signed values in two's complement 

representation since the multiplier recoding is applicable for this representation. 

In this case, In/2]  rows are required, and all digits of the recoded multiplier can 

be negative. The  max imum positive value of the product is 22n-2, requiring 2n bits 

for the two's complement representation. Figure 4.13 illustrates multiplication 

of two's complement 8-bit operands. Note that one additional row is required 

(formed of bit ca ). 
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15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

XZO" Se .-r Se -r -r Se Se Se e e e e e e 

xzl" s f  s f  s f  s f  s f  s f  f f f f f f f f 

xz2" Sg Sg Sg Sg g g g g g g g g c f  

xz3" sh sh h h h h h h h h Cg 

Ch 

e e 

Ce 

(a) 

t C C C C C C XZO" Se 

' f f f f f f f f X Z I "  S f 
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F I G U R E  4 . 1 3  Radix-4 bit-matrix for two's complement multiplication (n = 8). See com- 

ments in caption of previous figure. 

Radix  8 

Considering a radix-8 representation of the multiplier (three bits per digit), 

reduces the number of multiples by a factor of 3. Since the generation of the multi- 

ples of x (up to 7x) is complicated, the multiplier can be recoded to signed-digit 

representation. The algorithms for this are direct extensions of the radix-4 cases. 

For sequential recoding it is possible to use a nonredundant  digit set (for instance 
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- 3  to 4), whereas for the parallel recoding the redundant digit set - 4  to 4 is 
appropriate. In any case, the multiple 3x has to be generated, usually as 2x + x, 
which requires an addition. In principle, it is possible to keep this 3x in carry-save 
representation (two vectors), in which case no addition would be needed; how- 

ever, this would effectively double the number of vectors that have to be added in 
the array, which eliminates the advantage of recoding. The addition for 3x can 
be done in parallel with the recoding of the multiplier. 

Whether radix-8 recoding reduces the overall delay depends on the organi- 

zation of the adder array. In any case, it reduces the number of adders required 
in the array. 

4 . 2  ~2 Addition of the Bit-Array 

For the addition of the bit-array we consider the same approaches discussed for 
multioperand addition; namely, reduction by rows using adder arrays (linear and 
tree) and reduction by columns using (p:q] counters. We therefore concentrate 

here on the effects of the particular shape of the bit-array in multiplication. 

Since redundant addition is used to limit the carry propagation, the bit-array 

addition has two steps: reduction to two rows and conversion to conventional 
representation. In this section we concentrate on the reduction to two rows and 
discuss further the conversion in the next section. 

Reduction by Rows: Linear Adder Array 

We consider now the addition by a linear adder array. The difference with respect 
to the multioperand addition of Chapter 3 is the shape of the bit array. Figure 4.14 
shows linear adder arrays for radix 2 and radix 4 using [3:2] and [4:2] adders (for 
the case with signed-digit adders, see Exercise 4.6). 

In the radix-2 case, one bit of the result is produced at each level so that the 
final adder has n + 1 bits. In the radix-4 case, the carry bits do not make 2-bit 
product digits directly obtainable. One possibility is to carry out conversion of 

the least-significant outputs of the CSA stage so that 2 bits of the product are 

obtained per stage (see Exercise 4.13). In this case the final adder has n bits. The 
final conversion is optional (although almost always done) and can use any of the 
fast carry-propagate adders discussed in Chapter 2. 
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(a) 

F I G U R E  4.14 Linear array for 12 x 12 multiplication of magnitudes: (a)r = 2. (b)r = 4. 

Also included are the modules to produce the multiples. 
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The delays of the 12 x 12 multiplication implementations shown in 
Figure 4.14, with conversion of the four least-significant bits in the radix-4 
case, are 

�9 for radix 2, 

�9 for radix 4 

T = raND + 10tf~ + tCPA(13) 4.34 

T =tRec + tvo + 2t[4:2] + tfa + tCPA(21) 4.35 

Adder Tree 

To reduce the number of levels of adders, a tree can be used, as discussed for multi- 

operand addition. This is applicable for both radix-2 and radix-4 bit-arrays. Ifm is 
the number of digits of the multiplier (n for radix 2 and n/2  for radix 4), the num- 

ber of levels is [log2(m/2)] for 4-to-2 adders, and approximately [log3/2(m/2)] 
for an array of 3-to-2 adders. 

Note that from radix 2 to radix 4 the reduction in the number of levels is 

just one. Moreover, for the radix-4 case it is necessary to add the delay of the 

recoder. Consequently, it is not clear that there is a reduction in the overall delay. 

However, the radix-4 case might be considered because of possible area reduction 

due to a reduced number of partial products. Figure 4.15 shows [3:2] and [4:2] 

adder trees. The carry-propagate adder used for conversion is now wider than 

in the case of a linear array. In the case of using [3:2] adders, the number of full 
adders can be reduced by considering the shape of the bit-array. This is illustrated 
in Figure 4.16. 

Pipelining 

The adder arrays can be pipelined to increase the throughput of multiplication. 
An implementation for a linear array is shown in Figure 4.17. 

Reduction by Columns Using (p :q] Counters 

This is an application of the method discussed for multioperand addition. That  is, 

each column of the bit-array is reduced individually until two rows are obtained. 

These are then reduced to one row by a carry-propagate adder. The method is 
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I [3:21 
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I I I I  1111 
I E4:21 I I, E4:21 I 
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I E4:21 I 
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I CPA 
l 

Product 
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F I G U R E  4 . 1 5  Tree arrays of adders: (a) With [3:2] adders. (b) With [4:2] adders. 

especially suited for multiplication because the different column height is used 
to reduce the number of counters. The height of each column is better shown in 
the bit-array of Figure 4.18. 

One possibility is to use (3:2] and (2:2] counters. For this case, the design 
method presented in Chapter 3 produces Table 4.1 and Figure 4.19. As discussed 
also in Chapter 3, larger (p:q ] counters can be used for the reduction. 
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[3:2] I adder* 

[3:2] I adder 

�9 

. 

[3:2] 
adder 

[3:2] 
adder 

[3:2] I adder 

I �9 

I 

Level 4 
(16 FAs + 3 HAs) 

Level 3 
(10 FAs + 7 HAs) 

Level 2 
(7 FAs + 5 HAs) 

[3:2] Level 1 
adder (3 FAs + 9 HAs) 

2"////////// 11-bit CPA 

* [3:2] adder uses HAs when possible. 

F I 6 U n t 4.16 Reduction by rows with FAs and HAs (n -- 8): cost 36 FAs, 24 HAs, and 11-bit 
CPA. 
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Modules with 
0 inputs can 
be simplified 

P7 P6 P5 P4 P3 P2 Pl P0 

FIGURE 4,17 Radix-2 pipelined linear CSA multiplier for magnitudes (n = 4). Adapted 

from Noll et al. (1986). 

4~  ~3 Final Adder for Converting Product to Conventional Form 

In most multipliers the product is required in conventional representation. In 
such cases the two-row result of the reduction are inputs to a carry-propagate 
adder, which produces the product. Since the delay of this addition contributes to 
the overall multiplication delay, it is convenient to use a fast adder (see Chapter 2). 
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, ; ; ; ; ; ; ; ; m[O] 

~ m [ 1 ]  

m[2] 

m[3] 

m[4] 

m[5] 

m[6] 

m[7] 

F ! 6 U R t 4.18 Bits of(shifted) multiples organized as bit-triangle (for magnitudes and radix-2 

multiplier). 

However, typical fast adders are designed under the assumption that all 

operand bits arrive at the same time. This is not the case in the multiplier, 6 

especially when using column reduction since the length of the columns (includ- 

ing carries from previous columns) is not uniform. Consequently, it might be 

beneficial to design an adder that takes into account the characteristics of the 

arrival time of the operand bits. Consider, for instance, the idealized arrival pro- 

file of Figure 4.20(a). We see three regions: at the least-significant side the arrival 

time increases when moving to the left, in the middle region the time is large 

and constant, and at the most-significant side the time decreases. For this case, a 
hybrid adder of the following characteristics might be convenient: 7 

�9 For the least-significant region a carry-ripple adder seems appropriate, 
since any faster structure would need to wait for the higher bits. 

�9 For the middle region a fast adder is required. 
�9 For the most-significant region, a carry-select adder would be suitable since 

the sum of the most-significant bits can be computed earlier. 

The corresponding implementation is illustrated in Figure 4.20(b). 

6. This effect is lost if the multiplier is pipelined and the final adder corresponds to another 
stage of the pipeline. 
7. See Stelling and Oklobdzija (1996) for further details. 
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14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

l - - 4  

ei 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 

m3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 

hi 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 

f 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 

1 = 3  

ei 1 2 3 4 6 6 6 6 6 6 5 4 3 2 1 

m2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

hi 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 

f 0 0 0 1 2 2 2 2 2 1 0 0 0 0 0 

l - - 2  

ei 1 2 4 4 4 4 4 4 4 4 4 4 3 2 1 

ml  3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

hi 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

f i  0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 

l - - 1  

ei 1 3 3 3 3 3 3 3 3 3 3 3 3 2 1 

mo 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

hi 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

f i  0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 

CPA 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 

Note: ei is the number of inputs in column i; fi is the number of FAs; hi is the number of HAs; mj is the number of 
operands in the next level in the reduction sequence. 

l A B I. E 4.1 Reduction by columns using FAs and H A s  for 8 x 8 radix-2 magni tude  multiplier. 

4.3  Partially Combinational Implementation 
To reduce the area required for a fully combinational multiplier, it is possi- 

ble to use a mixed implementation, which essentially corresponds to a sequen- 

tial implementation in which a high radix is used to represent the multiplier. 

Then, this high-radix digit of the multiplier is represented in radix 2 or radix 4 and 
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I - - - " 1  
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�9 �9 �9 �9 I O I  �9 �9 �9 �9 �9 

�9 �9 �9 �9 �9 �9 �9 �9 

I I I  I 
�9 �9 I O ] l O l  �9 �9 �9 
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�9 �9 �9 

Level 4 
(3 FAs + 3 HAs) 

Level 3 
(12 FAs + 2 HAs) 

�9 �9 �9 �9 �9 

�9 �9 �9 Level 2 
(9 FAs + 1 HA) 

�9 I o l  �9 �9 

I-I Level 1 
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FIGURE 4.19 Reduction by columns using FAs and HAs (n -- 8): cost 35 FAs, 7 HAs, and 

14-bit CPA. 
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Carry-select 1_. ] 
adder 1-" [ 

(a) 

Product (redundant form) 

 asta  er 

Product (conventional form) 

(b) 

FIGURE 4.20 Final adder: (a) Arrival time of the inputs to the final adder. (b) Hybrid final 

adder. 

a combinational implementation is done for this partial multiplication. 

Figure 4.21 shows such an implementation in which 12 bits of the multiplier 

are used each iteration 8 (radix 212). Note that to reduce the overall delay, the it- 

eration is pipelined in the same way as was discussed for multioperand addition. 

8. The additional bit of the multiplier is used for the recoding. 
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x (multiplicand) 

! 

]. ]. ]. ]. ]. ]. ]. (12+1) bits of 
~ _ _ ~  ~ multiplier 

[ [4:21 [3:21 ] 

I [4:21 

tt 
[4:21 I 

�9 Latch I I 

To CPA 

FIGURE 4.111 Radix-212 pipelined sequential multiplier using CSA tree. 

4~ Arrays of Smaller Multipliers 
We now consider the multiplication of two n-bit magnitudes using modules that 
perform the multiplication of a k-bit magnitude by an/-bit magnitude (a k by l 
multiplication). The module performs 

p = a • b 4.36 

in which the bit vectors representing a, b, and p are 

A = (ak_l ,ak_2 ,  . . . , a o )  

B = (bl-1, hi-2, . . . ,  bo) 4.37 

P = (Pk+l-1, Pk+l-2, . . . ,  P0) 



To perform then x n multiplication using these 4 x / modules, the operands are 

decomposed into digits of radix 24 and 2', respectively. That is, 

i =O 
4.38 

j =O 

Then the multiplication is 

i=O j = O  

That is,(n/k) x(n/Z) modulesareneeded. Theoutputsofthese modules, suitably 
aligned, produce a bit-matrix that can be added by any of the methods discussed 
before. 

EXAMPLE 4 3  Consider the 12 x 12 multiplication of magnitudes using 4 x 4 multiplication 
modules. The decomposition of the operands is 

The multiplication is then 

4.40 

The corresponding bit-matrix is shown in Figure 4.22. This can be reduced 
by any of the methods discussed before. 
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x(O)y(o) 

( 

�9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 

F I G U R E  4,22 12 x 12 multiplication using 4 • 4 multipliers: bit-matrix. 

13 12 11 10 9 8 7 6 5 4 3 2 1 0 
! 

XZo: Se Se Se e e e e e e e e 

�9 ' f f f f f f f f Ce X Z l  1 S f  

I 
xz2" 1 s e g g g g g g g g c f  

xz3" h h h h h h h h c e 

W" W W W W W W W 

FIG U R S 4.23 Radix-4 bit-matrix for multiply-add of magnitudes (n = 7). zi's are radix-4 

digits obtained by multiplier recoding. 

4~ Multiply-Add and Multiply-Accumulate (MAC) 
In many applications the operation of multiplication is followed by an addition 

to perform 

s = x  •  4.42 

This can be implemented efficiently by including the operand W as part of the 

bit-array, as illustrated in Figure 4.23. A block-diagram of a multiply-add unit is 

shown in Figure 24(a). 

A variation of the multiply-add is the multiply-accumulate, which is useful 

to perform operations such as a sum of products of the form 

m 

s -- ~ x [ i ]  • y[i] 
i=1 

4.43 
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S[i] 
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II 
I~l [4:2] I 

�9 Latches 
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Precision of 

To CPA the product 
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FIGURE 4.a4 Block-diagrams of (a) multiply-add unit and (b) multiply-accumulate unit. 

This can be accomplished effectively by repeatedly using a multiplier-accumulator 
(MAC) that performs the operation 

s[i + 1] = x[i] x y[i] + s [ i ]  4.44 

wheres[1] = 0ands  = s [ m  + 1]. 

After the carry-save product is produced, the accumulation is performed in 
two parts: the least-significant (LS) part is obtained in redundant form using a [4:2] 
adder of the precision required by the multiplication, and the most-significant 
(MS) part using a carry-save incrementer. The number of bits of the MS and LS 
parts is determined by the number of bits of the result s. Figure 4.24(b) shows a 
block diagram of the implementation. The carry-save result is converted to the 
final result using a carry-propagate adder. 
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4~ Saturating Multiplier 
Integer multiplication of n-bit operands produces an integer of 2n bits. Some 
applications in signal processing and graphics keep only n bits of the result and, 

in case of a result larger than what can be represented with n bits (overflow), 

saturate the result to the maximum representable value (2 ~ - 1 for magnitudes 
and 2 n-1 - 1 and - 2  n-1 for two's complement). These are called saturating 
multipliers. 

The direct implementation incorporates a standard multiplier, a detection of 

the overflow, and setting the result. Detection has two forms: 

�9 For magnitudes, overflow is detected by one or more bits with value 1 in the 
n most-significant bits. This detection is implemented by an n-input OR gate. 

�9 For two's complement representation, the detection is different for positive 

and for negative results: if positive (bit in position 2n - 1 is zero), detect as 

for magnitudes; if negative, detect by one or more bits with value 0 in the n 

most-significant bits. 

Setting the result also has two forms: 

�9 For magnitudes, the n-bit result is set to 2 n - 1 (all ones). This can be 

implemented with a 2-input OR gate for each result bit. 
�9 For two's complement representation, the n bits are set to 011. . .  1 for 

positive result and to 100. . .  0 for negative. 

Figure 4.25 illustrates detection and result setting in the case of multiplication of 

magnitudes. Exercise 4.22 discusses an implementation that reduces the required 

hardware. 

4 o 7 Truncating Multiplier 
Multiplication of n-bit fractions produces a fraction of 2n bits. Some applications 
in signal processing keep only the n most-significant bits of the result and dispose 
of the least-significant bits after performing rounding. If a larger roundoff error 
is allowed, not all LSB bits of the final result are generated, which leads to a 

simpler implementation as indicated in Figure 4.26. 
The error in the result consists of Ered due to simplified reduction, and Ernd 

due to rounding of the n + k computed bits to the n most-significant bits. To 
achieve a specific total error smaller than one ulp (unit in the last significant place), 
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FIGURE 4.2S Detection and result setting for multiplication of magnitudes. 

�9 �9 �9 

�9 �9 �9 �9 

�9 �9 �9 �9 �9 

�9 �9 �9 �9 �9 �9 

�9 �9 �9 �9 �9 �9 �9 

�9 �9 �9 �9 �9 �9 �9 �9 

�9 �9 �9 �9 �9 �9 �9 �9 

�9 �9 �9 �9 �9 �9 

�9 �9 �9 �9 �9 

�9 �9 �9 �9 

�9 �9 �9 

�9 Not implemented 

�9 �9 �9 �9 �9 �9 �9 �9 �9 �9 Truncated product 

�9 �9 �9 �9 �9 �9 �9 �9 Rounded product 

F n G U R E 4.26 Bit-matrix of a truncated magnitude multiplier. 



Squarers 221 

4.8  

the e r r o r s  Ered and Erna can be reduced by choosing k, the number of positions 
not implemented, and by adding a suitable constant to the reduction array. This 
approach and several others are discussed in detail in the literature mentioned at 
the end of the chapter. 

Rectangular Multipliers 
The multipliers discussed up to now had both operands with the same number of 
bits (square multipliers). In many applications the multiplication operands have 
different number of bits (say, k and n). These multipliers are called rectangular 
multipliers. 

The implementation of these rectangular multipliers follows the same 
approach as for the square case: construction of the bit array and reduction to two 
rows. For the two's complement case, the same type of analysis as for the square 
case has to be performed to reduce the required sign extensions (Exercise 4.23). 

4~ Squarers 
A squaring operation s = x 2 is frequently used in signal processing and mul- 
timedia applications. For example, computing the Euclidean distance between 
two points a and b in the three-dimensional space 

(ai - h i )  2 

where a i (b i ) i s  the coordinate of point a (b)in dimension i, is frequently used in 
graphics applications. It requires computing a large number of squares, making 
a dedicated implementation desirable. While a general multiplier can be used to 
compute squares, a dedicated implementation is attractive because of a simplified 
partial-product bit-array. 

A bit-array for x 2 (magnitudes, radix 2) consists of the diagonal with entries 
X i X i = X i  ( I  dentity 1) and two bit-array regions: A above the diagonal and B below 
the diagonal. Sincexixj = x j x  i (Identity 2), the sum ofentries in regions A and B 
are the same (A + B = 2A = 2B). Therefore, an equivalent bit-array consists of 
the diagonal entries and the A (or B) bit-array moved one position to the left. The 
transformed bit-array has a reduced number of entries and a reduced number 
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11 10 9 8 7 6 5 4 3 2 1 0 
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X4 X3X2 X3X 2 X2 

(b) 

FIGURE 4.27 Bit-array simplification in squaring of magnitudes (n -- 6). (a) Bit-array after 

using Identities 1 and 2. (b) Further reduction in number of rows after using Identity 3. 

x ! of rows as illustrated in Figure 4.27(a). Moreover, xi + X iX j  - -  2X iX j  + iX j  

(Identity 3) can be used to achieve further reduction in the number of rows at the 
expense of extra inverters and A N D  gates (Figure 4.27(b)). It can also be used to 

reduce the number of bits of the final adder. 

For n-bit magnitudes the number of rows in the simplified bit-array is no 

larger than [(n/2)]  and the number of inputs to the reduction network is 

~ ' ~ i  - - ( /7  2 + n ) / 2  

i=1 

Any of the previously discussed bit-array reduction methods is applicable. 

Although the bit-array resulting from a multiplier recoding to radix 4 also 
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has ~ n / 2  rows, the bit-array obtained by the simplification discussed here is 
preferable to radix-4 recoding since it does not require recoding and multiple- 
generation networks. Squarers for two's complement operand are obtained in a 
similar manner. 

4o10 Constant and Multiple-Constant Multipliers 
If one of the operands of a multiplication is constant, the multiplication P = X x C 

can be described by 

P -- ~ X X Cj 2 j 4.45 
{jICj=I} 

where the set {j } corresponds to all the ones' in the binary representation of C. 
Consequently, the number of rows of the bit-matrix is reduced since no row is 

necessary when the bit C i = 0. The number of rows can be further reduced by 
recoding, as follows: 

1. Radix-4 recoding reduces n bits to no more than (n + 1)/2 nonzero digits 
from the set {-2,  - 1, 0, 1, 2}. 

2. Canonical recoding into the digit set { -  1, 0, 1 } is a sequential recoding that 

minimizes the number of nonzero binary digits. It transforms the constant 

n-bit operand, with n/2 nonzero bits on the average, to a representation 

with n /3  nonzero bits on the average. For example, C = 0101111001, 

which has six nonzero digits, is recoded into the canonical form 

10T 000i001, with four nonzero digits. Moreover, since two consecutive 
digits in the recoded form cannot both be nonzero, the canonical form has 
at most n/2 nonzero digits. 

The resulting bit-matrix is then reduced using any of the techniques presented 
before. 

In addition to reducing the nonzero digits, it is possible to factor the constant 
into the product of smaller constants. The implementation, which consists of the 
connection of smaller multipliers, might be simpler than the direct implementa- 

tion. This is illustrated in the following example. 

EXAMPLE 4 . 4  Consider the computation of 45X using implementations that utilize only 

carry-propagate adders. 
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FIGURE 4.2S Implementation of P = X • C for C = 45 using common subexpressions. 

The  binary representation of 45 has four ls. Consequently, a direct im- 
plementation would use three adders. The  canonical recoding has also four 
nonzero digits, requiring also three adders. On the other hand, we can factor 
as follows: 

45X = 5X x 9 = X(22 + 1)(23 + 1) 

The  implementation of this decomposition requires two adders, as shown in 
Figure 4.28. �9 

Of course, the implementation can use redundant adders with more than two 
inputs. The best decomposition depends on the type of adders used. Exercises 4.26 
and 4.27 illustrate designs with [3:2] carry-save adders. In some instances it is 
beneficial to perform recoding followed by factoring. Several heuristic techniques 
have been developed for this task, as described in the literature. 

If several multiplications by constants are required simultaneously; that is, 

Pk -- X x C k, k = 1, 2 , . . . ,  K (known as multiple-constants multiplication), 
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F I G U R E 4 . 2 9  A n  example of multiple-constants multipliers. 

the use of common subexpressions leads to further reductions in the number of 
adders, compared to implementation using separate constant multipliers. 9 The 
following example illustrates such a case. 

E X A M P L E  4.5 Consider the simultaneous computation of P1 = 9X, P2 = 13X, P3 = 18X, 

and P4 -" 21X. 
An implementation using separate constant multipiers requires six 

adders. By decomposing the products as follows: P1 = 5X -+- 4X, P2 = 
8X + 5X, P3 = 2 x 9X, and P4 -" 16X + 5X and sharing subexpressions, 
the implementation can be done with four adders (Figure 4.29). �9 

4,11." Concluding Remarks 
We have presented a variety of implementation schemes for the multiplication 
operation. We have considered the case of magnitude and signed operands rep- 
resented in a conventional representation; it is important to stress that, as for 

9. See Potkonjak et al. (1996) for further details. 
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any operation, the algorithms and implementations for multiplication depend 
heavily on the representation of operands and result. Since multiplication for 
conventional representation is performed as multioperand addition, the tech- 
niques presented in Chapter 3 are applicable, the main difference being the shifts 
required in multiplication, which change the shape of the bit-array to be added. 

Let us now consider some design choices. The main choice for the delay/area 
trade-offis between sequential and combinational implementation. In the sequen- 
tial case, a higher radix reduces the number of cycles at the expense of a longer 
cycle and a larger area. For high radices, each iteration actually corresponds to 
a rectangular multiplier; therefore, this scheme is also called a partially combina- 
tional multiplier, and there is a continuum from a sequential implementation to a 
combinational one. 

Since multiplication is performed by addition of multiples of the multipli- 
cand, it is convenient to have few multiples and fast addition. The number of 
multiples is reduced by a larger radix; however, this complicates the generation of 
multiples. This can be simplified somewhat (especially for radix 4 and radix 8) by 
recoding the multiplier. As a consequence of this, at the implementation level, the 
basic radices used are 2, 4, and 8, and higher radices are implemented by arrays 
using these lower radices. 

With respect to the additions, as in multioperand addition, the reduction 
of the bit-array can be done by rows or by columns. In the reduction by rows 
redundant adders are used because of their small delay and area. Because of the 
shape of the array the adders have a variable number of bits. The adder array can 
be linear or a tree. For large multipliers, the tree is advantageous because of the 
much smaller number of adder levels. However, the area of the tree multiplier 
might be larger because of the irregularity and length of the interconnections. This 
length might also affect the delay. Although we have presented only the linear 
array and the complete tree, there are intermediate solutions that are obtained by 
partitioning the linear array and merging the partial results. 

The reduction by column uses several levels of counters to reduce the columns 
to size two (two rows). A systematic method is presented to reduce the number of 
counters. The reduction by columns makes better use of the shape of the array to 
reduce the number of cells. However, the interconnection is more irregular than 
that of reduction by rows. 

The delay analysis we have done is quite rough since it has considered only the 
number of cells (mainly for the case of full-adders and half-adders) in the critical 
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path. More detailed studies have been done considering actual delays of sums and 
carries and restructuring the array to reduce the critical delay. Moreover, since 
not all outputs of the adder array are produced at the same time, it is possible to 
reduce the overall delay by taking this into account in the design of the adder for 
conversion to conventional representation. 

Multipliers are sometimes pipelined to increase the throughput. A variety of 
possibilities exist on the number of stages; this is very dependent on the technology 
and the requirements. In Chapter 8 we consider these issues for floating-point 
multiplication. 

Large multipliers can also be implemented by the interconnection of smaller 
multiplier modules. This was particularly interesting when only small multipli- 
ers could fit in a chip, which is not the case anymore. However, it might still 
be convenient to implement multipliers in this form to reduce the number of 
long interconnections and to provide multiplications of several sizes; that is, par- 
titionable multipliers (this is becoming important because of the variety of data 
widths for different applications; for instance, the wide data for floating-point 
applications and the much narrower data for multimedia). 

In this chapter, we also consider more specialized units such as multiplier- 
accumulators, squarers, saturating multipliers, truncating multipliers, and mul- 
tiplication by a constant. In all these cases, the main operation is a multiplication, 
but the unit is adapted because of the particular characteristics of the operands 
and/or result. In addition to providing some design ideas for these cases, the lesson 
here is that the designer should take into account the particular characteristics of 
the operation, instead of using always a standard multiplier. 

4 . 1  

Exercises 
For the design exercises use the circuit data shown on the inside cover pages. 

Sequential Multiplication with Recoding 
[Sequential radix-4 multiplication example] Show the multiplication ofx = 30 
by y = -25  as in Example 4.1 (use two's complement representation with 6 bits). 
Determine the number of cycles in the execution of this multiplication in the 
unit of Figure 4.3. Show the values in registers during the last pass through the 
pipeline. 
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4 . 5  

4 . 6  

4 . 7  

[Sequential recoding] Determine the table for sequential recoding from a con- 
ventional radix-8 digit set to the set {-4, -3 ,  -2 ,  -1 ,  0, 1, 2, 3}. 

[Converter carry-save to conventional] Design a sequential converter for the 
radix-4 sequential multiplier shown in Figure 4.3. The converter has as external 
inputs the least-significant bits produced by the carry-save adder:( P S1 [.I" ], P So[./" ]) 
and (SCI[j], SC0[j]), one internal state variable wo[j - 1] (the present state of 
the converter) and produces two product bits P2j+I, P2j and the next state w0[j] 
such that 

2(PSi[j] + SCI[j]) -[- (PSo[j] + SCo[j] + wo[j - 1]) 

= 4w0[/] + 2p2j+l + P2j 

Show the network and determine the minimum cycle time for the converter. 

[Converter carry-save to conventional] Design an alternative sequential converter 
for the radix-4 sequential multiplier shown in Figure 4.3. The external inputs are 
in this case the least-significant bits produced by the multiple generator and the 
PS and SC registers. Determine the arithmetic expression relating the inputs, the 
state variables, and the outputs of the converter, similar to the expression given in 
Exercise 4.3. Show the network and determine the minimum cycle time for the 

converter. 

[Gate-level design] Design at the gate level a 16 • 16 radix-4 sequential multi- 
plier for operands in the two's complement form following the scheme given in 
Figure 4.3. To reduce the critical path it might be convenient to place the CONV 
module after the register; that is, first load the bits to be converted in a register 
and then convert (at the beginning of next cycle). Determine the critical path and 
the total cost in terms of equivalent gates. 

[Use of signed-digit adder] Repeat Exercise 4.5 using a signed-digit adder for 
accumulation of partial products. If you are doing both exercises, compare the 
cycle time and cost of both implementations. 

[Generation of muhiples for radix 16] Design a scheme to generate multiples of a 
positive multiplicand for a radix-16 sequential multiplication unit with the digit 
set {-8, . . . ,  -1 ,  0, 1, . . . ,  8}. Consider the following alternatives: 
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(a) 

(b) 
Precompute the multiples. 
Generate the multiples during the recurrence execution. 

Compare the cost and the effect on the cycle time and the total delay 
of multiplication. 

[Speedup of radix-16 multiplier] Determine the delay of the critical path of the 
radix-16 multiplier of Exercise 4.7 and the speedup S = T2/T16 where T2 and T16 
are the latencies of the radix-2 multiplier and radix-16 multiplier, respectively. 
Does the speedup depend on n, the precision of the operands? Discuss. 

Combinational Multiplication with Recoding 

[Generation of bit-array for radix 2, two's complement] Generate the bit-array 
for the multiplication ofx = 125 by y = -122. Use the techniques discussed in 
the text to reduce the sign extension bits. 

[Parallel radix-4 recoding] Recode the binary representation (two's complement) 
y = 10101111 into radix 4 with digit set {-2, -1 ,  0, 1, 2}. 

[Generation of bit-array for radix 4: magnitudes and two's complement] Show 
the bit-array for radix-4 multiplication of 

(a) x = 67 by y = 76 (magnitudes) 
(b) x = -67  by y = -76  (two's complement representation) 

[Linear adder array] Design a gate network for a radix-4 linear CSA array for 
two's complement multiplication (n = 16) following the scheme in Figure 4.14(b). 
Use the design of the radix-4 recoder given in the text. Determine the delay of 
the critical path. 

[Converter for linear array] In the linear CSA array multiplier shown in 
Figure 4.14(b) the precision of the final CPA can be shortened by converting 
in an iterative manner the least-significant radix-4 (redundant) digits produced 
by each CSA stage. (See Exercise 4.3 for the definition of the converter.) Design 
a network to perform this conversion in parallel with the CSA reduction and 
determine the precision of the final CPA. (Note: If the delay of the converter is 
larger than one full-adder, try to reduce the delay of producing the carry in the 
converter.) 



230 C N A P T E ~  4 Multiplication 

4 . 1 4  

4 . 1 5  

4 . 1 6  

4 . 1 7  

4 . 1 8  

4 . 1 9  

[Reduction by columns] Modify the bit-triangle of Figure 4.18 for the following 
cases:  

(a) 
(b) 

(c) 

Radix 2 with operands in two's complement representation 
Radix 4 with operands in magnitude representation and multiplier 
recoding 
Radix 4 with operands in two's complement representation and multiplier 
recoding 

[Reduction by columns] Develop a table to determine the number of full- and 
half-adders required for the addition of the cases in the previous exercise. 

Partially Combinational Multiplication 

For the multiplier shown in Figure 4.21, determine the number of cycles required 
for a multiplication with a 47-bit multiplier. 

Arrays of Smaller Multipliers 

Show the bit-matrix corresponding to a 16 x 16 magnitude multiplication using 
4 x 4 multiplication modules. 

Consider the implementation of 12 x 12 multiplication with operands and product 
in two's complement representation. Use 5 x 5 multiplication modules (two's 
complement representation). 

(a) Determine how many modules are required. 
(b) Show the bit-matrix to be added, identifying the output bits of each 

multiplication module. 
(c) Determine the network of full-adders and half-adders required to reduce 

the bit-matrix to two rows, using the column reduction approach. 

Multiplier-Accumulator 

For the computation of 

32 

s - -  ~ x [ i ] y [ i ]  
i=1 
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with x[i] and y[i] represented by 16 bits in two's complement representation, 
compare the execution time of the following two alternatives: 

(a) Using a combinational multiplier with delay tM (this includes the 
conversion of the product to conventional representation) and an adder 
with delay ta 

(b) Using a multiplier-accumulator (carry-save result) with delay tM - tA + 

t[4:21 and a final adder of delay tA 

Consider evaluating the inner product of 16-element vectors A and B: 

16 

s - ~ A[i] x B[i] 
i=1  

where each element A[i] (B[i]) is a positive integer in the range [0, 127]. 

(a) Determine the precision of the result S to avoid overflows. 
(b) Design a pipelined linear array of[3:2] carry-save adders with radix-4 

multiplier recoding (digit set {-2 ,  - 1 ,  0, 1, 2}). Assume one pair of vector 
elements is available each clock cycle. The intermediate values of the sum 
are in carry-save form. The final result is obtained by a carry-propagate 
adder that requires one cycle. 

(c) Determine the critical path in the network in terms of the delay of basic 
modules and determine the cycle time. 

(d) Give a timing diagram of the inner product computation in terms of clock 
cycles and determine the latency in terms of clock cycles. 

(e) Show a modified network if[4:2] adders are used instead of[3:2] adders 
and compare with the network in (b) with respect to the cycle time. 

Saturating Multiplier 
Design a network for obtaining the saturated product for a two's complement 
multiplier with n -- 8. 

Consider an n x n-bit magnitude multiplier (Schulte et al. 2000). The saturation 

is performed when the most-significant half of the product (P2n-2 , . . . ,  Pn) is 
nonzero. This condition V happens if any of the bit products xj  yi in columns n 
to 2n - 2 of the multiplication bit-matrix is one or if any of the carries co k into 

column n is one. 
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(a) 
(b) 

D e r i v e  a sw i t ch ing  express ion  for V for n --  4. 

S h o w  tha t  the fo l lowing  express ions ,  i m p l e m e n t e d  in F i g u r e  4.30, 

c o m p u t e  V" 

Ui+l m ui .jr_ x4_i 
v i + l  - -  v i  + c o i  + u i + l  . Yi 

V = v4 + c o 4  

w h e r e  i - 2, 3, u2 = x3, and  v z  - x 3 y l .  
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(c) 
(d) 

Determine the delay in the critical path of the scheme in Figure 4.30. 
Determine the delay in the critical path for the general case of an n • n 
magnitude multiplier. Give the value for n = 24. 

Rectangular Multiplier 
Determine the bit-array for a 16 by 6 bits multiplication unit with operands in 
two's complement representation. Reduce the bits required for sign extension. 

Squarers 
Apply Identity 3 to the reduced bit-array shown in Figure 4.27(b) to reduce the 
precision of the final adder. 

Design a squarer for a 6-bit two's complement operand. 

Constant Multiplier 
Let C = 2925. Design adder networks to compute P -- C • X for 

(a) carry-ripple adders (CRA) 
(b) [3:2] CSAs and prefix adder 

For each network determine the delay in terms of the full-adder delay tFA and 
the number of FAs, and compare the solutions. 

Design adder networks to compute P1 = 27X, P2 = 36X, P3 = 41X, and 
P4 = 67X using 

(a) carry-ripple adders (CRA) 
(b) [3:2] CSAs and prefix adder 

For each network determine the delay in terms of the full-adder delay tFA and 
the number of FAs, and compare the solutions. 

4 , 1 3  Further Readings 
The implementation of multiplication has been important since the introduction 
of the digital computer. Because of its significance in engineering and scientific 
computations, it has received much attention since. Multiplication is also used in 
application-specific systems for signal processing, communications, and so on. 
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Sequential Multiplier and Sequential Recoding 
Sequential multiplication was popular when hardware was expensive and bulky; 
it is still of use in some applications and might be of interest for highly parallel 
systems on a chip. The use of carry-save addition in sequential multiplication is 
first mentioned in Burks et al. (1946), described in Estrin et al. (1956), and an 
early implementation presented in Kilburn et al. (1956). Sequential recoding to 
radix 4 with the digit set {-1, 0, 1, 2} is described in Ware et al. (1982). 

Combinational-Sequential Multiplier 
Partially combinational multipliers were used in the 1960s to achieve higher per- 
formance but still with limited hardware. Examples are described in MacSorley 
(1961), Anderson et al. (1967), and Gosling (1980). A more recent multiplier of 
this type is presented in Santoro and Horowitz (1989). 

Combinational Multiplier and Parallel Recoding 
Today most multipliers are combinational because of the higher speed and the 
available area. Radix-4 recoding of the multiplier is frequently used. This re- 
coding, called radix-4 Booth recoding or modified Booth recoding, is an extension 
of the radix-2 recoding (called Booth recoding) introduced in Booth (1951) and 
its use first described in MacSorley (1961). Proofs of its correctness are given in 
Rubinfield (1975), Vassiliadis et al. (1989), and Sam and Gupta (1990), and the 
presentation based on ideas from signed-digit addition is given in Ercegovac and 
Lang (1996). Radix-4 recoding of a redundant multiplier is discussed in Lyu and 
Matula (1995) and Ercegovac et al. (1994). Extensions to radix 8 and radix 16 
are described in Zurawski and Gosling (1987), Sam and Gupta (1990), Kornerup 
(1994), and Ercegovac and Lang (1996). Several multipliers in recent floating- 
point units use radix-8 recoding (Schwarz et al. 1997). Seidel et al. (2001) present 
multipliers using radix 32 and radix 256. 

Two's Complement Multiplier 
Although many multipliers are for magnitudes, since the sign-and-magnitude 
is the standard representation for floating point, two's complement is preferred 
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for fixed-point multiplication. Special cells for the two's complement case are 
used in Pezaris (1971), and variations of the scheme presented in this chapter are 
discussed in Robertson (1955) and Baugh and Wooley (1973). 

Linear Array Multiplier 
Linear adder arrays for multiplication have been frequently considered because 
of their regularity (Braun 1963; Guild 1969; Agrawal 1979). The idea of separate 
routing of partial products between odd rows and even rows to reduce the delay to 
roughly one half while maintaining the regularity of the linear array is presented in 
Iwamura et al. (1982). The odd/even scheme is generalizable to several partitions 
followed by an additional reduction array. In the limit, such a scheme is equivalent 
to a tree of adders. 

Tree Array Multiplier 
The design of tree adder arrays using row reduction with [3:2] carry-save adders 
is described in MacSorley (1961), Bucholz (1962), and Anderson et al. (1967), 
with a general description of the method given in Wallace (1964). The [4:2] 
adder is described in Weinberger (1981) and used for multiplication in Luk 
and Vuillemin (1983) and Santoro and Horowitz (1989). The use of signed-digit 
adders is presented in Takagi et al. (1985), Harata et al. (1987), Briggs and Matula 
(1993), and Makino et al. (1996). Column reduction with full-adders in a carry- 
save approach is discussed in Dadda (1965). A comparison of row reduction and 
column reduction using full-adders and half-adders is reported in Bickerstaff 
et al. (2001). The use of counters is described in Dadda (1976) and of (7:3] coun- 
ters in Montoye et al. (1990) and Mehta et al. (1991). In Song and De Micheli 
(1991), several counters are used and the resulting multipliers compared; there is 
also a comparison with several commercial multipliers. In Wang et al. (1995), a 
column reduction scheme without predetermined column height is presented. In 
Oklobdzija et al. (1996) and Stelling et al. (1998), an algorithmic method is given 
to minimize the delay of the array reduction taking into account the cell delays. 

Pipelined Multiplier 
Pipelining of multipliers is a standard technique used to achieve high throughput. 
An example ofa pipelined linear array multiplier is presented in Noll et al. (1986). 



236 c N APT E R 4 Multiplication 

Multiply-Accumulate Unit 

Multiply-accumulate designs are discussed in Lu and Samueli (1993), Huang 
et al. (1994), and Stelling and Oklobdzija (1997). 

Integer Multiplier 

Integer multiplication schemes and designs are the subject ofMagenheimer et al. 
(1988), Zuras (1993, 1994), and Owens et al. (1995). 

Hybrid Final Adder 

The effect of the nonsimultaneous production of the output bits on the final 
addition and design of a hybrid adder are discussed in Oklobdzija and Villeger 
(1995) and Stelling and Oklobdzija (1996). 

Left-to-Right Multiplier 

Left-to-right multiplication to allow for the on-the-fly conversion of the redun- 
dant result without using a carry-propagate adder is presented in Ercegovac and 
Lang (1990) and improved in Ciminiera and Montuschi (1996) and Takagi and 
Horiyama (1999). A VLSI implementation of a left-to-right multiplier without 
a CPA is described in Kolagotla et al. (1997). Left-to-right multipliers have been 
used in implementing recursive filters (Knowles et al. 1989). 

Multiplier with Operands in Redundant Form 

Multipliers with operands in redundant form allow preceding arithmetic oper- 
ations to be performed without using a CPA to produce results in conventional 
forms. Design of this type of multiplier is discussed in Flynn and Oberman (2001) 
and Ferguson and Ercegovac (1999). 

Miscellaneous Multiplier Schemes 

Multiplication by constants is discussed in Dempster and Macleod (1994, 1995) 
and Potkonjak et al. (1996). Squarers are presented in Chen (1971), Strandberg 
et al. (1996), and Wires et al. (1999) and multiplication with saturation in Schulte 
et al. (2000). Finally, there are many discussions of various schemes for truncated 
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multipliers (Yoshida et al. 1991; Lim 1992; Schulte and Swartzlander 1993; King 
and Swartzlander 1998; Jou and Kuang 1999; Swartzlander 1999; Schuhe et al. 
1999; Wires et al. 2000, 2001; Van et al. 2000). 

Several Ph.D. dissertations have been recently devoted to the design of mul- 
tipliers (Santoro 1989; Bewick 1994; Stelling 1995; Callaway 1996; A1-Twaijry 
1997; Meier 1999). 

Low-Power Multiplier 

A comparison of the energy dissipation of several combinational multipliers is 
given in Callaway (1996) and Callaway and Swartzlander (1997). The effects of 
sign extension techniques and recoder design on energy dissipation are analyzed in 
de Angel and Swartzlander (1996) and Fried (1997). A comprehensive treatment 
of analysis and design of low-power multipliers is the subject of Meier (1999). A 
methodology for analyzing the effect of physical layout on the design of low-power 
multipliers is presented in Meier et al. (1996). Circuit techniques for low-power 
multipliers are discussed in Abu-Khater et al. (1996) and Mahanti-Shetti et al. 
(1999). Cherkauer and Friedman (1997) discuss a hybrid radix-4/radix-8 multi- 
plier design for low-power applications. Schulte et al. (1999) discuss reduction of 
power dissipation in truncated multipliers. 

Delay/Area Bounds 

Theoretical bounds on the area and time to perform multiplication are discussed 
in Winograd (1967) and Brent and Kung (1981). An obvious decomposition is 
to perform n • n-bit multiplication with four n/2 • n/2-bit multiplications. 
Karatsuba and Ofman (1962) show that three n/2 • n/2-bit multiplications 
and a few extra additions are sufficient. Optimal VLSI layouts are presented in 
Cappello and Steiglitz (1983) and Luk and Vuillemin (1983). 
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CRADTER 8 Division by Digit 
Recurrence 

This chapter describes algorithms and implementations for the division operation. 
Several classes of algorithms exist for this operation, the most used being the digit 
recurrence method, the multiplicative method, various approximation methods, 
and special methods such as the CORDIC and continued product methods. The 
algorithms and implementations of the type discussed here are based on a digit 
recurrence. In this method, the quotient is represented in a radix-r form and one 
digit of it is obtained per iteration. Many of the techniques presented here are 
applicable to other digit recurrences, such as square root and reciprocal square 
root, as well as to the class of online algorithms. 

The implementations of the algorithms presented can be either sequential, 
combinational, or a combination of both; moreover, in the combinational case 
the implementation can be pipelined or nonpipelined. The design space is large 
since many parameters are involved and the best solution depends on the par- 
ticular requirements. Thus, it is impractical to describe the set of good designs. 
In this chapter we concentrate on the method of design and give examples of 
implementations that are representatives of the different approaches. 

First, we present the algorithm for fractional operands and result, which 
relates directly to the requirements of floating-point processors (see Chapter 8); 
we then discuss the modifications required for integer division. We concentrate on 
algorithms that use redundant quotient-digit sets since these have significant speed 
and cost advantages. The most difficult problem in the digit recurrence division 
algorithms is selection of quotient digits. We discuss a general theory useful in 
developing quotient-digit selection functions and describe several instances of 
selection functions and their implementations. 

247 
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5ot  Definition and Notation 
The division operation is defined by the following expressions: 

x - q . d  +re in  5.1 

and 

[rein] < Id[" ulp  and sign(rein) = sign(x) 5.2 

where the dividend x and the divisor d are the operands and the results are the 

quotient q and, optionally, the remainder rem. The unit in the last position (ulp)  

defines the granularity of the quotient. The two most typical cases produce a 

fractional quotient or an integer quotient. For these cases we have 

�9 fractional quotient: ulp = r -n  (for radix-r representation and n-digit 

quotient) 

�9 integer quotient: ulp = 1 

Correspondingly two types of division operation are defined: 

1. Fractional division, in which operands and result are fractions. This case is 

directly related to floating-point division. 1 

2. Integer division, with integer operands and result. 

The bulk of this chapter considers the fractional case. We then, in Sec- 
tion 5.4, describe integer division and discuss its integration with fractional di- 
vision. Moreover, the most-frequently used representation of operands/result is 
sign-and-magnitude, so we consider only magnitudes. 

Normalized Divisor 

As will be apparent in the next sections, the preferred division algorithms require 

that the divisor be in normalized form. For the fractional case, this corresponds 

to 

1 / 2 < _ d  < 1  5.3 

1. Although the IEEE Floating Point Standard 754 uses significands in the range [1,2), the 
adaptation to this format is straightforward (see Chapter 8). 
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This is usually the case for floating-point representations. On the other hand, when 
this restriction is not part of the representation of the operand, a prenormalization 
step has to be included. This is achieved by a left shift, as is described in Section 5.4 
for integer division. 

Range of Quotient 
For normalized fractional divisor and fractional dividend (not necessarily nor- 
malized), the quotient is in the range 0 < q < 2. If a normalized fraction is 
required, a normalization step should be included. 

Algorithm and Implementation 
of Fractional Division 
The digit recurrence algorithm consists of n iterations of a recurrence, in which 
each iteration (step) produces one digit of the quotient. This is preceded by an 
initialization step and followed by a termination step. We now consider these 
steps, beginning with the recurrence step, which is the core of the algorithm. 

5~2 I R e c u r r e n c e  Step 
Let us call q [j ] the value of the quotient after j steps; that is, 

J 
q[ j ]  = q[0] + ~ q i  r-i 5.4 

i--1 

where q [0] is determined by the initialization. The n-digit final quotient is then 

q = q[n] = q[0] + ~ q i  r-i 5.5 
i=1 

The quotient-digit set plays a crucial role in the characteristics of the algo- 
rithm. The most-direct choice is to use the canonical digit set such that 0 < qj <__ 
r - 1. This leads to the basic restoring division, which is not convenient because of 
an "expensive" quotient-digit selection. For radix 2, the situation is somewhat im- 
proved by using the digit set { -  1, 1} (no 0), resulting in a nonrestoring algorithm. 
However, because of the nonredundant nature of the digit set, the quotient-digit 
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selection is still complex.  2 In the rest of  the chapter,  to obtain a s impler  selection 

funct ion  (as is shown later), we use a redundant  digit set. In par t icular  we use the 

symmet r i c  s igned-digi t  set of  consecutive in t ege r s )  

q j  ~ 79a -- { - - a , - - a  + 1, . . . , - - 1 ,  0, 1, . . . ,  a -- 1, a } 5.6 

Since for r e d u n d a n t  representa t ion  m ore  than  r consecutive integer  values 

inc lud ing  zero are needed  (exactly r values produce  a n o n r e d u n d a n t  representa-  

tion), a has to satisfy 

a >_ [r12l 5.7 

T h e  r e d u n d a n c y  factor p is def ined as 

a 1 
p - -  - < p < l  5.8 

r - l '  2 - 

F r o m  the defini t ion,  a correct  division a lgor i thm mus t  p roduce  a quo t ien t  q wi th  

a positive er ror  ( remainder )  of  less than  one u l p ,  with  respect to the infinite 

precision value. 4 T h a t  is, for fractional  division the error  is b o u n d e d  by 

x 

0 < 6 q  = q < r - n  5.9 
- d 

Moreover ,  the recurrence  has to converge  to this error. Cal l ing 6[ j  ] the er ror  after 

i terat ion j ,  we have 

x 
6[ / ]  = ~- - q [ j ]  < E[n] + m a x ( q i ) r  - i  - -  E[n] -+- (r - j  - r -n )  5.10 

i--j+l r - 1 

This  equa t ion  has as solution 5 

ELl] <_ pr  - j  5.11 

As will become clear in Section 5.5, to m a k e  use of  the negat ive values of  

the quo t i en t  digit  it is necessary to have also negat ive errors  after i terat ion j ,  

2. Restoring and nonrestoring algorithms are reviewed in Chapter 1. 
3. See Chapter 2. There are some instances in which a nonsymmetric set might be preferable; 
we do not consider this generalization here. 
4. This is consistent with the requirement that the remainder be bounded by Jdl" ulp. 
5. The equal condition in the next expression is not applicable for the case p = 1; in this case 
it is necessary to use the < condition to assure that the final error is less than r-" .  
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so that 

I~F] l  = 
x 

-~ - q[jl  < pr - j  5.12 

This assures that the magnitude of the error produced after n iterations is bounded 

by r -n .  However, this error can be negative; in such a case, a correction step is 

required, as discussed in Section 5.2.2. 

From expression (5.12) the recurrence is obtained as follows. First, multiply 
by d, to eliminate the division operation. We get 

Ix - dq[j]l <_ pdr - j  5.13 

The bound of (5.13) decreases with j .  To have a variable whose bound is inde- 

pendent of j ,  we define the residual (or partial remainder) w so that 

with bound 

w[j] = r J ( x  - d q [ j ] )  5.14 

iw[j]l < pd 5.15 

To obtain the recurrence we compute 

w[j  + 1 ] -  rw[ j ]  = r J + l ( q [ j ] - q [ j  + 1])d 

Since, from (5.4), q [ j  + 1] = q[j'] + qj+l r-(j+l), the recurrence is 

w[j  + 1] = rw[j] - dqj+l 5.16 

with the initial value obtained from (5.14) by setting j = O: 

w[0] - -  x - -  d q  [0] 5.17 

Expression (5.16) is the basic recurrence on which the division algorithms are 
based. 

The recurrence is performed so that w[j + 1] is bounded by (5.15). This is 
accomplished by selecting a suitable value of q j+l by means of the quotient-digit 
selection function 

qj+l = SEL(rw[j],  d) 5.18 

Actually, the use of a redundant digit set for qj allows that the selection function 

uses ~', a truncated r w [j ], and d, a truncated d. That is, 
A 

q j+l = SEL(~, d) 5.19 
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w[j] (present residual) 

1_ 
! , 

' ARITHMETIC LEFT SHIFT ', i 
i i 

d (divisor) 

rw[j] (shifted residual) 

rw[j] 

A y A 

d / 

SEL 

l qj+l 
DIVISOR MULTIPLE 

GENERATION 

l dqj+l 

SUBTRACTION 

w[j + 1 ] (next residual) 

I 
qj+l : dqj+l Subtraction 

I 

Selection, 

I i 
Quotient update 

(on-the-fly) 
i q  

Recurrence step time 

(b) 

I UOTIENT CONVERSION I: 

1 
(a) q[ j  + 1 ] 

qj+l 

F I G U R E  5.1 Recurrence step: (a) components and (b) timing. 

A 

The number of bits of~" and d depends on the radix and on the quotient-digit 
set, as discussed in Section 5.5 

Implementation of a Recurrence Step 

As indicated by the recurrence, each iteration consists of five subcomputations 
(Figure 5.1(a)): 

1. One digit arithmetic left shift ofw[j]  to producerw[j] 

2. Determination of the quotient digit qj+l by the quotient-digit selection 
function 
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3. Generation of the divisor multipled x qj+l 

4. Subtraction ofdqj+l from r w [j ] 

5. Update of the quotient q [j] to q [j + 1] by the on-the-fly conversion 

q[j  + 1] = CONV(q[j], qj+l) 5.20 

discussed in Section 5.2.3, producing at each recurrence step the corres- 
ponding quotient value in a nonredundant form 

The five subcomputations are executed as indicated in the timing diagram of 
Figure 5.1(b). Note that no time has been allocated for the arithmetic shift since it 
is implemented by suitable wiring. Moreover, the relative magnitudes of the delay 
of each of the components depend on the specific implementation. The quotient 
update is not in the critical path. 

This general description of the recurrence step can result in different specific 
versions depending on several interrelated factors. We now list the most important 
factors and mention their effect on the overall execution time and cost of the 
implementation; the reasons for these effects are clarified later. 

1. Radix r. For the same quotient precision, the number of iterations of the 
algorithm is reduced by a factor k when going from a radix r to a radix r k. 
However, this increase in radix produces a more complex implementation 
because of the quotient-digit selection and the generation of the divisor 
multiples. This additional complexity increases the time of each iteration. 

2. Quotient-digit set. As indicated, a redundant signed-digit set is used to 
simplify the quotient-digit. The value of the redundancy factor influences 
the complexity of the quotient-digit selection and of the generation of the 
divisor multiples in an opposite manner: a higher p reduces complexity of 
the selection function but increases complexity of the generation of the 
divisor multiples. Consequently, the choice of p is an important design 
decision. 

3. Representation of the residual. In particular, it can be represented in 
nonredundant form (for example, conventional two's complement 
representation) or redundant form (for example, carry-save two's 
complement representation or signed-digit representation). The redundant 
form has the big advantage that the addition/subtraction part of the 
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, 

iteration is done using a carry-free adder (and is, therefore, fast). 6 Its 

disadvantages are that it complicates somewhat the quotient-digit selection 

and that it increases the number  of register bits required to store the 

residual. Moreover, if the remainder is needed, the final residual has to be 

converted to conventional representation. Even if the remainder is not 

needed, a sign detection has to be implemented for the correction step, 

indicated in Section 5.2.2. 

Quotient-digit  selection function. The  complexity of the implementation of 

this function depends on all the previous factors. Its delay is an important 

contributor to the iteration time, especially when a carry-free adder is 

used. 

5~ =2 Initialization, Number of Iterations, and Termination 

We now consider the steps of the whole algorithm, which consists of an initial- 

ization step, a number  of iterations of the recurrence step, and a termination 

step. 

T h e  initialization should satisfy the initial value of the residual and assure 

convergence. As indicated, w[0] = x - d q  [0] and the residual bound is ]w[0]] < 

p d .  The following options for the initializations are possible: 
1 �9 Make q [0] -- 0. For p -- 1, we make w[0] -- x /2 ;  consequently, w[0] < i 

forx  < 1 .  
1 1 For 2 < P < 1, we make w[0] -- x /4 ;  this produces w[0] < ~ < p d .  

This initialization produces a scaled quotient (divided by two or by four) in 

the range 0 < q < p. To obtain the correct quotient (0 < q < 2), a scaling 

by two or four is required during the termination step. Because of this 

scaling, to obtain a final quotient ofn bits, one or two additional bits have to 

be computed. 

�9 For p = 1 and a normalized dividend, make q [0] = 1 and w[0] = x - d, 
1 which results in Iw[0]l < 2" In this case the algorithm converges only if the 

quotient is q < 1 + p (that is why it can be used only for p = 1). Moreover, 

this method requires additional hardware to compute x - d. 

6. We use the term "carry-free adder" to denote adders, such as carry-save adders and 
signed-digit adders, characterized by carry chains of fixed (small) length (see Chapter 2). 



Algorithm and Implementation of Fractional Division 255 

The number of iterations N of the recurrence step is dependent on the number 

of bits of the final quotient, the scaling of the dividend introduced by the initial- 

ization, the guard bit required for rounding (see Chapter 8), and the radix. For 

example, for a 53-bit quotient, using a radix 8 with p = 1, and rounding (one 

guard bit) the number of iterations is 

5 3 + 1 + 1 ]  
N - -  - -19  

3 

The termination step has to account for the following: 

�9 The algorithm can produce a negative final residual w[N]. On the other 

hand, the definition of division requires a nonnegative remainder (for 

positive dividend). 7 Consequently, it is necessary to have a correction step 

that adjusts the quotient as follows: 

q [N] i fw[N] > 0 
q = -N 5.21 

q [N] - r i fw[N]  < 0 

�9 If the dividend has been shifted for initialization (divided by two or by 

four), this is compensated by shifting the quotient correspondingly. 8 

�9 For most floating-point implementations it is required to detect the 

zero-remainder condition, to determine exact quotient and for rounding. 

This condition is determined from w[N] -- 0 and the bits ofq [N] after 

digit n. 

Implementation o f  Initialization and Termination 

The initialization is implemented by a fixed shift of one or two positions or 
by a subtraction (x - d). When the residual is in carry-save format, no actual 
subtraction might be required. 

The termination is implemented by a sign detection of the residual, by the 
conditional decrement of the quotient (when the residual is negative), and by a 
fixed shift (for the case in which the initialization is done with a shift). 

7. In some applications the sign of the remainder can be arbitrary, as long as the remainder is 
bounded; in such cases the correction is not necessary. 

1 2). In a floating-point unit the quotient is 8. This produces a quotient in the range ( 3' 
normalized and rounded (see Chapter 8), so that the shifting can be included as part of this 
process. 
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5~  o3 On-the-Fly Conversion 

The quotient has to be converted from signed-digit representation to conventional 
representation. This can be done with an addition step after the quotient is com- 
pletely computed. However, this addition would increase the overall execution 
time. To avoid this, we now discuss an algorithm that performs the conversion 
in a digit-serial manner as the digits of the quotient are produced. 

A possibility is the following algorithm. Let Q [j] be the digit vector of the 
converted quotient consisting of the j most-significant digits, that is, 

J 
Q[j] - ~ qir 

i=1 

-i 

Then we have 

5.22 

Q[j + 1 ] -  QF]  + qj+l r-(j+l) 5.23 

Since qj+l can be negative, we can use the following algorithm for this 
addition: 

_ [ Q[j] + qj+l r-(j+l) if qj+l > 0 5.24 Q[j + 1] [ Q [ j ]  - r - j  n t- (r - [ q j + l i ) r  -(j+l) if qj+l < 0 

This algorithm has the disadvantage that the subtraction Q[ j] - - r -J  requires 
the propagation of a borrow and, therefore, is slow. To avoid this propagation we 
keep another form, Q M[j ], with value 

Q M[j] -- Q[j] - r - j  5.25 

Using this second form, the conversion algorithm is 

+ 1 ] -  [ Q[j] + qj+lr-(J+l) if qj+l > 0 5.26 
9[j ! QM[j] + (r -Iqj+ll)r  -Ij+l) if qj+l < 0 

so that the subtraction is replaced by loading the form Q M[/" ]. It is necessary to 
update also the form Q M[j ], as follows: 

QM[j + 1 ] -  Q[j + 1 ] -  r -(j+l) 

- -  [ Q[j] + ( q j + l -  1)r -/j+l) if qj+l > 0 5.27 

! Q M [ j ]  Jr-((r  - 1) - I q j + l l ) r  -(j+l) if qj+l < 0 
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5 
6 
7 
8 
9 

10 

11 

12 

qj 

1 

1 

0 

1 

- 1  

0 

0 

1 

1 

0 

1 

0 

Q [ j ]  

o 
0.1 

0.11 

0.110 

0.1101 

0.11001 

0.110010 

0.1100100 

0.11000111 

0.110001111 

0.1100011110 

0.11000111101 

0.110001111010 

Q M [ j ]  

0 
0.0 
0.10 

0.101 

0.1100 

0.11000 

0.110001 

0.1100011 

0.11000110 

0.110001110 

0.1100011101 

0.11000111100 

0.110001111001 

T A B L S S.1 Example of conversion. 

Now all additions are concatenations, so no carry/borrow is propagated. We call 

this an on-the-fly conversion algorithm. In terms of concatenations the algorithm 

is 

(Q[j],qj+l)  if qj+l > 0 5.28 
Q[j" + 1 ] -  (QM[j] ,  (r - Iq j+l l ) )  if qj+l < 0 

( 

_ ] (Q[j] ,qj+l - 1) if qj+l > 0 
9 M [ j  + 1] / (QM[j] ,  ((r - 1 ) - [ q j + l l ) )  i f q j + l  < 0  

with the initial conditions Q [0] - QM[0] - 0 (for a positive quotient). 
As an example consider the radix-2 case in Table 5.1. 

5.29 

Implementation o f  the Conversion 

The implementation of the algorithm requires two registers to contain Q [j ] and 

QM[ j ], respectively. These registers are shifted one digit left with insertion in the 

least-significant digit, depending on the value ofqj+l .  They also require parallel 

loading to load Q [.1.] with QM[j] and vice versa. This implementation is shown 
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~Q 
2-1 MUX 

/ 
Q REG 

2-1 MUX 

/ 
QM REG 

~ QM Load 
].. select 

I- 

Qin 

II 

Load 
]_. select 

r 

QMin 

II 

F ! G u R E s.2 Implementation of on-the-fly conversion. 

qj+l 

in Figure 5.2. The  operations on these registers are 

shift Q with insert ( Qin) 

Q +-- shift QM with insert (Q in) 

if CshiftO -- 1 

if CloadQ - -  1 
5.30 

where  

shift QM with insert (QMin) 

QM +- shift Q with insert ( Q M i n )  

if C shiftQM = 1 

if C loadQM = 1 

[ 
_ ~ qj+l 

9in ! r - - [q j+ l [  

if qj+l >_ 0 

if qj+l < 0 

5.31 

5.32 

r 

_ J q j + l  - -  1 
QMin ! (r -- 1) - - [q j+ l [  

if qj+l > 0 

if qj+l <_ 0 
5.33 

and the register control signals C loadQ ~ C t t shiftQ and C loaaOM = CshiftOM. Table 5.2 
describes the operation for the radix-4 case. 
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qj+l 

m 

Qi. C shifiQ 

1 

1 

1 

1 

0 
0 
0 

Q [ j + I ]  

(Q [j], 3) 
(Q [j], 2) 

(Q [j], 1) 

(Q [j], 0) 

(QM[j],3) 
(QM[j],2) 
(QM[j] , I )  

QMi. C shifiQM 

0 
0 
0 

1 

1 

1 

1 

QM[j+I] 

(9 [j], 2) 
(Q [j], 1) 
(Q [j], o) 
(QM[j],3) 
(QM[j],2) 
(QM[j],I) 
(QM[j],O) 

T A B L E  5.2 Control signals and operations for radix-4 on-the-fly conversion. 

Quotient Rounding 

When division is performed in a floating-point unit, usually the result has to be 
rounded. When the on-the-fly conversion is used, this rounding can be incorpo- 
rated as part of the conversion. This is discussed further in Chapter 8. 

Implementations of the Division Algorithm 
As indicated, the core of the division algorithm consists of N iterations of the 
recurrence. The implementation of this core can be totally sequential, where the 
hardware of the recurrence step is reused for all the iterations and the residual 

is updated in a register (Figure 5.3(a)); totally combinational, where the hardware 
for the recurrence step is replicated (Figure 5.3(b)); or a combination of both, 
where the step hardware is replicated k times and this superstep is reused N / k  
times (Figure 5.3(c)). The combinational implementations can be pipelining so 
that several division operations can use the hardware at the same time, with the 
corresponding increase in throughput. The selection of one of these alternatives 
is influenced by cost, speed, and throughput considerations. 

The alternative implementations above are the same as discussed for multi- 
plication in Chapter 4. However, there is a significant difference in the combina- 
tional implementations. While in multiplication, because of the associativity of 
addition, the sequence of additions can be performed either in a linear array or in 
a tree, for division only the linear structure is possible because of the dependency 
introduced by the quotient-digit selection. This, together with the fact that the 



260 C H A p T E R 5 Division by Digit Recurrence 

d 

i 

[ INITIAL STEP I 

[ RESIDUAL REGISTER I 
l wU] 

d 61 RECURRENCE 
-I STEP 

/ / 

q[j + 1] / ] w[j + 1] 

I I I w[N] 

I TERMINAL STEP I 

(a) 

INITIAL STEP 
~ w[O] 

J ~ -I RECURRENCE STEP ' 
w[1] 

~l I q2 -I RECURRENCE STEP = 
w[21 

~l RECURRENCE STEP I qN 
-I I 

I w[,~ 

or" 
Iii 
I--- 
iii ~> 
z ~o 

z > -  

ur., 
o " '  -1-- 

(b) q 

d 

I INITIAL STEP 

l w[ik] qik+l 

I RECURRENCE STEP I 
I 

~ w[ik + l] qik+2 
.J -[ RECURRENCE STEP I 

l w[ik +2] 

q(i+ 1)k 

=1 RECURRENCE STEP I1 

w[(i + l)k] 

(c) 

_1 

iii 

iii 

8 > z ~~ 
O 

z > -  
u., 

8"' -r" 

Z 
o 

q 

T 
wiN] q 

F i G  U R E  S . 3  Division implementation: (a) Totally sequential. (b) Totally combinational. (c) 
Combined implementation. ("Recurrence step" in (b) and (c) does not include quotient con- 
version part.) 
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5~3,1 

delay of the quotient-digit selection is a significant portion of the iteration delay, 
makes the combinational implementation of division less attractive. 

In addition to this core, an initialization step and a termination step are 
required, which can be implemented by additional cycles or incorporated in the 
first and last iterations. 

Examples of Algorithms and Implementations 
We now illustrate several typical division algorithms and their implementations. 
These algorithms show a progression of radices, namely, radix 2, 4, 8, 16, and 512. 
The radix 2, 4, and 8 cases correspond directly to instances of the radix-r algo- 
rithm described in the previous section. For higher radices, the direct algorithm 
results in an impractical implementation, mainly because of the complexity of 
the quotient-digit selection function; consequently, we illustrate a radix-16 im- 
plementation that consists of two overlapped radix-4 iterations per cycle, and a 
radix-512 implementation, which uses prescaling of the divisor (and dividend) 
and selection by rounding. 

In all cases, carry-save adders are used for the residual recurrence since this 
results in a faster iteration. Included for the radix-2 and the radix-4 cases are 
the quotient-digit selection functions, which are developed in the next section. 
Because of the redundancy provided by the quotient-digit set, these selection 
functions have as input the truncated residual and the truncated divisor. 

Specifically, we illustrate and compare the following algorithms: 

�9 r2 scheme. Radix 2 with carry-save residual (quotient digit set {-1,  0, 1 }). 
�9 r4 scheme. Radix 4 with carry-save residual (quotient digit set 

{-2,  1, 0, 1, 2}). 
�9 r8 scheme. Radix 8 with carry-save residual ( - 7  < qj < 7). 
�9 rl6over scheme. Radix 16 with two overlapped radix-4 stages. 
�9 r512 scheme. Radix 512 with carry-save residual, scaling, and quotient-digit 

selection by rounding (-511 < qj < 511). 

The estimates of the execution time and area reflect what is typical for CMOS 
standard-cell libraries. More accurate evaluations need the use of specific data for 
the particular library. Since the actual execution time and area are technology 
dependent, we give here relative values for the schemes compared. These should 
be more technology independent and give an indication of the merits of each 
scheme. Specifically: 



262 c H ApT E • ~ Division by Digit Recurrence 

�9 Cells are modeled by a delay (as a function of the load) and an area. Delays 

and areas are given in units of 2-input NAND gates. The unit of delay 

assumes a fanout of three NAND gates. We include the delay and area of 

registers for the operands, the result, and the residual. This assumes that the 

implementation uses just one stage for the iterations. If, on the other hand, 

the stages are unfolded to produce a higher-radix divider, the residual 

register has to be counted only once. 
�9 Interconnections are not included: we have not considered the delay, area, 

nor load of interconnections. 
�9 Degree of optimization: The same modules have been used in all designs. 

Consequently, additional optimizations might be applied to most of them. 

However, the cycle time and area ratios should not change significantly. 

�9 The execution time and the area are calculated for 53-bit operands and 

54-bit result (which is typical for a double-precision floating-point 

implementation; the additional bit of the result is used for rounding to 

produce a final 53-bit quotient). 
�9 All implementations are composed of the basic modules whose 

characteristics are given in Figure 5.4. 

The detection of the negative-remainder and zero-remainder conditions 

could be performed by first converting the carry-save representation to conven- 
tional. However, that would require a carry-propagate adder, which is bulky and 
slow. Consequently, we consider an implementation directly from the carry-save 

representation. 
Because the carry-save representation is redundant, the zero-remainder de- 

tection is difficult. However, the representation o f - 2  -b, where b is the number 
of fractional bits of the last residual, is unique. Moreover, in this representation 
the sum of the sum and the carry bits is 1 for all positions. Consequently, we first 

obtain 

P = W L  - 2 b 5.34 

where WL is the last residual, represented in carry-save by WS and WC. 

This is produced by a [3:2] addition with a third bit-vector of all ls. The 

implementation simplifies to the following switching expressions: 

PSi = (WSi ~ WCi) t, PCi-1 -- WSi '~ WCi 5.35 
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2-input MUX 3-input MUX: 

t 5 Delay: 1.6 Area: 4.4 

4-input MUX: 
Delay: 1.8 
Area: 5.6 

Delay: 1.4 (a) 
Area: 3.0 

BUFFER 

Delay: 1.8 
Area: 2.6 

(b) 

REGISTER CELL 

D Q  

CK 

SET ] 

[3:2] module 
(full-adder) 

0 

rci+l Delay: 4.0 vsi 

Area: 4.0 

a b c 

(c) 

a 

I I 

HA* 

VCi+ 1 l)Si 

Delays: 

b c 

I 
I 

a, b to rSi: 4.2 

c to vsi: 2.2 

a, b to VCi+l: 3.8 

r tO rr 2.0 

Area: 6.7 

[4:2] module 

a b c d  

I I I I  
ti+l < I [4:2] 

I module 
I 

vci+l vs  i 

Delays: 

to ti+l: 1.6 

tO rCi+l: 5.6 

to vsi: 6.0 
Area: 15.5 

ti 

VC i 

ti+l 

vci+ 1 

a b b c c a  a b c d  

d ti 

] vc  i 

(d) vsi 

F I G U R E  5 . 4  Basic modules: (a) Multiplexers. (b) Buffer and register cell. (c) Full-adder. 
(d) [4:2] module. 

T h e n  the ze ro- remainder  condit ion is obtained by 

b 

P i - -  PS i  �9 P C i  , z e ro  - -  H p i 5.36 
i=o 
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The sign can also be detected using the PS and PC forms instead of WS and 

WC: ifps + pc ~ O, then ws + wc > 0, and ifps + pc > 0, then ws + wc ~ O. 

Therefore, 

I 
sign -- (p o ~ c o) zero 5.37 

where c0 is the carry into the most-significant position (sign position). 
The carry is obtained as co -- g~l,bl = Gout by a tree of P, G cells, which 

also produces Pout - P ll,bl resulting in the following: 9 

zero - p o Pout 5.38 

sign -- (p o �9 G out) zero' 5.39 

The implementation is shown in Figure 5.5(a). 

R a d i x - 2  Div is ion wi th  Res idual  in Carry-Save  Form 

The algorithm is summarized in Figure 5.6, and an illustration of the first four 

steps is given in Figure 5.7. The quotient-digit selection function for this scheme 

is discussed in Section 5.5 (Example 5.2). 1~ 
The corresponding implementation using the modules of Figure 5.4 is shown 

in Figure 5.8. The characteristics of this implementation are given in Table 5.3. 
Moreover, the critical path is shown in Figure 5.8 and summarized together with 

the area in Table 5.3. 

R a d i x - 4  Divis ion wi th  Res idua l  in Carry-Save  Form 

The radix-4 algorithm with the residuals in carry-save form is similar to the 
radix-2 algorithm in Figure 5.6 with the following differences: 

1. We consider the case where the quotient-digit set is {-2,  - 1 ,  0, 1, 2}. This 
is a redundant digit set and allows a simple implementation ofq j+ld .  

2. For this case (p < 1) we initialize WS[0] +- x/4. 

3. The next residual is 

(WC[j  + 1], WS[j + 1]) ~ CSADD(4WC[j] ,  4WS[j], - q j + l d )  

9. See Chapter 2 for a definition of these signals. 
10. For this radix the input to the selection function does not include the truncated divisor. 
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WS WC 

sign ~ SZ MODULE 

I S,GN ANDZERO DETECTION 
zero ~ LOOKAHEAD NETWORK 

(needed in rounding; 
see Chapter 8) 1 level of pg modules 

6 levels of PG modules 

Delay: 4 + 6 x 1.5 + 2 = 15 

Area: 8 x 5 4 +  3 x (27 + 1 4 + 7  + 4 +  2 + 1 ) = 6 0 0  

(a) 

WSi-1 WCi-1 WSi WC i 

j kl I.A I I  I I  I 
I i  

I ' - " - I  " V " - ~ /  ~ ' - '~1  , 
pgmodule  \ / ' , \  / \ / , \ / ' , % /  \ / , 

V " ~ P S  i y , 
I I  I , I~'c,,  ' , l  , I m ' ,  
"lJ II  ! 
| l  

"LJ  ' I I  I 
I I  I 

. . . . . . . . . . . . . . . . . .  I 

�9 

G P 

~Q ~QM 
I 2-1 MUX I_ 

I- 

Q 

~QM 
I 2-1 MUX l_ I- 

C O N V E R T  

q:+l 

sign 

Delay: SZ + CONVERT = 

SZ + CONTROL + MUX + REGISTER 

= 15 + 3 + 3.2 + 4 =  25.2 

Area: 2 registers 2 x (54 x 4) = 432 

2 2-1 MUXes 2 x (54 • 3) = 324 

SZ module = 600 

Total SZ + CONVERT: --1360 

(On-the-fly conversion module) 

(b) 

FIGURE 5,5 I m p l e m e n t a t i o n  of(a)  sign and ze ro - r ema inde r  detect ion n e t w o r k  and (b) quo-  

t ient  conversion ne twork .  
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(a) 

(b) 

[Initialize] 
WS[0] <-- x/2;  WC[0] +-- 0; Q[ -1 ]  - 0, q0 - 0 (for the conversion) 

[Recurrence] 
for j -- 0 . . .  n + 1 (n + 2 iterations because of initialization and guard bit) 

qj+l <--- SEL(y'~); 
( W C b  + 1], WS[j + 1]) <---CSADD(2WCb], 2WS[j], -qj+ld); 
Q[j] <---CONVERT(Qb - 1], qj) 
end for 

(c) [Terminate] 
Ifw[n + 2] < 0 thenq -- 2( C O N V E R T (  Q [n + 1], qn+2 -- 1)) 

else q -- 2(CONVERT( Q [n + 1], qn+2)) 

where 

�9 the residual is in redundant form, represented by the sum W S  and 
stored-carry W C  bit-vectors, i.e., w[j]  = ( W C  [j], W S [ j ] ) ,  

�9 n is the precision in bits, 

�9 q j  E {-1,  0, 1 } is the j th quotient digit, 

�9 S E L  is the quotient-digit selection function (discussed in Section 5.5, 

Example 5.2): 

1 

-- S E L ( ~ )  -- 0 qj+l 

--1 

if 0 < ~" < 3/2 

i f T =  - 1 / 2  

if - 5 / 2  < 7 < - 1  

with'y" the value of the truncated carry-save shifted residual (2w[j ]) with 
four bits (three integer bits and one fractional bit). 

Because of the range of "y', 2w[j] requires also three integer bits and, 

therefore, w[j]  has two integer bits. 

�9 C S A D D  is carry-save addition, 

�9 - q j + l d  is in two's complement form, and 

�9 C O N V E R T  is on-the-fly conversion function producing the accumulated 
quotient in conventional representation (discussed in Section 5.2.3). 

F I G U R E S.S Radix-2 algorithm with residual in carry-save form. 
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D i v i d e n d  x - (0 .10011111) ,  d iv i so r  d - -  ( 0 . 11000101) ,  

sca led  r e s i d u a l  2w[0]  - 2 ( x / 2 )  - x ,  q~ome,,t~a = q / 2  

2 W S [ 0 ]  + -  000.10011111 

2 W C [ O ]  + - -  000.00000001 * ~ ' [ 0 1 -  0.5 q ,  - -  1 

- q l d  --  11.00111010 

W S [ I ]  - -  11 .10100100 

W C [ 1 ]  - -  00 .00110110  

2 W S [ 1 ]  + - -  111.01001000 

2 W C [ 1 ]  + -  000 .01101100  ~"[1] - -  - 1  q 2 - - - 1  

- q  2d - -  00 .11000101 

W S [ 2 ]  - -  11.11100001 

W C [ 2 ]  - -  00 .10011000  

2 W S [ 2 ]  + - -  111.11000010 

2 W C [ 2 ]  + - -  001.00110001 * ~"[2] - -  0.5 q3 - -  1 

- q 3 d  --  11.00111010 

W S [ 3 ]  - -  01.11001001 

W C [ 3 ]  - -  10 .01100100 

2 W S [ 3 ]  + -  011 .10010010  

2 W C [ 3 ]  + - -  100.11001001 * ~"[3] - -  0 q4 - -  1 

- q 4 d  - -  11 .00111010 

W S [ 4 ]  - -  00 .01100001 

W C [ 4 ]  - -  11 .00110100 

2 W S  [4]+ - 000 .11000010  

2 W C [ 4 ]  + -  110.01101000 ~ ' [ 4 ] - - - 1 . 5  q s - - - 1  

- q s d  = 00.11000101 

w[5]  - -  11.11101111 

�9 least-significant 1 for two's complement ofqj+ld 
+ only two integer bits in the recurrence, because of the range of w[j + 1]. 

q[51 - -  . l i l l i  - -  .01101 

F I G U R E  S.7 Example of radix-2 division with residual in carry-save form. (On-the-fly con- 

version and termination not shown.) 



Element Delay Area 

Quotient-digit selection 

Buffers 

MUX 
CSA 
Registers (3) 
Convert 

Cycle time 

Total area 

6.8 50 
1.8 5 
1.4 160 
2.2 360 
4.0 650 

(NC) 1360 
16.2 

2585 

T A B L E  5.3 Radix-2 stage. 

4j+l 

Divisor d WC[O] = 0 w C [ j  + 11 

Buffers 

2-1 MUX 

WS[O] = x/2 W S [ j  + 
I T 

Register WS 

11 

WS[ j + 11 

t 
‘j+l [3:2] adder 

Critical path 

F I G U R E  5.8 Implementation of radix-2 scheme and Its critical path. The q -  at the input 

of the [3:2] adder is a carry used to produce the two’s complement of d .  Modules defined in 

Figure 5.4. 

268 
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. The quotient-digit selection has as arguments the truncated carry-save 

shifted residual ~" and the truncated divisor d" (this is in contrast to the 
radix-2 case, in which the selection is independent of the divisor). As 

presented in detail in Section 5.5, the selection is described in terms of 
selection constants m k ( i )  so that 

qj+l - k if mk(i) < ~ < mk+l(i) k ~ {-2, -1,  0,1, 2} 

where 
A A 

�9 i - -  16 d and d is the divisor truncated to the fourth fractional bit. 
S i n c e l / 2 < d  < 1, w e g e t 8 < i  < 15 

�9 ~" is 4w[j] in carry-save form and truncated to the fourth fractional bit. 

Its range is -44 /16  < ~" < 42/16, with three integer bits for a total of 
seven bits 

�9 m3(i) -- max(y-") + ulp and m-2(i) -- min(y~) 

As developed in Section 5.5, Example 5.3, the corresponding selection 
constants are given by the following table: 

i 8 9 10 11 12 13 14 15 

m2(i) + 12 14 15 16 18 20 2 0  2 4  

m l ( i )  + 4 4 4 4 6 6 8 8 

m0(i) + - 4  - 6  - 6  - 6  - 8  - 8  - 8  - 8  

m -1  ( i )  + - 13 - 15 - 16  - 18  - 2 0  - 2 0  - 2 2  - 2 4  

+:  real value m shown value/16 

5. Because of the initialization, the final quotient is produced by multiplying 
the obtained quotient by four. 

An example of execution is shown in Figure 5.9. 

An implementation of the radix-4 scheme is shown in Figure 5.10. The 

critical path is shown in Figure 5.10 and is summarized together with the area in 
Table 5.4. 
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Div idend  x - - (0 .10101111) ,  d iv isord  - - (0 .11000101) ( i  -- 1 6 ( 0 . 1 1 0 0 ) 2 -  12) 

scaled residual 4w[0] - 4 (x /4)  - x,  qcomputed = q / 4  

4WS[0] + -- 000.10101111 

4WC[O] + -- 000.00000001 " ~ ' [ 0 ] -  10/16 q ] -  1 

- q l d  + -- 11.00111010 

WS[1] -- 1.10010100 

WC[1] -- 0.01010110 

4WS[1] + -- 110.01010000 

4WC[1]  + -- 001.01011000 ~ ' [ 1 ] - -  - 6 / 1 6  q2 -- 0 

- q 2 d  + -- 00.00000000 

WS[2] -- 1.00001000 

WC[2] -- 0.10100000 

4WS[2] + -- 100.00100000 

4WC[2]  + -- 010.10000001" ~" [2] -- - 2 2 / 1 6  q3 -- - 2  

- q 3 d  + -- 01.10001010 

w[3] -- 0.00101011 

* least-significant 1 for two's complement ofqj+ld 
+ only one integer bit used in the recurrence, because of the range of w [1" + 1]. 

q[3] -- .1024 -- .0324 

F I G U R E  S.9 Example  of radix-4 division with residual in carry-save form. (On-the-fly con- 

version and terminat ion not shown.) 

Rad ix -8  Divis ion wi th  Res idual  in Carry-Save  Form 

For  the radix-8 implementat ion,  we describe the case with quot ient-digi t  set 

{ -  7, . . . ,  7}. To simplify the generat ion o f d q j  +1, the quot ient  digit is decomposed 

into two components  so that q j+ l  - q j~ l  + q~+] with Clj+ 1H _ _  {--8, - 4 ,  0, 4, 8} 

and q~+l - { -2 ,  - 1 ,  0, 1, 2}. As a consequence of  this, the recurrence is imple- 

mented  with two carry-save adders,  as shown in Figure  5.11. 

The  quotient-digi t  selection depends on the t runcated shifted residual (eight 

bits) and the t runcated divisor (four bits, of  which three are used in the 

implementa t ion  since d > 1/2). Since the two components  of  qj+l do not 



Element Area Delay 

Quotient-digit  selection 

Buffers 

M U X  

CSA 

Registers (3) 

Convert  

Cycle time 

Total area 

10.8 160 

1.8 10 

1.8 300 

2.2 360 

4.0 650 

(NC) 1360 

20.6 

Note: NC denotes a delay not in the critical path. 

2840 

T A B L E S,4 Radix-4 stage. 

B u f f e r s $ d $  d 

qj+l--/--[~,~ 4-1 MUX I 4 

Divisor d WC[0] = 0 WC[j + 1] WS[0] = x/4 WS[j + 1] 

I RegisterD I I Reg isterwcl I Reg isterwSI 
7 4WS[j] / 7  

{2a, a, o, a, 2a} ~ %§ < o) 4 ' 

.~ ws[j + 11 
"- wc[j  + 11 

qj+l 
(q2 + q2-  ql  +, q l - )  

4WC[j] I ,.., 

I [3:2] 
I ' I 

] SZ; Convert il~ 

q 

qj+l = 0 c o d e d  as 

(o, o, o, o) 

FIG U RE S.IO Implementation of radix-4 scheme and its critical path. Modules defined in 

Figure 5.4. 

271 
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Divisor d 

Buffers 
H q j+ l~  4-1 MUX ,l 

4 I 
{8d, 4d, O, 4d, 8d} 

WC[0] = 0 WC[j + 1] WS[0] = x/2 WS[j + 11 

RegisterD ] [ RegisterWC[ [ RegisterWS 18 

* l 4f4f 4 
Buffers ~d ~ d 

q +14-4>q 4-  ux I 
r 

{2d, d, O, d, 2d} 

[ .... [3:21 

I [3:2] 
I I , 

t 
[ SZ; Convert k. I-" 

q 

~ ,~__[qj"+ 1 < o) /-/ ~. 

qj+l:  qj+l qj+l 
(decoded) 

(qL+ 1 < O) 

~ WS[j + 11 
WC[j + 11 

H (qj+l, qL+l) 

F ! 6 u R E s. 11 Implementation of radix-8 scheme and its critical path. Modules defined in 

Figure 5.4. 

affect in the same  way  the crit ical  pa th ,  11 the des ign  of  the select ion func t ion  12 is 

d o n e  so as to m i n i m i z e  the crit ical path .  

11. The path that includes one of the components traverses two carry-save adders, whereas 
the path of the other traverses only one carry-save adder. 
12. The corresponding selection function is not shown in this text, but follows the method 
described in the next section. A specific set of selection constants is given in Nannarelli (1999). 
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Element 

Quotient-digit selection 
Buffers 
MUXes 
CSAh 

CSA1 
Registers (3) 
Convert 

Cycle time 

Total area 

Delay 

(qh) 12.2 
1.8 
1.8 
2.2 
4.2 
4.0 

(NC) 

26.2 

Note: NC denotes a delay not in the critical path. 

Area 

610 
20 

600 
360 
360 
650 

1360 

3960 

T A B L E 5 .5  Radix-8 stage. 

An implementation of the radix-8 scheme is shown in Figure 5.11 together 
with the critical path delay. A summary of delay and area is given Table 5.5. 

Radix 16 with Two Radix-4 Overlapped Stages 

Since the digit selection function for radix 16 is too complex (large delay) to im- 
plement directly, the unit for this radix is implemented with two radix-4 stages. 
Figure 5.12(a) shows the updating of the residual. In a straightforward implemen- 
tation the delay would correspond to two times the delay of a radix-4 implementa- 
tion, except for the delay of the register, which would be counted only once. To re- 
duce the delay, the second radix-4 digit is computed conditionally so that the stages 
are overlapped. Specifically, the second digit is computed for all the possible values 
of the first digit and then the final value is selected when the first digit is known. 
To do this, it is necessary to first compute the conditional truncated residuals as 

cond(w [j + 1], k)trunc - -  (4W [j ])trunc - -  kdtru,c 5.40 

f o r - 2  < k < 2. 
These conditional residual values are then input to the quotient-digit selec- 

tion networks. The implementation of this conditional quotient-digit selection is 
shown in Figure 5.12(b). Note that, because of the carry-save addition, eight bits 
of the operands are needed to produce seven bits of the result. 

The critical path is shown in Figure 5.13, and Table 5.6 summarizes the cycle 
time and area. 



Divisor d WC[0] = 0 WC[j + 2] WS[0] = x/4 WS[j + 2] 

I Register D I I Reg isterwCI I Reg isterwsl 
~ d 4 WC[j] 

Buffers ~d 4WS[j] 

q j + l ~  4-1 MUX I 
4 

{ 2d, d, O, d, 2d} ; ; 

~: )'~S'[ ]]Iwc [3:2] ~- - -  (qj+l < 0) 
Buffers J + 11 I ~ + 1] . 

qj + 2 4- ~ -11~lU 
{#,&O,a, 2d} I~ ~ : '  4u~j+ll 

[3:21 ~ (qj+2 < O) 

; ; 
(a) 

- 2 - 1  0 . 1 2 3 4 5 6 7  

4WS[1] x x x. x x x x x x x ] {4Wb]17 
4WCb] x x x . x  x x x x x x 

I 
7 most 8 least 

{4Will} 7 

{~-~}7 i - 

8 ~east I 

most// / /  / 8 8 

7," 7// 
c 

I 

I .J 

(b) 

{d}7 {2d} 7 

I 

I - 

I I 
5-1 MUX 

Conditional truncated 
qj+2 residuals 

F I G U R E  5.12 Implementation of radix-16 with radix-4 stages: (a) Generation of residuals. 

(b) Quotient-digit selection. (SZ and quotient conversion modules not shown.) 
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Element 

CSA 
Quotient-digit selection 

MUX 

Buffers 

MUXes 

CSA1 

CSA2 

Registers (3) 

Convert 

Cycle time 

Total area 

Delay 

4.2 

11.2 

1.4 

1.8 

1.8 

(NC) 

2.2 

4.(] 

(NC) 

26.~ 

Note: NC denotes a delay not in the critical path. 

Area 

220 

820 

20 

600 

360 

360 

650 

1360 

439(] 

T A B L E  5 . 6  Radix-16 stage (two overlapped radix-4 stages). 

F I G U R E  5 .13  Critical path in radix-16 scheme. 

Radix-512 with Scaling and Selection by Rounding 

As indicated, the direct implementation of the quotient-digit selection is practical 

only for small radices, such as 2, 4, and 8. So, for very high radices, such as 512, 

it is necessary to modify the algorithm. It can be shown that if the divisor is 
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sufficiently close to one, the quotient digit corresponds to the rounded shifted 
residual. So, one possibility is to prescale the divisor (and dividend) so that the 

scaled divisor is close to one and then do quotient-digit selection by rounding the 
shifted residual. We now summarize the algorithm and the implementation; for 

details see the references given at the end of the chapter. 

We use a quotient-digit set Iq j+ l l  ~ 511 (p = 1). For a quotient of 54 bits, 

including the guard bit for rounding, the algorithm consists of the following 

cycles: 

Cycle 1" Compute the scaling constant M ~ l /d ;  since Md ~ 1, this 
constant is used to scale the divisor and dividend. Compare 13 x and d 

and set g = 1 if x ~ d andg  - - 0  otherwise. 
Cycle 2: Compute the scaled divisor z = Md (in carry-save form); 

compute v -- 2 -3x. 

Cycle 3: Compute Mv and initialize w[0] - Mv (in carry-save form); 

assimilate z. 
Cycles 4-9: Perform iterations: 

quotient-digit selection qj+l - -  round(y~) 
residual updating w[j  + 1] - 512w[j] - qj+lz 
Cycle 10: Quotient correction (if residual is negative) and normalization. 

The implementation is shown in Figure 5.14. In this figure: 

The constant M is computed in module M, in carry-save form. 
The multiplier-accumulator is used to scale the divisor (cycle 2) and the 
dividend (cycle 3) and then computes qj+lZ (cycles 4-9). 
The recoder converts the multiplier from carry-save form to radix 4 with 
digit set {-2,  - 1 ,  0, 1, 2}. This multiplier can be either M or  q j + l ,  which is 
obtained by rounding ~. The addition of 0.5 for rounding is also done in the 

rer 

Table 5.7 gives the cycle time and area. The recoder delay corresponds to one 

AND-OR network plus one multiplexer. The cycle time is similar to the radix-8 
case. However, because of the scaling, there are three cycles of overhead. 14 

13. This is done so that the initialization does not increase the number of iterations. 
14. For details, see Ercegovac et al. (1994). 
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F I G U R E  5.14 Implementation of radix-512 scheme. 

Overall Comparisons 

As an indication of the merits of the schemes presented, Table 5.8 summarizes 

the speedups and area factors, relative to the radix-2 case. The values have been 

rounded to give rough estimations. As can be seen from the table, increasing the 
radix produces a speedup; however, for a radix 2 k this speedup is significantly 
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5~ 

Element 

M-module 

MUX 

Recoder 

Buffer 

Multiplier-accumulator 

Registers (3) 

Convert 

Cycle time 

Total area 

Delay 

(NC) 

1.4 

6.0 

1.8 

13.8 

4.0 

(NC) 

27 

Note: NC denotes a delay not in the critical path. 

Area 

1800 

70 

6100 

650 

1360 

9980 

T A B L E  5 .7  Delay and area for radix-512 scheme. 

Scheme r2 r4 r8 r16 

Cycle-time factor 

Number of cycles* 

Speedup 

Area factor 

1.0 

57 

1.0 

1.0 

1.3 

29 

1.5 

1.1 

1.6 

20 

1.8 

1.5 

1.6 

15 

2.4 

1.7 

Correcnon: Two cycles for radix-2, one cycle for other cases. 

r512 

1.7 

10 

3.4 

3.9 

T A B L E 5 . 8  Comparison of schemes. 

smaller than the ideal k because of the increase in the cycle time and of additional 
overheads. Moreover, there is an important increase in area. 

Integer Division 
Integer division (for unsigned operands) has integer operands 0 < x < r n - 1 

and 0 < d < r n - 1 and produces an integer quotient q such that 

q - -  [ x / d  ] 5.41 

It also produces the integer remainder 

r e m  - (x) mod d 5.42 
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In Chapter 1 basic integer division algorithms are described. However, these 

algorithms require full-precision comparisons for the quotient-digit selection. In 

order to use the selection functions discussed in this chapter, the divisor is first 
normalized (shifted so that the most-significant bit is 1). is Consequently, for a 

shifting of m bits we get 

d* = 2md 5.43 

and the integer quotient 

q - I x / d  ] = 2 m I x / d * ]  5.44 

The number of bits of the integer quotient is not larger than m + 1. Conse- 

quently, the number of iterations required to obtain these bits is 

N = [(m + 1 ) / k7  5.45 

where r = 2 k is the radix of the quotient digit. 

We want to perform the integer division using the fractional division units 

discussed in the previous section. For this we define the fractional operands xf  

and d f  so that 

x f -- x x r -n  (not normalized) 

d f -- d* x r - n  (normalized) 

5.46 

5.47 

Moreover, it is necessary to satisfy the following requirements: 

1. To satisfy the residual bound, the initial residual is equal to x f / 2  (for 
p -- 1) or x f / 4  (for p < 1). This requires thatm + 1 + v bits of the 

quotient be computed, where v = 1 (for p = 1) or v = 2 (for p < 1). The 
resulting number of iterations is 

N - -  [(m + 1 + v)-] 5.48 

2. To obtain a correct remainder the last bit of the quotient has to be aligned 
with a radix-r boundary. Since the quotient is in the range 1/2 < q < 2 

(one integer bit and m fractional bits), this is achieved by shifting xf  right 

by v + s bits, so that (m + v + s )mod k = 0. 

The quotient has to be aligned to the integer position. This can be done by 

placing the digits in the correct final position or by placing the digits aligned to 

15. This is directly applicable when the radix is a power of two. 
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EXAMPLE 5.1 

the left (to combine with fractional division) and then performing a right shift of 

n - N digits. 

As in the fractional division discussed before, the use of signed quotient 

digits requires the conversion to conventional representation and the correction 

to obtain a positive remainder. 
Moreover, since the remainder should be less than the divisor and the divisor 

has n log 2 r - m bits, we obtain 

w [N]2 n l~ --m if w [N] > 0 5.49 

rem - -  ( w [ N]  + d f )  2 n l~ if w [N] < 0 

We now show an example of integer division for 8-bit operands using a radix- 

4 algori thm with p -- 2/3. Consider the case x = 125 and d = 6 with binary 

representations 

x - - 0 1 1 1 1 1 0 1 ,  d =00000110 

We normalize d to produce d * =  11000000 with m - - 5 .  Since p < 1, we 

have v = 2 and s = 1. Consequently, we shift x f  by three positions and 

require N = (m + 1 -+- v ) /2  = 4 iterations. The  initial condition is 

w[0] -- x f / 8  = .00001111101 

The  iterations are shown in Figure 5.15. �9 

The details of an implementation are left as an exercise. 

5 . 5  Quotient-Digit Selection Function 
In previous sections we have described the recurrence step consisting of arithmetic 

shift, quotient-digit selection, multiple generation, subtraction, and quotient con- 

version. We now present the basic theoretical background required to design the 

quotient-digit selection function and give examples for radix 2 and radix 4. 

The quotient-digit selection function determines the value of the quotient 

digitqj+l as a function of the residual w[j]  and the divisor d. As indicated before, 

we use a symmetric signed-digit set for the values of the quotient digit; that is, 

q j + l  E 7Da -" {- -a , - -a  + 1, . . . , - - 1 ,  0, 1 , . . .  ,a  -- 1, a } 5.50 
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A 

Init ial  res idual  w[O] - -  x f / 8  - -  O.O0001111101,d = 0.1100 -- 12/16 

4WS[0]  --  000.001111101 

4 W C  [0] = 000.000000000 "~ [0] --  000.0011 q 1 = O0 

WS[1]  = 000.001111101 

W C [ 1] = 000.000000000 

4WS[1]  = 000.111110100 

4 W C  [ 1 ] = 000.000000001" 

- d f  = 111.001111111 

~"[1] - -  000.1111 q2 = O1 

WS[2]  = 111.110001010 

WC[2]  = 000.011101010 

4 W S [ 2 ] - -  111.000101000 

4 W C [ 2 ]  --  001.110101001" 

- d f  = 111.001111111 

~"[2] = 000.1110 q3 -- O1 

WS[3]  = 001.111111110 

WC[3]  = 110.001010010 

4WS[31 = 111.111111000 

4 W C [ 3 ]  = 000.101001001* 

- d f  = 111.001111111 

~"[3] = 000.1001 q4 = O1 

WS[4]  = 000.011001110 

WC[4] - - -  111.011110010 

Res idual  n e g a t i v e m c o r r e c t  the quo t i en t  and  the residual  

+ d f  -- 000.110000000 

w [4] = 000.101000000 

T h e  quo t i en t  and  the r e m a i n d e r  are 

q --  00010100 = (20)10 

rem = w[4] • 23 = 1 0 1 =  5 

q4 = 0 0  

F ! G U R S S. lS Example of radix-4 integer division with residual in carry-save form and n -- 4 

(radix-4 digits). 
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with the redundancy factor p 

a 1 
p - -  - < p < l  5.51 

r - 1 '  2 - 

The specific selection function depends on the way the residual is represented. Of 

particular practical interest is the case of redundant representation, either carry- 

save or signed-digit, because the addition in the recurrence is faster. Consequently, 

our goal is to present the quotient-digit selection for those cases. However, the 
case for nonredundant residual representation is simpler, so we discuss it first and 

then present the modifications required to use the redundant representations. 

There are two fundamental conditions that must be satisfied by a selection 

function: containment (all residuals must be bounded) and continuity (for any value 

of the shifted residual there must exist a valid choice of the quotient digit). The 

containment condition determines a selection interval for each value ofqj+l .  The 

continuity condition is used for choosing the specific selection function. We now 
discuss these concepts and then present several alternative selection functions. 

5 o 5 , t  Containment Condition and Selection Intervals 

One basic requirement for the quotient-digit selection is to guarantee a bounded 

(contained) next residual. This containment condition determines the selection 
intervals, which are then used to design the selection function. 

As developed in Section 5.2 the division recurrence is 

w[j  Jr- 1] - -  rw[j]  -- dqj+l 

Moreover, for convergence, the residual has to be bounded so that 

5.52 

Iw[j] _< pd 5.53 

where p = a / ( r  - 1) is the redundancy factor and - a  < qj < a. 

Selection intervals 

Define the selection interval ofr w [/']for qj +1 - -  k to be [Lk, U k ]. That is, L k (Uk) 

is the smallest (largest) value ofr  w[j] for which it is possible to choose qj+l k 

and keep the next residual (w[j + 1]) bounded. Therefore, 

L k <_rw[ j ]<U k ==~ - p d  < w [ j + l ] - r w [ j ] - k . d  < p d  5.54 
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Consequently, 

and 

U ,  - k . a = p a ,  Lk - k"  d = - p d  5.55 

Uk = (k + p)d Lk = (k - p)d 5.56 

The division recurrence, the residual bounds, and the selection-interval 

bounds can be represented in Robertson's diagram (Figure 5.16(a)). This diagram 
has as axes the shifted residual r w[j] and the next residual w[j  + 1]. It represents 

the recurrence by the lines with parameter q j+l = k for k = --a, . . . ,  a and the 
residual bounds by the rectangle w [j + 1] = pd, w [j + 1] = - p d ,  r w [j ] = 

rpd,  and rw[j]  = - r p d .  The selection interval for qj+l = k is obtained 

from the projection of the corresponding line on the r w[ j] axis. The diagram of 

Figure 5.16(a) illustrates the computation of w[6] = r w[5] - k d. 

Another diagram, which is useful in the design of the quotient-digit selection 

function, is the r w[j] versus d diagram, called the P-D diagram (Figure 5.16(b)). 

The bounds of the selection intervals U k and L k are plotted as lines originating 

from (0, 0) with slope k + p and k - p, respectively. The regions delineated 
by these lines are helpful in analyzing the quotient-digit selection function, as 

described later. 

Continuity Condition, Overlap, and Quotient-Digit Selection 
We now relate the quotient-digit selection function to the selection intervals. As 
stated, the function is of the form 

qj+x = SEL(w[j] ,  d) 5.57 

We can represent this function by the set {Sk}, - a  < k < a, such that 

qj+l = k if s k < rw[j]  < Sk+l - ulp 5.58 

That is, s k is defined as theminimum value oft w[j] for whichqj+l  = k is chosen. 
As indicated by the function SEL above, the s k'S are functions of the divisor d. 

To satisfy the containment condition, s k must be inside the selection interval; 

that is, 

L k < s k < U k 5.59 
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pd I w[j + 1 ] 

_rpd rw[5] / 

,, 

(a) 

rgd 

rw[j] 

r I G U R E S. 16 (a) Robertson's diagram. (b) P-D diagram. 
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Moreover, to satisfy the continuity condition, it is necessary to selectqj+l - k - 1 

for r w [j  ] - -  s k -- u l p .  Consequently, 

S k - u l p  < Uk_l  5.60 

Since U k > Uk_ l  Jr- u l p ,  the combined restriction on Sk is 

Lk  < S k < Uk_l .qt_ u l p  5.61 

For simplicity, in some cases, we use the more conservative bound 

L k < s k < Uk_ 1 5.62 

Consequently, the values s k have to be inside the overlap between consecutive 

selection intervals, as shown in Figure 5.17. This is the basic condition required 

by the quotient-digit selection functions we describe later. 

The  subscript k - 1 for U, in contrast with the subscript k for L in (5.61), 

results from the choice o f  s k as the min imum of the interval for qj+l = k. If, 

on the other hand, we selected Sk tO be the max imum of the interval, then the 

subscripts would be reversed. We will comment  further on this asymmetry later. 

The  amount  of overlap is given by 

Uk-1 - L k  - -  (k  - 1 + p ) d  - ( k  - p ) d  - (2p - 1)d 5.63 

This overlap depends on p and on d. Note that the overlap is zero for nonre- 

dundant  quotient-digit set (p - 1/2). The  main reason for using a redundant  

quotient-digit set is to provide a suitable overlap to simplify the quotient-digit 

selection. Moreover, for this same reason, it is common to restrict the range of 

the divisor so that d > 1/2 (normal ized  divisor). 16 This restriction is shown in 

Figure 5.17. As indicated before, for floating-point representation, the divisor is 

usually in normalized form, and in cases in which the original value is not nor- 

malized, it is possible to normalize it by shifting both the divisor and the dividend. 

Unless noted otherwise, we assume that the divisor is normalized. 

16. We normalize the divisor tod > 1/2 even for higher radices, since the higher radix is used 
only to reduce the number of steps in the algorithm, but the representation of the divisor 
remains in radix 2. This restricts the radix to be a power of 2. 



286 <',':: ::!~-it .~!:., i!;:::..~ :"~:: ~!!: :ili::~i~. :. ,~!:.!i; Division by Digi t  Recurrence  

qj+l  = k - 1  

Lk- 1 

~, w[j + 11 

k - 1  

L k 

7 

~- Vk_ 1 

< ~ Overlap 
k or 

k - 1  

(a) 

rw[j] 

Ii, 

v~ 

rw[j] 

Normalized divisor range 

(b) 

~k 

Lk ~ qj+l = k 

Overlap 

( k o r k - 1 )  

qj+l = k_1  

F I G  U R E S. 17 Over lap  between selection intervals and selection function. 
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rw[j] Uk_ 1 

k>O 

1 1 "-d 

. . . . . . . . . . . . . . . .  Uk_ l  

F I G U R E  5.18 Boundsonm k. 

L~ 

5 . 5 . 3  Quotient-Digit Selection Using Selection Constants 

'S The simplest selection function is to make the s k constants, independent of the 

divisor. We call these constants m k" From (5.61), the constants have to satisfy 

max(Lk) _< m k <_ min(Uk_l ) + ulp 5.64 

where the max and min have to be obtained for the range 2 -1 _< d < 1. 

As shown in Figure 5.18 and using the expressions for L and U" 

�9 For k > 0 

(k - p) < m k  < (k - 1 + p)2 -1 + ulp 5.65 

which requires 

p >  k + l  
5.66 
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�9 For k < 0 

which requires 

(k - p) 2-1 < k - 1 + p 5.67 

( - k )  + 2  
p >_ 5.68 

3 
For a quotient-digit set - a  < qj < a (p - a / ( r  - 1)), the worst case is k -- - a ,  

resulting in 

2 
p >_ 5.69 

4 - r  

Since p < 1, we get that r -- 2 is the only radix for which the selection function 

can be independent of the divisor. 

Using Truncated Residual  

The selection function corresponds to comparisons between the selection con- 

stants m k and rw[j].  If the selection constants are of the form Ak 2-c, with A k 

integer, then for r w[ j ]  in two's complement representation the comparisons are 

done using {r [W]}c, the truncated r w[ j ]  with c fractional bits. This is because 

r w[ j]  > {r w[j  ]}c, independently of the sign of the residual since in two's com- 

plement representation the portion discarded by truncation is always positive. 17 

We use two's complement representation for the residual, unless noted otherwise. 
As a consequence of this, to simplify the implementation of the selection 

function the selection constants chosen should correspond to the smallest c 

possible. 

Radix -2  Division with N o n r e d u n d a n t  Residual  

This algorithm is an extension of nonrestoring division (in which the quotient- 

digit set is { -1 ,  1 }). Now the quotient-digit set is signed digit with the inclusion 

of 0. This algorithm is called SRT. 18 

Since the nonrestoring algorithm already uses selection constants (ml = 0), 

it seems unnecessary to include the value qj = 0. The purpose of introducing the 

17. On the other hand, if the representation is in sign-and-magnitude, the portion discarded 
by the truncation has the sign of the residual. 
18. After D. Sweeney (Cocke and Sweeney 1957), J. E. Robertson (Robertson 1957), and K. D. 
Tocher (Tocher 1958). 
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quotient-digit  value 0 is to eliminate the need for subtraction/addition when this 

value 0 is selected (skipping over zeros). 

F rom expression (5.56) the selection intervals are 19 

U1 = 2 d  L1 - - 0  
1 1 

U 0 = d  > -  L 0 = - d  < 
- 2  - 2 

U-1 = 0 L-1 = - 2 d  

5.70 

Consequently, from (5.64), the selection constants have to satisfy 

1 1 
0 < m l < - < m0 < 0 5.71 

--  - - 2  2 - -  --  

A possible quotient-digit  selection function would be to choose m l = m0 = 0; 

however, this is the same as the nonrestoring case and does not use the quotient- 

digit value 0. To maximize the region for 0 (and therefore its frequency), we 

choose 

1 1 
. . . .  5.72 m l -  ~, m 0 -  2" 

The  corresponding quotient-digit  selection function is 

1 i f  g < 2 w [ j ]  

1 1 5.73 q j + l - -  0 if - g  < 2 w [ j ] <  g 
1 - 1  if 2w[j]  < 2 

This selection function is illustrated in Robertson's diagram (Figure 5.19(a)) and 

in the corresponding P-D diagram (Figure 5.19(b)). It requires only the compar- 

1 1 The  selection rules effectively correspond to ison with the constants g and - g .  
1 checking if the shifted residual is normalized; that is, if 12w[j ]1 >__ g. 

Staircase Select ion F u n c t i o n  

For radix larger than 2 it is not possible to find one constant m k for the whole 

range of the divisor. In this case, the range of  the divisor is divided into intervals 

19. Since p = 1, the bound used for these selection intervals would allow the value w[n] = d, 
which would require a restoration step. This is avoided if w[0] < d and m0 < 0 (to avoid 
qj+l - -1  for 2w[j] = 0). 
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- 2 d  

l dw[J + 1] 

. . . .  - - 1 -  - - 

m 

. . . . . . . . . . . . . . .  

2w[j7 

2d 

L_ 1 
I 

Lol 

U-1 L 1 

Iu0 

(a) 

2 w [ j ]  

2 . . . . . . . . .  
i 

l 
U ' 

1 ~ 

" q j+ l  = 1 

1 

_ 1 
1 m l  = 
2 ~,_1 'I 
1 1 q +2o__1 

_1 

2, 
-2 '_, _ _qJ+l = -1 

(b) 

F I G  U R t S , 1 9  Radix-2 division: (a) Robertson diagram and selection intervals. (b) P-D dia- 

gram and selection function. 
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rw[j] 

mk+l(i) 

m/~(i) 1 
i 

i 

i 

i 

i 

i 

i 

I 
. . . . . .  

i 

d i 

i i i i .,__L_ qj+l = k+l 
i 

4- ulp 

I' 
i 

._ _ ~ - q j + ]  = ~ 

i 

i 
I 

i 

i 

i 

i 

i 

i 

i 

' , d 
i 

2-8 , 
di+l 

F I G U R E  5 . 2 0  D e f i n i t i o n  o f m k ( i  ).  

[di, d i+ l )  w i t h  

1 
do -- -~, di+l -- di + 2 -a 5.74 

so that the 8 most-significant fractional bits of the divisor represent the interval. 

Moreover, in the interval [di, di+l) the quotient-digit selection is described by the 

set of  selection constants ink( i ) .  That  is, 

for d ~ [di, d i + l ) ,  qj+l  -- k i f m k ( i )  < r w [ j ]  < mk+l ( i  ) - u lp  5.75 

as illustrated in Figure 5.20. 
Since a single selection constant is used for the whole interval [di, d i+ l )  , from 

(5.64) we get (as shown in Figure 5.21) that 

m a x ( L k ( d i ) ,  Lk(di+l))  <_ ink( i )  < m i n ( U k - ] ( d i ) ,  Uk- l (d i+l ) )  '1-ulp 5.76 

The quotient-digit selection is a function of the 8 most-significant fractional 
1 bits ofd .  Actually, only 8 - 1 bits are needed because d > 3" In addition, for 

, ~ k ( i )  - A k ( i ) 2  - c  5.77 

with Ak( i )  integer, the selection function uses {rw[j]}c ,  which corresponds to 

the truncated r w [j ] with c fractional bits. The use of these selection constants is 

illustrated in Figure 5.22. 
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F I G U R E 8 .21  Selection constant region. 

rw[j] 

2_ c ~" 
mk(4)-l'- 

mk(2, 3) 

m/~(1) 
m/r 

- - - ~ - - - ~  ~ . . . . . . . . . . .  Uk_ 1 
. . . . . . .  : _ f  

I I I I 
. L  - - - L  - _ - L .  . L  _ ~ _ L  _ - 

, , , , i . ,  
. L _ - _ L - _ - L . . . . . . .  l f  ,L _ _ 

I I I / I  I 
- - . J - - - . J  . . . .  . J T , ' C -  I I - - -  

, , / "  , , i L k  
_ _ , _ _ _ . _ . , _ _ _ , _ _ _ . . _ _  

- - - ~ , - ~ j ~ - ~ , - - -  

_ _ _ , . _ _ . _ _ _ . . _ . _ _ _ , _ _ _  

_ 7 ~ . ~ , . ~ _ 1 ~ . J _ _ _ - J _ _ _ . _ _ _  
. - . . ~ , /  ~ - - - ~ - - - ~ - - - ~ - - - 

- - - . - - - . - - - . - - - , - - - , - - -  

~ I I I I I 
- - _ , - _ - , - _ _ . _ - _ , _ _ _ , _ _ _  

I I I I I 

' ' ' ' ' , d 

- 4  ~ ' , - -  I ' ' 2 -  i i 
I I I I I 

ao ,t~ ,12 a3 a4 ,t5 
F I a U R E S.22 Quotient-digit selection with selection constants. 

In terms of the low-precision selection constants, from (5.74), (5.76), and 
(5.77), the quotient-digit selection must satisfy 

for k > 0  

fork < 0 

Lk(di 4-2 -8) < Ak(i)2 -c < Uk-l(di) + ulp 

Lk(di) < Ak(i)2 -c < Uk_l(d i Jr-2 -'s) + ulp 
5.78 

for all i and all k. 
The design problem consists, therefore, in finding selection constants and 

divisor intervals so that c and 8 are minima. Unfortunately, there is no single 
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{rw[j]}c 

l+log2r+c t ~ 

SELECTION 1-., / 

I- FUNCTION 5-  1 

l qj+l 

log2r + c + 8 

{d}~ 

F ! G U R E S.2S Selection with truncated residual and divisor. 

solution since as 8 is reduced c increases. Consequently, a possible optimization 
criterion is to minimize c + 8 since this relates to the number of bits of the input 
of the quotient-digit selection function, as shown in Figure 5.23. Note that the 
integer part of{rw[j]}c requires 1 + log2(rpd ) bits (< 1 + log2r for p < 1). 

A lower bound on 8, the number of divisor bits required, is obtained by 
requiring a nonnegative overlap. Consider the case k > 0 (a similar argument 
can be made for k < 0); then 

Uk_l(di ) - Lk(d i + 2 -8) > 0 5.79 

From (5.56) we obtain the expressions for Uk_ 1 and L k so that 

(P + k - 1)di - ( - p  + k)(di  + 2 -a) > 0 5.80 

which results in 

( 2 p -  1)di > ( k -  P) 2-8 5.81 

This must be true for all values ofdi  and k, the worst case being the smallest 
1 value ofdi  and the largest value of k. Since d >_ g and k < a, expression (5.81) 

becomes 
2 p -  1 2 p -  1 

2 -a < = 
- 2(a - p) 2p(r - 2) 

5.82 

However, the use of this minimum value of 8 can result in a large value of 
c; that is, many bits of the shifted residual. Consequently, the values of 8 and c 
have to be selected so that the implementation is simplified; the actual values for 
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this to occur depend on the particular technology used. The bound is helpful in 

reducing the number of alternatives to consider. 

Radix-4 Division with a -- 2 and Nonredundant Residual 

In the radix-4 case, 2~ two possibilities exist for the redundant digit set: a - 2 

and a - 3. The case a - 2 has the advantage that the multiples of the divisor 

that have to be generated are d, 2d, - d ,  and - 2 d ,  which are simple to generate, 

whereas the alternative a - 3 also requires the multiples 3d and - 3 d ,  which are 

more complex to obtain. On the other hand, because of the greater redundancy, 

the case a -- 3 results in a simpler quotient-digit selection function. The choice 

of the digit set depends on specific implementation constraints. Here we describe 

the case a = 2. 
2 from (5.56) the selection intervals are Since p - ~, (2 )  

+ k  a a 5.83 

Figure 5.24 shows the corresponding Robertson's diagram and P-D diagram. 

From (5.82) we get the bound on ~ to be 

2 p - 1  1 
2 -8 < = - 5 . 8 4  

- 2(a - p) 8 

Consequently, a truncated divisor of at least three bits is required. However, in 
this case the use of three bits results in a large value of c. For example, for the 
selection constant m2(1) for the region of the divisor between 4 and 5 - we get 

5 4 5. Therefore, the only possible value of m2(1)is 856, which Le(g) = Ul(g) - -  

r e q u i r e s  a selection constant of full precision. Because of this, we use a truncated 

divisor offour bits instead. 
We now use this value of 8 = 4 to determine the minimum value ofc and 

the resulting selection function. We do this by considering all cases ofdi and k to 

satisfy expression (5.78). The results of the analysis are shown in Table 5.9. 

As expected, there is symmetry between positive and negative constants. 

Since the selection constant with highest precision is of the form A �9 2 -3, three 

fractional bits of the shifted residual are needed. The selection constants m2(i) 

are shown in the P-D diagram of Figure 5.25(a). Since the shifted residual is 

20. This algorithm is called Robertson's Division Algorithm (Robertson, 1958). 
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w[j + 1] 

/'1 I 2 d /  I s ~ /  8,t / "  
3 (a) 

= 4w[j] 

4w[j] 

2 

1 2-- L2U1 

1 

Vo 

L 1 

~-~/ ~_l 
. . . . . . . .  -1 L~ 

-1 

U_ 2 

-2  

L_ 2 

d 

(b) 
F I G U R E $ ,24  Radix-4  division wi th  a = 2" (a) Rober tson ' s  d i ag ram.  (b) P - D  d iag ram.  
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[di,di+l) + 

L2(di+l), Ul(di) # 
m2(i)* 

Ll(di+l), Uo(di) # 
ml(i) 

Lo(di), U-l(di+l) # 
mo(i) 

L-l(di) ,  U-2(di+l) # 

m-l(/)  

[di,di+l) + 

L2(di+l), Ul(di) # 
m 2 ( i )  

Ll(di+l), Uo(di) # 
m l ( i )  

Lo(di), U-l(di+l) # 

mo(i) 

L-l(di) ,  U-2(di+l) # 

m-i(/)  

[8, 9) [9, 10) [10, 11) [11, 12) 

36, 40 40, 45 
6 7 

9,16 10, 18 
2 2 

-16, - 9  -18, -10 
- 2  - 2  

-40, -36 -45, -40 
- 6  - 7  

44, 50 
8 

11,20 
2 

-20, -11 
- 2  

-50, -44 
- 8  

48,55 
8 

12, 22 
2 

-22, -12 
- 2  

-55, -48 
- 8  

[12, 13) [13, 14) [14, 15) [15, 16) 

60,70 64,75 
10 12 

15,28 16,30 
4 4 

-28, -15 - 3 0 , - 1 6  
i 

- 4  - 4  

- 7 0 , - 6 0  - 7 5 , - 6 4  
- 1 0  - 1 2  

52, 60 56, 65 
10 10 

13,24 14,26 
4 4 

-24, -13 -26, -14 
- 4  - 4  

-60, -52 -65, -56 
- 1 0  - 1 0  

Note: +:  real value -- shown value/16; #: real value -- shown value/48; *: real value = shown value/8. 

T A B L E  5.9 Selection intervals and m k constants (radix 4, nonredundant residual). 

bounded by 
8 

14w[/]l < 4pd < - 5.85 
- 3 

three integer bits are needed for the two's complement representation. Therefore, 
the selection function is implemented using three bits of the divisor and six bits 
of the shifted residual, as illustrated in Figure 5.25(b). 

5 . 5 . 4  Use of Redundant Adder 

The quotient-digit selection discussed previously requires that the residual be 
computed to full precision, although a truncated version is used in the selection 
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{4w[jl }3 1, ~ U1 
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~ ] i / " I  [ , , , , ', , q j + l  = 1  3 

m 2 ( 1 )  8 6. ~ ,  ~ - ~ - - - ] - - ~ - - ~ - - , - - ~ -  

U i  I i '  , , , , ,, , 
5 _ . t _ ~ . _ i r  . a _  _ . _ _  . _ _  . _  _ .  - , j _  

16 . . . . . . .  , ' q#+l I �9 I I I I I I I I 

I . . . . . .  , ' ,' { d } 4  I l , I I I I I I I 

' i_0 ' ! , 12  , 1 4  , 1 ( b )  

2 9 16 11 16 13 16 15  
1-6 1--6 1--6 16 

(a) 

I=la u R I~ 5.25 Radix-4 with nonredundant residual. Quotient-digit selection: (a) a fragment 

of the P-D diagram and (b) implementation. 

function due to the l imited-precision selection constants. In this implementa t ion  

a substantial fraction of  the step time is due to the addit ion required for the 

computa t ion  of  the residual. 

T h e  overlap between selection intervals can be fur ther  used to reduce the 

step t ime by basing the selection on an estimate of the residual. We derive the 

requi rements  for such use and apply the results to estimates involved when  using 

a r edundan t  (carry-free) adder. 

If  we call y the actual value of  the shifted residual and ~" its estimate, we can 

write 

A 

E-min ~ y - y  < ~max 5.86 

where  ~min and Emax are the m i n i m u m  error  and m a x i m u m  error, respectively. 

Note  that usually Emi n is nonpositive. 

We now develop expressions that have to be satisfied to design a quot ient-  

digit selection function for a general  estimate. T h e  basic constraint  that must  be 

satisfied is that if we choose qj+l  - -  k for an estimate'S", then this choice must  be 

correct for the interval 

y E ['ff-~-(:min, ?'Jf-~max] 5.87 
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F ! G U R �9 S.20 Constraints for selection based on estimates. 

Consequently, the restricted selection interval is [Lk, Uk] such that 

L k -- L k - ~min 5.88 

S k  - -  S k  - ~ . m a x  

The range of values of ~ for which m k can be chosen is determined as 

before by replacing U and L by U* and L*, respectively, namely, 

max(Lk(di) ,  Lk(di+~)) < mk(i ) < min(Uk_~(di), Uk_l(di+~)) + ulp 5.89 

This expression is illustrated in Figure 5.26. 

From (5.89) we get the minimum overlap required 

min(Uk_l(di) ,  Uk_l(di+l)) - max(Lk(di) ,  L~(di+l)) > 0 5.90 

The range of the estimate ~ determines the number of bits of the representation. 

Since the range ofr  w[j] is 

[rw[j]] < rpd < rp ( ford < 1) 5.91 

we get 

- - r  tO - -  Ema x < y < r tO - ~min 5.92 
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~ Ernax 
V 

--1" 

y = rw[jl '1 
m l  

--s ~* 

.! 
( e s t i m a t e )  

rp 

F I G U R E 5 . 2 7  Range of estimate. 

as shown in Figure 5.27. Note, however, that in specific cases the maximum errors 

might not occur for the maximum values ofr w [ j  ]. In such cases, a more detailed 

analysis is required to obtain a better bound on ~". 
One way of having an estimate of the residual is to use a redundant represen- 

tation (carry-save or signed-digit), produced by a redundant (carry-free) addition, 

as shown in Figure 5.28(a). The quotient-digit selection function uses an estimate 

of this shifted residual obtained by truncating the redundant representation to t 

bits. The error introduced by this truncation depends on the type of redundant 

adder (carry-save or signed-digit), as discussed now. 

Ca r r y - S a  ve  A d d e r  

For the carry-save case, the representation is in a two's complement form (as that 

of the nonredundant case). Consequently, the error due to the truncation is always 

positive, as illustrated in Figure 5.28(b). That  is, 

Emi  n - -  0 5.93 

Moreover, the maximum positive error corresponds to the maximum value 

of the discarded portion. Consequently, 

(Jmax - -  2-t+1 -- u lp  5.94 

Using these values for the error, we get the restricted selection interval 

U k -- U k - 2 -t+l + u l p  

L k -- L k 
5.95 

Moreover, since the estimate is the truncated shifted residual with t fractional 

bits, the selection constants cannot have more than t fractional bits. They should 

be located on the grid of granularity 2 -t ,  as shown in Figure 5.29. Consequently, 
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1 l 
(redundant) 

REDUNDANT ADDER 

w[j  + 1] I (redundant) 

(a) 

t 

WS X X X. X X X X X X X'~ 

WC X X X. X X X X X X 
- + + . + + +  + + \ + +  

\ 
rwIj] 

Y Y Y. Y Y Y  
- + + . + + +  

O_<e <_ 2 - t+ l -u lp  

(truncation error) 

(estimate) 

t 
X X X. X X X X X X X X)  

+ + + '+  + + .  + + ~ N ~  

Y Y Y. Y Y Y  
+ + + . + + +  

rw[j] 

- (2 - t -u lp )  _< ~ <_ 2 - t - u l p  

(truncation error) 

(estimate) 

(b) (e) 

F I G U R E  5,28 Use of redundant adder: (a) Redundant adder. (b) Carry-save case. (c) Signed- 
digit case. 

A A 

for the region in which rnk can be located we use U and L located on the grid. 
Tha t  is, 

A A A A 

m a x ( L k ( d i )  , L k ( d i + l )  ) < m k ( i  ) < m i n ( U k _ i ( d i )  , U k _ i ( d i + l )  ) 5.96 

A A * L *  * 
We now relate U, L with U , . Since U k _  1 is the largest value for which 

it is still possible to select q j + l  - -  k - 1, the u p p e r  b o u n d  of the region for m k is 
the next grid value that is larger 21 than Uk_ 1. Tha t  is, 

A 

U k _ l -  LUk_ 1 qt_ 2 - t i t -  LU k - l -  2-t i t  5.97 

21. This is equivalent to saying that in expression (5.89) the ulp for ~" is 2 -t. 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  UAk~I 

............ Uk_l (representedby O) 

^ 
L k  (represented by O) 

L k L~ 

d i di+l di+2 

Case A: Uk. 1 is on the grid; 
A * t 
Uk_l = U~_ 1+2- on the grid 

Case B: U~. 1 is off the grid; 
A 

Uk_l > U~. 1 on the grid 

glGUlIE 5.29 U and ~ for residual in carry-save form. Note that when L* passes through a 

grid point this is also L, whereas this is not the case for U. 

where Ix ]t corresponds to the carry-save representation of x truncated at frac- 

tional bit t. 
On the other hand, since L k is the smallest value for which it is possible to 

selectqj+l = k, thelower bound of the region for m k is the grid value that isequal 

or larger than Lk, so that 

FL I,- rL l, s.98 

These bounds are shown by dots in Figure 5.29. 
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We now obtain a lower bound for t and 8 by requiring a nonnegative overlap. 

That is (for positive k), 

Uk_l(di  ) - Lk(d i+l  ) > 0 5.99 

A lower bound is now obtained by replacing U by its upper bound and L by its 

lower bound. This results in 

U k _ l ( d i )  - 2 - '  - L k ( d i + l )  > 0 5 .100  

_ 1 Introducing the corresponding expressions and the worst-case condition di --  ~ 

and k - a ,  we get 

2 p - - 1  
(a - - p ) 2  -s  > 2 - t  5.101 

2 

Finally, we determine the range of the estimate. Since the estimate involves 

truncation of the carry-save representation to t fractional bits, the difference 

between the estimate and the truncated two's complement representation cor- 
responds to a possible carry into fractional bit t. This carry affects the negative 
range of ~, so that the range becomes 

L - r  p - 2 - t ] t  <~ "ff <~ Lr p - u lp  ]t 5.102 

where [zJt -- 2-t [2 tzj. The term ulp  is required to use < instead of <. Note 

that because of the asymmetry of the error, this range is also asymmetric. As noted 
before, the actual range might be smaller because the neglected carry might not 
occur for the maximum value of t  w [ j  ]. 

Radix-2 Division with Carry-Save Adder. 
For this case, from (5.101) 

0 x 2 -~ > 2 -t 5.103 

This bound indicates that it is possible to have a single set of selection constants 

for the whole range of the divisor. That  is, the quotient-digit selection function 
is independent of the value of the divisor. The bound also indicates that t > 1. 

Now we see whether t - 1 results in valid selection constants. These 
constants have to satisfy (5.96)" 

A A A A 

max(Lk(d i ) ,  L k ( d i + l ) )  < m k ( i  ) < m i n ( U k _ l ( d i )  , U k _ l ( d i + l )  ) 5.104 
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for the whole range of the divisor. From (5.70), (5.97), and (5.98), we get 22 
A 

L 1 ( 1 )  - - 0  

0 

1 5.105 

1 A 

- 

2 
Consequently, 

A A 

( L I ( 1 )  - -  0) ___ m l  ~ ( U 0 ( 1 / 2 )  - -  0) 
( ~  1)  ( A  ~ )  5.106 

0 ( 1 / 2 ) - - - ~  < m 0 <  U - l ( 1 ) - - -  

1 This results in the selection constants m l -- 0 and m0 = 2' as shown in 
the P-D diagram of Figure 5.30(a). Therefore, t -- 1 results in valid selection 
constants. 

The range of the estimate is obtained from (5.102) as 

L-2 - 2 - 1 j l  _< ~ _< L2 - u l p J l  5.107 

which results in 
5 3 

< ~" _< ~ 5.108 
2 -  

The corresponding quotient-digit selection function is 23 
3 1 i f 0 < ~ < ~  

1 5.109 q j+l - -  0 if ~ - -  2 
5 A - 1  if - ~  < y  < - 1  

The estimate has four bits (three integer bits and one fractional bit), as 
shown in Figure 5.30(b). The corresponding algorithm was summarized in 
Figure 5.6 and an example of execution was given in Figure 5.7. The quotient- 
digit selection function can be implemented in two ways: 

22. Since p = 1 the bound of the residual could produce w[n] = d, requiring a restoration 
step; as indicated for the case with nonredundant residual, this is avoided by making 
w[0] < d andre0 < 0. 
23. Note the difference from (5.73). 
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.Y[j] 

T 2w[j] 

2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ,, 
~ ............................................ UO 
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~0 
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o q,  ~ -  I , . ,  i ''Z'L.---'6- . . . . .  
q j + l  = u . . . . . . .  1 . 

1 ....-- , ,  ().,, --- - " - ' - ~ "  a, ~ .  . L I '  U - 1  

; - <  < 

L o, L; 

5 ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ,, L ~  
2 

d = 1 d = 1 - u lp  
2 (a) 

~d 

~[j] xxx. x 
X X X .  X 

t 4 + 4  

SELECTION 
FUNCTION 

qj+l [ 
(b )  

F I G  U R E 5 .30  Radix-2  d iv is ion  w i t h  ca r ry -save  adder :  (a) P - D  plot.  (b) Select ion func t ion .  

By first converting into non-redundant representation the four most- 
significant binary positions of 2w[j ] to produce ~ and then using the 
four resulting bits as inputs to a combinational network for the 
selection. 
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E X A H P L R  5 . 3  

2. By using the eight bits of the four most-significant positions of the 
carry-save representation of 2w[j] as inputs to the combinational 
network, as shown in Figure 5.30(b). 

Since this combinational network is relatively simple, we use this second 
scheme to obtain a faster implementation. A possible implementation in which 
the digit qj+l is represented in sign-and-magnitude by (qs, qm) is as follows: 

q m  : ( P - I P O P l )  r 5.110 

qs = P-2 G (g-1 + P-lgo at- P-lPogl)  

where 

Pi - -  c i  ~ .-r i gi " -  Ci " S i 

and (c-2, c-1, co, c 1), (s -2, s -1, s o, s 1) are the carry and sum components of 
the carry-save representation of ~ [ j  ]. Note that in this case the representation 

ofqj+l  = 0 is (qs, qm) -- (1, 0). [] 

Radix-4 Division with Carry-Save Adder. 
Another algorithm that has received significant attention is the radix-4 

case with digit set { - 2 , . . . ,  2} and carry-save adder. This digit set is ad- 
vantageous because the multiples dqj+l are easy to implement. We obtain a 
lower-bound relation between 8 and t from (5.101): 

1 4 
- - - 2  - 6  > 2 -t 5.111 
6 3 - 

If we use 8 -- 4 we get 

1 1 1 
2 -t < = ~ 5.112 

- 6 12 12 

so we can try t = 4. The selection intervals are obtained from 

5.113 

To determine the quotient-digit selection function, we use expressions 
(5.97) and (5.98) and obtain Table 5.10. A fragment of this selection function 
is shown in the P-D diagram of Figure 5.31 (a). 
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[di, d i + l )  + [8, 9) [9, 10) [10, 1 1) [11, 12) 

~2(di+l), U1 (di) + 

m2(i) + 

~l(di+l), W'~o(di) + 
rex(/) 

~'Lo(di), U-l(di+l) + 

too(i) 

~-l (di ) ,  U-2(di+l) + 

m-l( / )  

12, 12 

12 

3,4 

4 

-5 ,  - 4  

- 4  

-13, -13 

-13 

14,14 

14 

4,5 

4 

-6 ,  - 5  

- 6  

-15,  -15  

-15 

15,15 

15 

4,5 

4 

-6 ,  - 5  

- 6  

- 1 6 , - 1 6  

- 1 6  

16, 17 

16 

4,6 

4 

-7 ,  - 5  

- 6  

-18, -17  

-18  

[di,di+l) + [12, 13) [13, 14) [14, 15) [15, 16) 

~2(di+1), Ul(di) + 

m2(i) 

El(d/+l), U~o(di) + 
rex(i) 

~o(di), U-I(d/+I) + 

too(i) 

~-l (di ) ,  U-2(di+l) + 

m-l( / )  

18, 19 

18 

5,7 

6 

-8 ,  - 6  

- 8  

-20, -19  

-20  

19,20 

2O 

5,7 

6 

- 8 ,  - 6  

- 8  

-21,  -20  

-20  

20,22 

20 

5,8 

8 

-9 ,  - 6  

- 8  

-23,  -21 

-22  

22,24 

24 

6,9 

8 

-10, - 7  

- 8  

-25, -23 

-24  

+: real value = shown value/16; ~k = [Lk-14, U"k = [Uk - 1]4" 

T A B L E  5 . 1 0  Selection intervals and constants m k (radix 4, carry-save residual). 

15 13 and 15 the input of ~ t o  the Because of the selection constants 16, 16' - -  Y6' 

selection function has four fractional bits (c = 4), which in this case is equal 
to t. The range of the estimate is obtained from (5.91) to be 

L 8 lj A L8 <y_< ~-u  
3 16 4 4 

5.114 

which results in 
44 42 A < y < ~  
1 6 -  - 16 

5.115 
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F I G U R E  5.31 Selection function for radix-4 scheme with carry-save adder: (a) a fragment of 

P-D diagram and (b) implementation. 
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requiring three integer bits. Consequently, the selection function has the inputs 
shown in Figure 5.31(b). An example of the execution of this algorithm was 

given in Figure 5.9. �9 

S i g n e d - D i g i t  A d d e r  

Instead of using a carry-save adder, it is possible to use a signed-digit adder, 

resulting in a residual in signed-digit representation. For the case of radix-2 

representation, we now determine the error produced by using as estimate the 

shifted residual truncated to t fractional digits. In this case, the discarded part 

when truncating can be positive or negative (see Figure 5.28(c)). Consequently, 

the errors are 

E m a  x - -  2 - t  -- u l p ,  E . m i  n - -  --(2 -t -- u l p )  5.116 

The restricted selection interval is 

U k --  U k - (2 - t  - u l p )  5.117 

L k - - L  k + 2  - t - u l p  

By a similar reasoning as for the carry-save case, we obtain 

A 

U~_l- LUg_lit 5.118 
A 

L k --  [Lk + 2 - t ] t  

The relation between 8 and t is, from (5.90), 

2 p - 1  
(a - p ) 2  -a > 2 -t 5.119 

2 

Note that the relation between 8 and t is the same as for the carry-save case, but 

the actual value of the selection constants might be different. 

Finally, from expression (5.92) we have 

L - rp ] t  <_ ~ <_ Lrp + 2 -t - u lp ] t  5.120 

The design of the selection function and an example of execution is left as an 

exercise. 
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5~ Concluding Remarks 
As for other digital modules, the design of a digit recurrence division unit is a 
trade-off among several characteristics, such as execution time, area, and energy. 
We have shown that the main parameters to consider in this trade-off are the 
radix of the quotient digit obtained each iteration and the quotient-digit set. We 
have given some example implementations that show the speedup achieved for 
higher radices, as well as the increase in area. 

A higher radix reduces the number of iterations, but complicates the selection 

function and the multiplication of the divisor by a quotient digit. The use of a 
redundant quotient-digit set simplifies the selection function because it allows 
the utilization of a truncated residual and a truncated divisor. Moreover, to have 
a fast addition, a redundant residual is used. 

The direct implementation of the selection function is practical for radices 
up to 8. For radix 16 an implementation of interest uses two overlapped radix-4 
stages. For higher radices, prescaling of the divisor and selection by rounding 
provides a good speedup with a reasonable area. 

We have presented a method to design quotient-digit selection functions 
and given some examples. The method can be applied to other radices, quotient- 
digit sets, and residual representations. It is also the basis to the implementation 
of other digit recurrence algorithms, such as square root and reciprocal square 
root. 

Other methods to perform the division operation are presented in Chapter 

7, together with some comparison comments. 

5~ 

5 , 1  

Exercises 
E x a m p l e s  o f  e x e c u t i o n  

6 [Radix 2 and radix 4] Divide 126 • 2 -s by ~ and produce an 8-bit result, using 
the following algorithms: 

�9 radix 2, qj E {0, 1}, conventional (nonredundant) residual 

�9 radix 2, qj E {-- l,  0, 1 }, carry-save residual 

�9 radix 4, qj E {--2, -- 1, 0, 1, 2}, carry-save residual 
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5.2 

5.3 

[Radix 16] For x -- 0.1001001110100101 and d -- 0.110 perform two iterations of 
the division recurrence using a radix-16 implementation with overlapped radix-4 

stages. 

[Scaling and selection by rounding] For x -- 126 x 2 -8 and d -- 6 x 2 -3 
produce an 8-bit quotient using a radix-16 algorithm with scaling and selection 

by rounding. For the scaling factor M use 1.3125. 

5.4 

5.5 

5.6 

5.9' 

O n - t h e - F l y  C o n v e r s i o n  

[Example of conversion] Perform the on-the-fly conversion of the signed-digit 

result 1211100i2, where the digit set is {-2,  - 1 ,  0, 1, 2}. 

[Conversion for digit set {0, 1, 2}] Develop an algorithm to convert on-the fly a 
radix-2 positive redundant representation with digit set {0, 1, 2 } into conventional 

representation. 

C h a r a c t e r i s t i c s  o f  t h e  I m p l e m e n t a t i o n  

[Delay and area] For a 24-bit division unit give expressions for the delay and 
area in terms of delay and area of the component modules, for the following two 

c a s e s :  

(a) Radix 2, carry-save residual 
(b) Radix 4, carry-save residual and digit set [ - 2 ,  - 1 ,  0, 1, 2} 

[Retiming the recurrence] An alternative implementation of digit recurrence 
division (for instance, radix 4 with carry-save adder) is to retime the recurrence so 
that the quotient-digit selection is performed at the end of one cycle and the digit 
used in the next. This retiming creates two slices in the implementation: a most- 
significant slice, which includes the quotient-digit selection, and the rest. This 
might reduce the critical path by eliminating the need of a buffer to distribute the 
quotient digit to the most-significant slice. It also allows this slice to be optimized 
for delay, and the other part optimized for area and/or for energy dissipation. 

To illustrate the characteristics of this retiming, design a radix-4 implemen- 
tation for 54 bits using, in addition to the components described in this chapter, 
a faster variety with a delay that is 20% smaller. Also assume that the buffer 
required for the most-significant slice has a delay of 40% of the one used without 
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5 . 8  

w  

retiming. After you optimize for speed, use the standard modules in the noncritical 

components to reduce area and energy (since these components have a smaller 

area and consume less energy than the faster variety). Determine the delay of a 
cycle and compare with the non-retimed version. 

[Overlapped radix-2 stages] Consider a radix-2 division algorithm with the 

quotient-digit set {-1,  0, 1} and redundant residuals in carry-save form. The 

quotient-digit selection is performed using the selection constants as described in 
the text. The cycle time is 

tcyde = tqsel + tbuff q- tmux -+- tHA -+- treg = 4 + 1 + 1 + 1 + 2 = 9tg 

To reduce the total time, we propose to obtain all three possible values ofqj+2, cor- 

responding to qj+l  = - 1 ,  O, 1, and select the correct one once qj+l  is 
known, all of this in the same cycle. The next residual is obtained as 

w[j  + 2] = 2(2w[j] - q j + l d )  - qj+2d 

In other words, two quotient bits are generated per cycle. 

(a) Design the network for the selection ofqj+l  and qj+2. Assume that the 

selection function is already implemented; that is, you can use the module 
that produces a quotient-digit based on the (4 + 4) MS bits of the 

redundant residual. Show all details; in particular, show the details of the 
conditional selection. 

(b) Design the network to produce the next residual (assume 8 bits in the 
fractional part). Show all details. 

(c) Determine the cycle time of the new scheme and compare the total time to 
obtain a quotient of 8 bits with the scheme described in the text. Discuss 
your findings. 

[Gate-level design] Design a radix-2 12-bit division unit at the gate level. You 
may use full-adder, multiplexer, register modules, and individual gates. Provide 
necessary design details to establish delays of critical paths. Use a carry-save adder 

to form residuals in redundant form. Assume that the dividend and divisor are 

positive fractions. Give an estimate of the overall delay in gate delay units (tg) and 

cost in number of different modules. Assume that a full-adder has a delay of 4tg; 

a 3-1 multiplexer, 2tg; and a register load, 3tg. 
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5 . 1 0  

5 . 1 1  

Integer Division 

Perform the integer division ofx = 120 by d = 9 using a radix-4 algorithm with 
residual in carry-save form. 

Give an algorithm that combines fractional division and integer division. Show 
the combined implementation, highlighting the modules that are required by the 
inclusion of integer division. 

5 . 1 2  

5 . 1 3  

5 . 1 4  

5 . 1 5  

5 . 1 6  

Quotient-Digit Selection 

[Using signed-digit adder] Determine a quotient-digit selection function for 
a radix-2 algorithm using a signed-digit adder. Show the execution for x -- 
128 • 2 -8 and d - - 6  • 2 -3 (obtain a quotient of 8 bits). 

[Radix 4 with p - 1] Determine a good quotient-digit selection function for 
a radix-4 division algorithm with p - 1 and carry-save residual. Give only the 
portion for selection ofqj+l - 2, but use a value of 8 and t suitable for the whole 
selection function. 

[Restricted divisor range] Determine a good quotient-digit selection function for 
2 a radix-4 division algorithm with p - ~ and carry-save residual, if the divisor is 

restricted to the range [63 1) Use a value of 6 and t suitable for this restricted ~-~, �9 

range. 

[Radix-8 selection] Using selection constants, determine the minimum number 
of bits of the residual estimate to perform radix-8 division (p -- 1) with the 

1 1 ) a n d ( b ) 3  5 divisor in the range (a) [2, [~, ~), for nonredundant residuals. Draw 
the corresponding P-D diagrams (first quadrant only). 

[Divisor range [1, 2)] Consider a radix-4 division algorithm with the quotient- 
1 digit set {-2,  . . . ,  2 }, the divisor in the range [ 1,2) (instead of the usual [ 2, 1) ), and 

nonredundant residuals. The quotient-digit selection is performed using selection 
constants. 

(a) Determine the size (the number) of the divisor intervals. 
(b) Determine the best selection constants m2(i). Show details of your 

derivations. What is the total number of bits needed to select qj+l -- 2? 
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5 .17  

5 . 1 8  

1 How does it compare with the case ~ < d < 1 in which three bits ofd and 
six bits of the shifted residual are required? 

(c) Summarize the effect of using the divisor range [1, 2). Is it a good idea? 

[Scaling and selection by rounding] Consider a high radix r digit recurrence 
division method. Assume that residuals are in nonredundant form. The quotient 
digit q j+l s { - a ,  . . . ,  a }, a < r - 1, is selected as the integer part of the rounded 
shifted partial residual. That  is, 

qj+l -- integer(rw[j] + 0.5) 

For convergence, such an algorithm requires that the divisor be in the range 

l < d < l + ~ ,  f l~_0 

(a) Determine the range of the divisor necessary for the convergence of the 

method. That is, determine ft. Make sure that [qj+l[ ~_ a. 
(b) Discuss a possible implementation and its cost/performance advantages 

and disadvantages relative to a fast radix-2 division algorithm. 
(c) Illustrate the method for r - 100, dividend x - 0.83703960, and divisor 

d -- 1.00827040 by finding the first three radix r quotient digits. 

Consider a radix-4 digit recurrence division algorithm with the residual 
r e c u r r e n c e  

w[j  + 1] = 4 w [ j ] -  qj+ld 

and divisor range [1, 1). 

(a) Show that it is possible to perform division using the quotient-digit set 
{ - 3 , - 1 ,  1,3}. 

(b) Under what conditions is (a) true? 
(c) How does the division algorithm in (a) compare with an algorithm using 

the digit set {-2,  - 1 ,  0, 1, 2}? What are the trade-offs? 

5~ Further Readings 
Division methods for hardware implementation were considered in the early 
literature as direct mappings of the paper-and-pencil method for long division in 
radix 2. The two main algorithms used, restoring and nonrestoring division, are 
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reviewed in Chapter 1. These algorithms are slow, and subsequent research led to 
a variety of methods for the design of fast dividers. One of the earliest discussions 
of digit recurrence division methods and implementation aspects appeared in 
Robertson (1957, 1964). Early literature on division includes survey articles by 
Reitwiesner (1960), Garner (1965), and Tung (1972). Parts of this chapter are 
based on the monograph by Ercegovac and Lang (1994), which presents an in- 
depth study of digit recurrence methods for division and square root. 

SRT Division 

The pioneering radix-2 division algorithm with the redundant quotient-digit set 
1 {-1, 0, 1 } and comparison constants +3 was proposed independently by Cocke 

and Sweeney (1957), Robertson (1957), and Tocher (1958) and named SRT division 
after Sweeney, Robertson, and Tocher. A similar algorithm is also discussed in 
Nadler (1956). Since the main objective in the early days was to reduce the number 
of costly additions by maximizing the frequency of zero quotient digits, analysis 
of the average number of consecutive zeros in the quotient was studied in great 
detail (Freiman 1961; Shively 1963; Robertson 1970). Some improvements to 
the SRT method leading to an increased number of zeros in the quotient are 
presented in MacSorley (1961), Wilson and Ledley (1961), and Metze (1962). In 

1 Robertson (1960), a variant of the SRT method with constants + a allows the use of 
a truncated redundant shifted residual avoiding full-precision carry-propagation 
in the adder. Although developed for radix 2, the term SRT is often used for 
division with radices greater than 2. 

Redundant Quotient-Digit Set and Residual 

A method with a redundant quotient-digit set for higher-radix nonrestoring di- 
vision is discussed in Robertson (1958). The method uses redundancy to simplify 
the quotient-digit selection function and allow the use of estimates of the partial 
remainders and the divisor. The problem of selecting quotient digits was stud- 
ied in Robertson (1965) and later extended in Atkins (1968, 1970a) to a general 
formulation of the quotient-digit selection based on short-precision estimates of 
the scaled residual (shifted partial remainder) and of the divisor. The original 
treatment of graphical representation of the division process and the selection 
problem was introduced by Robertson (1958, 1964, 1965) and further developed 
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by Atkins (1968, 1970a). There are a number of studies of the derivation and 
complexity of the quotient-digit tables (Atkins 1968, 1970a; Paal 1973; Tan 1978; 
Bushard 1983; Ercegovac and Lang 1994; Burgess and Williams 1995; Oberman 
and Flynn 1998). History of research in higher-radix nonrestoring division until 
1975 is summarized in Atkins (1975). 

Quotient Conversion 

On-the-fly conversion of redundant into conventional representations was intro- 
duced in Ercegovac and Lang (1987a) and its combinational alternatives described 
in Ercegovac and Lang (1986, 1990a) and Ciminiera and Montuschi (1993b). A 
reduced-area on-the-fly conversion scheme is reported in Takagi and Horiyama 
(1999). 

Divider with Stages 

The idea of implementing higher-radix division as a composition of lower-radix 
stages has been used in the design of the Illiac III arithmetic unit (Atkins 1970b), 
where a radix-256 quotient digit is obtained from four radix-4 division steps. 
Radix-16 implementation using overlapping of stages is developed in Taylor 
(1985) and for radix 8 in Fandrianto (1989) and Prabhu and Zyner (1995). A 
self-timed division scheme with overlapped stages is described in Williams and 
Horowitz (1991a) and Williams (1991). 

Radix-8 Divider 

A direct radix-8 implementation is presented in Ware et al. (1982). To reduce 
the step time, conditional residual generation is done for all eight possible values 
of the quotient-digit. Nannarelli (1999) provides a set of selection constants for 
radix-8 division. In Carter and Robertson (1990) a direct radix-16 implementation 
is presented using a signed-digit adder array. 

Design and Performance 

Design and performance issues in dividers are discussed in Zurawski (1980), 
Oberman (1996), and Oberman and Flynn (1997). The area and performance 
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of various types of division algorithms, including the digit recurrence type, are 
discussed in a survey paper (Soderquist and Leeser 1996). Implementations of 
radix-2 and radix-4 SRT dividers with carry-save adders are described frequently 
in the literature. Many sequential and combinational (array) alternatives have 
been investigated and implemented (for example, Taylor and Patterson 1981; 
Zurawski and Gosling 1981; Ercegovac et al. 1987; Bose et al. 1987; Zurawski and 
Gosling 1987; Peng et al. 1987; Montuschi and Ciminiera 1992; Harris et al. 1997). 
Dividers with signed-digit adders are reported in Avi~ienis (1961), Tung (1968, 
1970), Takagi (1987), Kuninobu et al. (1987), and Carter and Robertson (1990). A 
systematic approach to design array dividers implementing the SRT method is 
presented in McQuillan (1992) and McQuillan and McCanny (1994). 

Overredundant Quotient-Digit Set 

The use of overredundant quotient-digit sets in the design of digit recurrence 
dividers is reported in Montuschi and Ciminiera (1994a) and applied in a radix-8 
divider in Montuschi and Ciminiera (1994b). A radix-4 division scheme with 
overredundant digit set and prescaling is discussed in Montuschi and Ciminiera 

(1991a). 

Combinational Divider 

Combinational linear arrays for radix-2 division have been frequently considered. 
Early schemes, often called cellular or iterative dividers, correspond to unfolded 
nonrestoring division (Deegan 1971; Gardiner and Hont 1972; Agrawal 1979). 
Cappa and Hamacher (1973), Gaviland and Hamacher (1973), and Williams and 
Hamacher (1981) describe linear arrays of carry-save adders with short CLAs 
producing estimates of the residual for the quotient-digit selection. A VLSI im- 
plementation of such an array divider is reported in Tsunekava et al. (1998). 
Two's complement multiplication-division arrays are analyzed in Kutsuwa et al. 
(1987). Pipelined division arrays are discussed in Deverell (1975). Combinational 
VLSI implementations of radix-2 division with residuals in carry-save form are 
described in Zuras and McAllister (1986) and Vanmeulebroecke et al. (1990). 
Linear array dividers using signed-digit adders are discussed in Tung (1970) and 

Soceneantu and Toma (1972). 
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Division with Scaling of Operands 

The idea of scaling operands to make the quotient-digit selection independent of 
the divisor was proposed in Svoboda (1963) and Klir (1963) for a decimal computer. 
The quotient digit is obtained as the most-significant digit of the partial remainder 
and the maximum number of scaling multiplications is 3, with an average of about 
1.8. A standard nonrestoring division recurrence with carry-propagate adder is 
used. This scheme was extended in Tung (1968) to an arbitrary radix with signed- 
digit adder and applied in signed-digit division algorithm. Svoboda's scaling is 
one-sided; that is, the (positive) divisor is transformed into the range 1 + E. A 
generalization of division via transformation of the operands' range is provided 
in Krishnamurthy (1970). An alternative two-sided scaling approach is discussed 
in Ercegovac (1977, 1983). A radix-2 SRT with simplified selection based on 
Svoboda's approach is discussed in Burgess (1991), McQuillan and McCanny 
(1992), and Montalvo et al. (1998). The scaling technique and the radix-4 division 
are considered in Ercegovac et al. (1988), Ercegovac and Lang (1990b), Burgess 
(1994), and Srinivas and Parhi (1995). A VLSI implementation of floating-point 
radix-16 divider with prescaling appears in Inui et al. (1999). 

Division with Prediction 

Quotient-digit prediction with scaling suitable for division with redundant resid- 
ual was presented in Ercegovac and Lang (1985), and implementations for radix-2 
and radix-4 are described in Ercegovac and Lang (1987b, 1989) and Modiri and 
Lang (1988). Quotient prediction without prescaling is discussed in Montuschi 
and Ciminiera (1995). 

Very High Radix Division 

Very high radix methods with prescaling and selection by rounding are reported 
in Ercegovac et al. (1993, 1994) and Montuschi and Lang (2001). Organizations of 
higher-radix division are discussed in Montuschi (1992). In Matula (1991) a radix- 
217 division unit is described, based on scaling the residual (multiplying it by a 
short reciprocal of the divisor) so that digit selection can be done by truncation. 
The unit uses an 18 x 69 rectangular multiplier. 
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Miscellaneous Division Schemes 

Algorithms with skipping over zero quotient bits are discussed in Ligomenides 
(1977), Montuschi and C iminiera (1991 b, 1993), and Mandelbaum (1990). Division 
methods and implementations with speculation of quotient digits are described 
in Cortadella and Lang (1993, 1994), Cornetta and Cortadella (1999), Wey and 
Wang (1999), and Wey (2000). Integer algorithms and implementations can be 
found in Purdy and Purdy (1987), Magenheimer et al. (1988), and Wang et al. 

(2ooo). 

Implementation 

Examples of implementation of dividers in VLSI are Ware et al. (1982), Bose 
et al. (1987), Peng et al. (1987), Moes et al. (1993), Eisig et al. (1993), and Prabhu 
and Zyner (1952). Design and implementation of division suitable for FPGA 
technologies is developed in Louie and Ercegovac (1993, 1994). VLSI layout of 
dividers is discussed in Guyot et al. (1995). 

Variable-Time Divider 

Self-timed and asynchronous dividers are discussed in Williams (1991), Williams 
and Horowitz (1991a, 1991b), Renaudin et al. (1996), and Cornetta and Cortadella 
(2001). Low-power self-timed dividers are reported in Lee and Choi (1996) and 
Won and Choi (2000). 

Online Division 

Digit-serial division schemes (online division) and related literature are discussed 
in Chapter 9. 

Low-Power Dividers 

Design and implementation of low-power dividers for radix 4 are given in 
Nannarelli and Lang (1996,1999a) and for radix 8 in Nannarelli and Lang (1998a). 
Comparison of radix-4, radix-8, and radix-16 low-power dividers is presented in 
Nannarelli and Lang (1999b). Kuhlmann and Parhi (1998) discuss a low-power 
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design of an SRT divider. Nannarelli and Lang (1998b) present power-delay 
trade-offs in the design of digit recurrence dividers. The low-power design of 
division and square root is the subject of a doctoral dissertation (Nannarelli 1999). 

Verification 

Formal verification of implementations of the SRT division is considered in 
Bryant (1996), Clarke et al. (1999), and Ruess et al. (1999). 

Delay and Area Bounds 

Theoretical aspects of time and size complexity of the division operation is 
considered in Beame et al. (1986), where the bounds on the depth of circuits 
are developed. Optimal size of integer division circuits is discussed in Reif 
and "Fate (1989). The area-time optimality of division networks is studied in 
Mehlhorn and Preparata (1987). No practical implementations based on this work 
exist. 
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C H :& F~: :g {g }r : G  Square Root by Digit 
Recurrence 

This method of performing the square root operation is conceptually very similar 

to the method for division discussed in the previous chapter. Consequently, we 

develop the algorithm in a similar fashion, providing less detail since we assume 

familiarity with the developments for division. Table 6.1 gives a summary of the 

main definitions. Moreover, we concentrate on algorithms that use estimates for 

the result-digit selection and redundant addition in the recurrence. 

As in division, the algorithm is presented for fractional operand x and result 

s. For floating-point representation and normalized operand, it is necessary to 

scale the operand to have an even exponent to allow the computation of the result 

exponent. Consequently, 

1 1 
s = x/x-, - < x  < 1, - < s  < 1 6.1 

4 -  2 -  

Recurrence and Step 
Each iteration of the recurrence produces one digit of the result, most-significant 

digit first. Let us call S[j] the value of the result after j iterations, that is, 

J 
S [j ] -- ~ sir -i 6.2 

i--0 

The digit s0 should be 1 for p < 1 to represent a result value greater than p; it 
can be either 1 or 0 for p = 1. 

The final result is then 

S - -  S [ n ] -  t S i  r-i 6.3 
i=0 

331 
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Operand 

Result 

Result after j iterations 

Result-digit set 

Redundancy factor 

Selection interval for sj+l = k 

Estimate of redundant shifted residual 

Selection constants 

Result estimate 

1 ~ < x < l  
1 ~ _ _ _ s < l  

~ i = o S  i T S [ j ' ] =  J - i  

5i E { -a ,  . . . , - 1 ,  O, 1, . . . , a }  
1 p - - a / ( r - 1 )  ~ < p <  1 

Lk [J ] < rw[j ] < U k [j ] 
~" with t fractional bits 

m k (i) with c fractional bits 

S[/'] with 8 fractional bits 

T A B L E 6.1 Summary of definitions. 

and the result has to be correct for n-digit precision; that is, 

IX 1/2 __ ~'1 < r --n 6.4 

The use of absolute value allows positive and negative remainders necessary 

for efficient implementation. We define an error function ~ so that its value after 

j steps (iterations)is 

E[j] -- X 1/2 __ S[j]  6.5 

As in division, since the min imum (maximum) digit value is - a  (a) ,  we get 1 

- p r  - j  < E.b" ] < pr - j  6.6 

Introducing (6.5) in (6.6) and transforming to eliminate the square root operation 

(add S[j] and obtain the square), we get 

p2r-2J - 2pr - j  S[j] + S[j]  2 < x < p2r-2J + 2pr - j  S[j] + S[j]  2 6.7 

Subtracting S[j  ]2 we obtain 

p 2 r - 2 J  --  2pr - j  S[j] < x --  S[j]  2 < p 2 r - 2 J  -[- 2pr - j  S[j] 6.8 

Tha t  is, S[j] is computed such that x - S[j]  2 is bounded according to (6.8). 

We now define a residual (or scaled partial remainder) w so that 

w[j] - rJ(x - S[j'] 2) 6.9 

1. As in division, can make < for p < 1. 
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From (6.8) the bounds on the residual are 

-2pS[ j]  + p2r-J < w[j] < 2pS[j] + p2r-J 6.10 

and the initial condition is 

w [ 0 ] - - x - S [ 0 ]  2 = x - s 0  f o r s 0 - - - 0 o r l  6.11 

In terms of the residual we obtain the recurrence 

2 - ( j+ l )  w[j  -+- 1] -- rw[j] - 2S[j]sj+l - Sj+lr 6.12 

Expression (6.12) is the basic recurrence on which the square root algorithms 
are based. The result digit is chosen, in a way that satisfies the bounds (6.10) for 
w[j  + 1], by the function 

A 

s j+l -- SELsQR(y'~[j], S[j]) 6.13 
A 

where ~[./'] and S[j] are estimates ofrw[j] and S[j], respectively. 
Each square root iteration consists of four subcomputations (Figure 6.1(a)): 

1. An arithmetic left shift ofw[j]  by one position to produce rw[j]. 

2. Determination of the result digit s j+l using the result-digit selection 

function SELsQR. 

3. Formation of the adder input 

2 - ( j+ l )  F[j] -- - ( 2 S [ j ] s  j+l -Jr- S j+lr  ) 6.14 

4. Addi t ionofF[ j] torw[j] toproducew[j  + 1].Asindivision, tohaveafas t  
iteration, a redundant adder is used for this addition. This adder can be of 
the signed-digit or of the carry-save type. Since the digits of S[j ] are 
produced in signed-digit form, if a carry-save adder is used in the 
recurrence, it is necessary to convert the signed-digit form to two's 
complement form by means of a variant of the on-the-fly conversion. 

The four subcomputations are executed in sequence as indicated in the timing 
diagram of Figure 6.1(b). Note that no time has been allocated for the arithmetic 
shift since it is performed by suitable wiring. Moreover, the relative magnitudes 
of the delay of each of the components depend on the specific implementation. 

As in division, different specific versions are possible, depending on the 
radix, the redundancy factor, the type of representation of the residual, and the 
result-digit selection function. 



334 c~,~:~::~v~!i:~: 6 Square Root by Digit Recurrence 

wU] 
(present residual) ~_ 

! ! 

' ARITHMETIC LEFT SHIFT ' 
i i 
i i 

rwU] 
(shifted residual) 

rw[j] 

ADDITION 

w[j+l]  1 
(next residual) 

sU] 

A 

S[j] 

SELsQR [ 

l ~j§ 

F GENERATION 

I F[j] 

I 

I 
sj+ 1 ', F[j] Redundant 

i Selection, addition 

I t Result update 
(on-the-fly) 

| . ~  

Recurrence step time 

(b) 

RESULT CONVERSION I < sj+ 1 

S[j  + 11 

(a) 

F ! G U R E 6.1 (a) Components of square root step. (b) Timing. 

C~ o 2 Generation of  Adder Input F [j] 
As part of the implementation of the recurrence (6.12), it is necessary to form the 

adder input F with value 

2 - ( j + l )  6.15 F[ j ]  -- - 2 S [ j ] s  j+l - s j+lr 

so that 

w [j + 11 -- rw[j  ] + F [j ] 
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Since the digit of the result is produced in a signed-digit form, the partial result 
S[j] is also in this form. Depending on the type of adder, S[j] has to be converted 
to adapt to the adder. In particular, for the case of a carry-save adder the input 
F has to be in two's complement representation. The conversion is done on-the- 
fly using a variation of the scheme presented in Chapter 5. It requires that two 
conditional forms A[ j]  and B [j] are kept, such that 

A[j] = S[j] 6.16 

B[j]  = S[j] - r - j  6.17 

These forms are updated with each result digit as follows: 

A[j] + S j + l  r-(j+l) 

A [ j  + 1] -- B[j]-Jr-(r - - [S j+ l l ) r  - ( j+l)  

if  S j+l  ~ 0 

otherwise 
6.18 

A[j] + (Sj+l - 1)r -(j+l) 

B [ j  + I] -- B[ j]  + (r - l - Jsj+l])r -Ij+l) 

if Sj+l > 0  

otherwise 
6.19 

In a sequential implementation this conversion requires two registers for A and B, 
appending of one digit, and loading. For controlling this appending and loading, 
a shift register K is used, containing a moving 1. This implementation is shown 
in Figure 6.2. 

In terms of these forms, the value of F is given by the following expressions. 

F o r s j + l  > 0: 

2 - ( j+l)  F[j] = - 2 S [ j ] s j + l  -- Sj+l r • - (2A[j]  + Sj+lr- (J+l) )s j+l  6.20 

For  s j + 1 < 0." 

2 - ( j+l)  F[j] = 2S[j]lsj+l] - 6"J+ 17"2 -(j+l) ____ 2(B[j] +r-J ) l s j+ l [  -- Sj+lr 

= (2B[j] + (2r - I S j + l l ) r - ( J + l ) ) l S j + l l  

Note that these expressions are implemented by concatenation and multiplication 
by one radix-r digit. The implementation is especially simple for radix 2 and radix 
4 (with digit set {-2,  . . . ,  2}), as shown in the examples of Section 6.3.1. 
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K REGISTER I 

LOAD/APPEND 

F GENERATOR 

F[j] 

I 

LOAD/APPEND 

B REGISTER 

F I G U R E  6 . 2  Network for generating F. (Adapted from (Ercegovac and Lang, 1990).) 

Overall Algorithm, Implementation, and Timing 
The  overall algorithm is shown in Figure 6.3 and its implementation at the block- 

diagram level in Figure 6.4. The  cycle time is 

Tcycle = tSEL + tF-CEX + tADD + tload 6.21 

(5,,,$. 1 Examples  of Implementa t ions  

We now describe two example implementations, one radix-2 and one radix-4. 

The  corresponding selection functions are derived in Section 6.6. 

Radix-2 Square Root with Carry-Save Adder 

In this case the quotient-digit  set is { -1 ,  0, 1 } with p = 1. We choose to make 

s 0 = 0, resulting in the initial condition 

w[O] = x 
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1. [Initialize] (all assignments in parallel) 

w[0] + - - x - s 0 ; s 0 = 0 f o r l 3 =  l a n d s 0 - -  l fo r /3  < 1 

A[0] +-- s0.000...000; 

B[0] +-- (1 - s 0) .000...000; since B[0] = A[0] - 1 

K[0] +- 0.100...000; 

2. [Recurrence] (all assignments in parallel) 

f o r j  = 0 . . . n  
A 

sj+  - S E L E C T  [j 1, S Ij ]/ 

F[j] = f (A[j] ,  B[j], Sj+I) 
w[ j  + 1] + - r w [ j ] +  F I j]; 

A[j + 1] +--ga(A[j] ,  B[j], K[j], S j + l ) ;  

B[j + 1] + - g b ( A [ j ] ,  B[j], K[j], Sj+l); 

K[j + 1] +-- shif t-r ight(K[j  ]) 

end for 

3. [Termination] Correct result (same as for div#ion) 

F ! G U R E 8,S Square  root a lgori thm. 

(expressions (6.20) 

(expressions (6.18)) 

(expressions (6.19)) 

Since sj E { -  1 0, 1 } we have s 2 _ Is j] and hence the recurrence is j 

w[j + 1] -- 2 w [ j ] -  2S[j]sj+l -- 2-~J+l)[Sj+l] 6.22 

resulting in 

F[j] - -(2S[j]sj+l + 2-~J+l))lsj+ll 6.23 

As discussed before, we use the conditional forms A and B for the conversion 
of S[j ] to two's complement representation and for the formation of F [j ]. How- 
ever, since in this case the only nonzero values ofs j+ l  are 1 and - 1 ,  we define 
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F [j ] Value Bit-String 

F~U] 
F_][j] 

-2S[1 ]  - 2 -( j+ l )  

2 S [ 1 ] -  2 -( j+ l )  
= 2 S [ j ] -  2 - ( j - l )  -+- 3 x 2 -( j+ l )  

{2S[j]}, 1, l j+l,  0, . . . ,  0 

{ 2 S [ j ] -  1}, 1, l j+l,  0, . . . ,  0 

T A B L E  6 .2  F1 and F-1 forms for radix 2. 

j+I ~] 
-I 
sU] 

A, B, K REGISTERS 
AND 

CONTROL 

F[j] 

x (argument) 1 

I 
A 

su] 

I lw j+ll 

s (result) 

w REGISTERS 

rwU] 

\ 

1 
REDUNDANT ADDER I 

w[j+ 1] 

SELsQR 

l 
sj+1 

FIGURE 0.4 Block diagram of digit recurrence square root scheme. (Adapted from 
Ercegovac and Lang (1990).) 

F1 and F-1 so that 2 

F1L/'] if s j + l -  1 

F [ j ]  - -  0 if s j+  1 -- 0 

F - I [ j ]  i f s j + l  - -  - 1  

6.24 

Table 6.2 describes the values and the corresponding bit-strings of the F1 and F-1 

forms. In this table, {2S[j]} is the bit-string produced by the bit-complement of 

2. In this case, A and B are used only for the conversion of S[j]. 
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1 

0 

- 1  

Sj+l FI[/" + 1] 

(X, 0, 1, l j+2,  0, . . . ,  0) 

(X, 1, 1, l j+2,  0, . . . ,  0) 

(Y, O, 1, l j+2,  O, . . . ,  O) 

F-I[j + 1] 
m 

(X, O, 1, l j+2,  O, . . . ,  O) 

(Y, 1, 1, l j+2,  O, . . . ,  O) 

(Y, 0, 1, l j+2,  0, . . . ,  0) 

TABLE 6.3 Updat ing  ofF1 and F-1 forms for radix 2. 

EXAMPLE 6.1 

2S[j]  in radix-2 conventional representation, and {2S[j] - 1} is the bit-string of 

2(S[j]  - 2-J) .  The subscript of l j+] indicates that the corresponding 1 is in the 

( j  + 1) th position. 

The bit-strings FI[j] = (X, 1, l j+l ,  0 , . . . ,  0) and F-I[j] -- (Y, 1, l j+l ,  
0, . . . ,  0) are updated according to Table 6.3. The initial conditions are FI[0] = 
-2S[0]  - 2 -1 = - 0 . 5  = 111.1 and F_I[0] = 2S[0] - 2 -1 = - 0 . 5  = 111.1. 3 

The updating of the registers is controlled by the control register K with 

contents 

K F ]  = (1, 1, 1, . . . ,  1, l j ,  0, . . . ,  0) 6.25 

with the initial condition K[0] = 1111.0000...0. 

The result-digit selection developed in Section 6.6 is 

1 i f 0 < ~ ' < 3  

s j + l -  0 i f ~ ' - - 1  6.26 

- 1  i f - 5  < 7 < - 2  

where ~" is an estimate of 2w[j]  with t -- 0 fractional bits. 

We  show an example of execution of the radix-2 a lgor i thm for x = 

0.10110111 in Figure  6.5. �9 

Radix-4 with Carry-Save Adder 

We develop the radix-4 case with carry-save adder and result-digit set { -2 ,  - 1 ,  

0 ,1 ,2 / .  

3. The three integer bits are needed since ~" requires four integer bits, so w[j + 1] requires 
three integer bits. 
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2w[0] § 0001.01101110 

0000.00000000 

F1 [0] 111.10000000 

A 

y - - 1 S l - - I  

s[o]  - o 

s [ 1 ] - o . 1  

w[1] 110.11101110 

010.00000000 

2w[1] + 1101.11011100 

0100.00000000 

F111] 110.11000000 

A 

y - - 1  s2 - -1  S[2]--0.11 

w[2] 111.00011100 

001.10000000 

2w[2] + 1110.00111000 

0011.00000000 

F 1 [2 ] 110.01100000 

A 

y - - 1  s3 - -1  S[3] = 0.111 

w[31 011.01011000 

100.01000000 

2w[3] + 0110.10110000 

1000.10000000 

F_113] 001.1011000 

A 

y - - 2  S 4 - - 1  S[4] = 0.1101 

w[4] 111.10000000 

001.01100000 

2w[4] + 1111.00000000 

0010.11000000 

F114] 110.01011000 

A 

y - - 1  s5 - -1  S[5] -- 0.11011 

w[5] 011.10011000 

100.10000000 

+ only three integer bits in the recurrence because of the range of w [j ]. 

F I G U R !~ S,S Example  of  Radix-2 a lgor i thm execution. 
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F[j] 

$ j + l  

0 

1 

2 

- 1  

- 2  

Value 

(in terms of S [j ]) 

0 

- 2 S [ j ]  - 4  -(j+l) 

-4S[j] - 4 • 4 -~j+l) 

2S[j] - 4 -~j+~) 

4 S [ j ] -  4 • 4 -(j+l) 

Value (in terms of 

A[j ] and B[j ]) Bit-string 

0 
-2A[ j ]  - 4 -(j+l) 

- 4A[ j ]  - 4 • 4 - ( j + l )  

2B[j] + 7 • 4 - ( j + l )  

4B[j] + 12 • 4 - ( j + l )  

T A B I. E 0.4 Generation of F [j ] for radix 4. 

0 . . .  00000 

h - . . . a a l l l  

~- . . .Yl l00 

b . . . b b l l l  

b . . . b l l 0 0  

The recurrence for this case is 

w[ j  + 1 ] -  4 w [ j ] -  (2S[j]sj+l +4-1J+l)s2 j+l )  - 4w[j]  + F [ j ]  6.27 

The adder input F [j] is formed as discussed in Section 6.2. The resulting bit- 

strings are given in Table 6.4, where a. . .aa  and b. . .bb  are the bit-strings 

representing A[j]  and B[j], respectively (shifted one position). As in the radix-2 

case, the trailing location of the string is controlled by the moving 1 of register K. 

The result dig~ is a function of ~', the carry-save rw[j] truncated to four 
fractional bits, and S[j ], the partial result also truncated to four fractiOnal bits. As 

in division, the selection function is defined in terms of selection constants ink(i) 
such that 

Sj+l - -  k if mk(i ) < ~ < mk+l(i) and S'[j] = 2 -1 + i • 2 -4 6.28 

A selection function is given in Table 6.5. Since the selection constants are all 
multiples of 2 -3, only three fractional bits of~" are used for selection, as shown in 
Figure 6.6. To use the same selection function for all values of j ,  the following 

transformation is performed: 

. . . .  (1, 1, 0 , - )  if ( j  -- 0) 

(S1, 32, 33, $4) - -  (1, 1, 1, 1) if(Ao -- 1) and (j :fi 0) 6.29 

(1, A2, A3, A4) i f ( A o - - 0 )  a n d ( j  :fi0) 

where (Ao, A1, A2, A3, A4) are the most-significant bits of A, the conventional 

representation of S[j]. Since for j = 0, A0 = 1 and A 2 - -  A 3 ~ A4 - -  0, we 

obtain the implementation of Figure 6.6. 
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i 0 1 2 3 4 5 6 7 
~" 8 9 10 11 12 13 14 15 
S j 1-"6 1-'-6 1-"6 1-"6 1-'-6 1-'-6 1-'-6 1-'-6 

m2(i) + 

ml(i)  + 

too(i)  + 

re_l(/) + 

12 

4 

- 4  

--13 

14 

4 

- 5  

-14  

16 

4 

--6 

--16 

+: real value is given value divided by eight. 

16 

4 

- 6  

- 1 7  

18 

6 

- 6  

-18  

20 

6 

- 8  

- 2 0  

20 

8 

- 8  

-22  

22 

8 

- 8  

-23  

l A B L E 8 . s  Selection function for radix-4 square root. 

MS part of 4w[j] 

I 
SELsQR ' 

>..., 

A 0 

Step j > 0 

A 

A2 ^ 

A3 ^ 

A4 ~ $4 

. . . . . .  

t 8 

CPA 

Y 

_1 

~1 COMBINATIONAL 
NETWORK 

f 3 

~j+l 

F I G U R E  8.0 Selection function for r = 4. (Adapted from Ercegovac and Lang  (1990).) 

The overall algorithm follows directly the algorithm given earlier in this 

chapter with r -- 4, and it is not repeated here. The cycle time is 

Tcycle - -  tSEL + 

tF-GEN -Jr- 

tHA+ 

tload 

(8-bit CPA + 10-input q-sel) 

(4-to-1 multiplexer) 

(HA part of [3:2] carry-save adder) 

(register loading) 

This is comparable to the cycle time of a radix-4 division with carry-save adder. 
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w [ 0 ] = x  - 1--1.10110111 

S [ 0 ] -  1 

4w[0] + 1110.11011100 S = . l l 0 1  

0000.00000000 ~ " - - 1 1 1 0 . 1 1 0 - - - 1 0 / 8  S l - - - 1  S[1]--0.11 

F_~[0] + 001.11000000 

w[1] 

4w[1] + 

F2[1] + 

11.00011100 

01.10000000 

1100.01110000 S - - . l l O 0  

0110.00000000 ~ ' - -0010 .011- -19 /8  s 2 - - 2  

100.11000000 

S [ 2 ] -  0.1110 

w[21 

4w[2] + 

F_212] + 

10.10110000 

00.10000000 

1010.11000000 S - - . l l l O  

0010.00000000 "~ ' - -1100 .110- - -26 /8  s 3 = - 2  S[3]--0.110110 

011.01110000 

w[3] 11.10110000 

00.10000000 
+ only two integer bits used in recurrence, because the range of [w[j][ < 2. 

F I G U R E  6.7 Example of radix-4 algorithm execution. 

E X A M P L E  6 .  9 We give an example of execution of the radix-4 algorithm for x = 
0.10110111 in Figure 6.7. �9 

6~ Combination of Division and Square Root 
Since the recurrences of the square root and division operations have many simi- 
larities, it is possible to implement a combined unit that performs both operations. 
We now describe such a unit for radix 2; a generalization to higher radices is pos- 
sible. Table 6.6 shows the operand and result ranges. 
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Operation Operand 1 Operand 2 Result 

Division 

Square root 

Dividend 
1 1 .  ~ < x < ~  

] 1 t ~ < x <  

Divisor 
1 g_<d < 1  

Quotient 
] 
~ < q < l  

1 2 < s < l  

* Because of initial condition. 
t To accommodate odd exponents. 

TA B L E 6 . 6 0 p e r a n d s  and results ranges for combined unit. 

Division Square Root 

Recurrence 

wU +1]= 

Estimate 

fraction bits t 

Selection 

m l  

m0 

m 1 

2w[j] dqj+] 
Iw[j]l < 1 

w[0] = x/2 

2w[j] s 2 2-(J+2)  S[j]sj+] j+l 
Iw[j]l < 1 

w[0] = x/2 

T A B L E  6.7 Algorithms. 

Since the bound of the residual for square root is about twice that of division, 
to combine both recurrences it is convenient to modify the residual for square 

root so that 

W [j ](new) -- 2 - l w  [j ](old) 6.30 

After making this modification (and calling w[j](new) just w[j]), we get the 

algorithms described in Table 6.7. From this table we see that we can implement 

a generic recurrence of the form 

w[j + 11 = 2w[j] + F[ j ]  6.31 
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Division Square Root 

U j + l  

FI[j] 

F_x[j] 

q j + l  

- d  

d 

S j + l  

- S [ j ] -  2 -/j+2) 

S [ j ] -  2 -(j+2) 

T A B  L E 6 .8  Correspondence. 

where 

FI[j]  if u j+l = 1 

F[ j ]  -- 0 if u j+ 1 - -  0 6.32 

F - I [ j ]  if u j+l - - - - 1  

and F1 [j ], F-1 [j ], and u j +1 are related to the operations by the correspondence of 

Table 6.8. Moreover, the result-digit selection function is u j+ 1 - -  S e l (~ ) ,  where 

~" is an estimate of 2w[j]  obtained by assimilating the carry-save representation 

up to one fractional bit. From Table 6.7 we see that the selection function can be 

made to be the same for both operations (and corresponds to that described for 
division in Chapter 5). 

The generation of the inputs to the adder is performed as described in this 
chapter for square root, 4 whereas for division the registers have to be loaded as 

indicated by the correspondence of Table 6.8. Conversion of the result is per- 

formed as described in Chapter 5. Figure 6.8 shows a block diagram and the cycle 

time of the combined implementation. 

Integer Square Root 
Integer square root (for unsigned operands) has an integer operand 0 < x < 2 n - 1 
and produces an integer result s such that 

s -- [x 1/2] 6.33 

To use the staircase selection functions discussed in this chapter, it is necessary 
1 that the result be in the range [5, 1). This is achieved by shifting the operand m 

4. Because of the modification of the residual for square root, now the values of F [j ] are one 
half of those reported in Table 6.2. 
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D W  

U j + I  

U S ' 

U m 
I 

Result digit in SM form: [ 

uj+ 1 = (u s, urn) 

d 
(divisor) 

I - 
El[ j] or d F_I[ j] or d 

-11 MUX 0 .-, enable 

F[j]  

CONVERTER I~ 

Quotient 
or square root 

"j+l 

x/2 
(dividend/argument) 

~ w[ j  +11 
MUX 

l l 
I wo I 

SEL 

~uj+, 
1 ~ (uJ +1=1) 

CSA I_ 
DIV  

w[j+ 1] ~_ 

In division C/n = 1 if uj+ 1 = 1" 

in square root C in = 0 

FIGURE 6.8 Overall implementation of the radix-2 combined unit. (Adapted from 

Ercegovac and Lang (1991).) 

bits (and placing the binary point  on the left) so that  

x *  - -  2 r e x ( 2  - n )  - -  2 - ( n - m ) x  6.34 

p roduc ing  

s*  - -  2 - ( n - m ) / 2 S  6.35 

l * w i t h 2  < s  < 1. T h e n  

s - -  2 ( n - m ) / 2 s *  6.36 

To obtain s f rom s * by shifting, it is necessary that  n - m be even. Consequent ly ,  
1 < X  < 1 .  
4 -- 
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EXAMPLE 6 . 3  

The number of bits of the integer square root is (n - m) /2 .  Consequently, 
the number of iterations required to obtain these bits is 

N I  = [ ( n - m ) / 2 k  ] 6.37 

where r = 2k is the radix of the result digit. 

The result has to be aligned to the integer position. This can be done by 

placing the digits in the correct final position or placing the digits aligned to the 

left (to combine with fractional square root) and then performing a right shift of 

(n - m ) / 2  bits. 

2 We now show an example of integer square root, radix 4 with p - g and 8-bit 

operand. Consider the case x = 27 with binary representation x -- 00011011. 

Since n = 8 is even, we shift m = 2 bits and produce x* --.01101100. 

The  number  of bits of the integer result is (8 - 2)/2 = 3. Consequently, two 

radix-4 iterations are necessary. 

The  radix-4 square root algorithm uses S[0] = 1 and w[0] = x* - 1 = 

1.01101100 (two's complement).  As selection function we use Table 6.5 for 

carry-save representation of the residual. 
The  iterations are as follows (for simplicity we show the residual in con- 

ventional representation): 

w[0] = 11.01101100 

4w[0] = 1101.10110000 

+ F  = 011.00000000 

w [ 1 ] =  00.10110000 

4w[1 ] -- 0010.11000000 

(w[2] not needed) 

S[O]-- 1 

~ " -  1101.1011 S l  - -  - 2  S[1] -- 0.10(0.5) 

~" - -  0 0 1 0 . 1 1 0 0  s2 - -  2 S [ 2 ]  - -  0 . 1 0 1 0  

So, s -- 23(0.101) ---- 101 = (5)10. 

6~ Result-Digit Selection 
We now develop the details of the selection function design. We give examples 

for radix 2 and radix 4. 
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6 , 6 , 1  Selection Intervals 

As in division, two fundamental conditions must be satisfied by a result-digit 
selection: containment and continuity. These conditions determine the selection 
intervals and the selection constants. We now develop expressions for these selec- 
tion intervals. The bounds of the residual w[j]  (called min(w [j ]) and max(w[/" ]) 
below) are defined by (6.10). Note that these bounds depend on j ,  whereas in 
division they are constants. From recurrence (6.12), the interval ofrw[j] where 
s j+l = k can be selected is 

Uk[j] -- max(w[j  + 1]) + 2S[j] k + k2r -(j+l) 

= 2pS[j  + 1] + p2r-(J+l) + 2S[l]k + k2r -(j+l) 
6.38 

Lk[j] -- min(w[j  + 1 ] )+  2S[j] k + k2r -(j+l) 

-- - 2 p S [ j  -J- 1] q- p2r-(J+l) -Jr- 2S[j] k + k2r -(j+l) 

Since S[j + 1] = S[j] + k r-(j+l), we get 

Uk[j] = 2S[j](k + P) + (k + p) 2r-(j+l) 
6.39 

Lk[j] = 2s[j](k - p) + (k - p) 2r-(j+l) 

As in division, variations of Robertson's diagram and P-D plot can be used to 
represent the selection interval bounds. 

The continuity condition 

results in 

Uk_ 1 ~_~ L k 6.40 

(2p - 1)(2S[j] + (2 k - 1)r -(j+l)) > 0 

The overlap between consecutive selection intervals is given by 

Uk_l - L k = (2p - 1)(2S[j] + (2 k - 1)r -(j+l)) 

6.41 

6.42 

As in division, this overlap is used to simplify the selection function. 
Note that the bounds, selection intervals, and the overlap depend on j .  This is 

in contrast to division, in which they are independent of j .  Since now the selection 
intervals depend on three parameters, namely, S [/" ], j ,  and k, the notation becomes 
more complicated. In general, we use parentheses for S[j], square brackets for 
j ,  and subscripts for k; however, we skip any one of these if it is unnecessary 
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6o6o2  

in a particular context. The dependence on j makes the implementation more 
complicated than in division, as discussed later. 

Staircase Selection Using Redundant Adder 

The basic relations that allow the use of estimates of the residual in the result-digit 
selection are identical to those we developed for division in the previous chapter. 
Since in square root the result-digit selection depends on the partial result S[j] 
instead of on the divisor, the corresponding expressions are obtained by replacing 
d by S[j]. Instead of repeating the development of these relations, we ask the 
reader to refer to Chapter 5. On the other hand, some relations are different since 
they depend on the specific form of the recurrence; we develop these relations 
he re .  

Since the use of a redundant adder increases the speed of the implementation 
with a small increase in complexity, we concentrate on this type of implementation. 

We now determine a staircase result-digit selection function using an estimate 
of the partial result and an estimate of the shifted residual obtained by truncating 
the redundant form. 

Estimate of  S [j ] 

The estimate of the result used in the result-digit selection divides the range of 
the result S[j] into intervals, as illustrated in Figure 6.9. Specifically, if 8 is the 

A 

number of fractional bits of estimate S[j ], then the value 

S'[./'] - 2 -1  + i x 2 - 8  0 < i < 2 's-1 - 1 6 .43  

defines the interval Ii. Note that the value of S'[j] for i = 0 is 2 -1, since the 
result is normalized. 

Since the result is being produced one digit per iteration in signed-digit 
form, several alternatives can be used to form the estimate. This is in contrast to 

2-1 

I 0 �9 �9 �9 I i Ii+l , �9 �9 IL_  1 

I I 

2 -1+ i x 2  -8 2 -1+ (i+ 1) x 2  -~ 

( L = 2  ~-1) 

~ S [ j ]  

1 

F I G U R E 6.9 Generic intervals. 
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rw[j] li Ii+1 

m2(i) 

ml(i) 
o o o  

2-1+ ix  2-~ __~ 

i 

i 
! 

! 

! 

! 

i 

r-J 

m2(i + 1) 

m](i) 
i 

I 
000  

2 -1+ (i+ 1) x2  -8 

=- S[j] 

F I G U R E  6.10 Selection intervals obtained by truncating conventional form. 

division, where the estimate is always obtained by truncating the conventional 

representation of the divisor. The alternative considered here uses the truncated 

conventional representation of S[j ], which is obtained by the on-the-fly conver- 

sion. This is similar to the case of division, in which the divisor is in conventional 

representation. Therefore, if S[j] is obtained by truncating S[j] to B fractional 

bits, then as shown in Figure 6.10, the i th interval Ii is defined by 

S'[j] -- 2 -1 + i • 2 -8 < S[j] < 2 -1 + ( i  + 1) • 2 -8 6.44 

However, since S[j ] has j fractional radix-r digits, the upper bound of the interval 

is restricted so that Ii corresponds to 

S'[j] -- 2 -1 + i • 2 -8 < S[j]  < 2 -1 + ( i  + 1) • 2 -8 - r  - j  6.45 

This restriction of the upper limit of the interval is significant for small j .  

Determination o f  the Selection Constants m k ( i ) 

We now summarize the condition required for the result-digit selection, which 

is the same as for division. We then apply it to the square root case. 

Using the estimate of the result, the result-digit selection is described by the 

set of selection constants 

(mk(i) 1 0 <  i < 2 8 - 1 - 1 ,  k E  { - a , . . . , - 1 , 0 , 1 , . . . , a l }  6.46 
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That  is, there is one selection constant per interval and per value of the result 
digit. Using these selection constants, the result-digit selection is defined by 

Sj+I - -  k i f m k ( i )  < ~ < mk+l( i )  and S'[j] -- 2 -1 + i • 2 -~ 6.47 

where ~ is an estimate of the shifted residual rw[j] obtained by truncating the 

redundant form to t fractional bits. 

As discussed in Chapter 5, the use of the estimate by truncation of the re- 

dundant form of y = rw[j] results in the following condition for the selection 

constants: 

A 

m a x ( L k ( I i )  ) < mk( i  ) < m i n ( U k _ l ( I i )  ) 6.48 

Moreover, for the carry-save representation case 5 

A 

u~_~ - [ u ~ _ i  - 2 - , j ,  
6.49 

L ~ - =  [Lkl, 

From these expressions, a feasible result-digit selection requires that 

m i n ( [ U k _ l ( I i ) ] t  ) - m a x ( [ L k ( I i ) ] t  ) > 2 - t  6.50 

Since L k and Uk_l depend on j ,  the iteration index, the selection constants can, 
in general, be different for different j .  

We now apply expressions (6.48) to the square root case. For this, we use the 

expressions (6.39) for the selection interval and expression (6.45) for the definition 

of the interval Ii. Consequently, for k > o, the minimum U is produced at the 
lower end of the interval Ii and the maximum L at the upper end of the interval. 
Therefore, 

m i n ( U k _ l ( I i ) )  -- 2(2 -1 + i • 2-'S)(k - 1 + p) 

+ ( k -  1 + p)2r-(J+l) 
6.51 

m a x ( L k ( I i ) )  -- 2(2 -1 + (i + 1) x 2-a)(k - p) 

+ (k - p ) ( k  - p - 2r)r -{j+a) 

5. For the expressions that hold for signed-digit representation, see Chapter 5 and 
Exercise 6.12. 
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For  k < 0, the m i n i m u m  U is produced at the upper  end of the interval Ii and 

the m a x i m u m  L at the lower end of  the interval. Substi tuting we get 

m i n ( U k _ l ( I i )  ) - -  2(2 -1 + (i + 1) • 2-~)(k - 1 + p) 

+ ( 1  - p - k)(2r  + 1 - p - k ) r  - ( j + l )  

6.52 
max(Lk( / i ) )  -- 2(2 -1 + i  • 2-~)(k - p )  + (k  - P)  2 r - ( j + l )  

These  expressions are used in expression (6.48) to determine  the result-digit 

selection. However ,  since they depend on j ,  a different  selection function might  

result for different j .  To have a single selection function for all j we develop 

bounds  that are independent  of  j .  

For  k > o, in the expression for min(Uk_l  ( I i ) )  the term depending  on j is 

always positive and approaching zero for large j .  Therefore ,  in a bound this term 

can be neglected. Similarly, for m a x ( L  k ( Ii )) the term depending  on j is negative 

(k - p - 2r < 0) so it can also be neglected. 

For  k < o, the same situation occurs for m i n ( U k _ l ( k ) ) ,  but now for 

m a x ( L k ( I i ) ) j  is positive, so it cannot be neglected, and for a bound we have 

to use its m a x i m u m  value (for j - 0). 

T h e  corresponding expressions independent  of  j are as follows. For  k > 0: 

m i n ( U k _ l ( I i )  ) - -  2(2 -1 + i  • 2-~)(k - 1 + p) 
6.53 

m a x ( L k ( k )  ) -- 2(2 -1 + (i + 1) • 2-S)(k - p) 

For  k < O" 

m i n ( U k _ l ( k )  ) - - 2 ( 2 - 1 +  (i + 1) x 2 - ~ ) ( k -  1 + p) 
6.54 

m a x ( L k ( k )  ) -- 2(2 -1 + i  x 2-~)(~ - p) + (k -- P)  2 r - 1  

To determine  if a single selection function is possible, we use (6.50). 6 The  

worst  case is i -- 0 and/~ - - a  + 1, resulting in 

2(2 -~ + 2 - ~ ) ( - a  + p) - 2 ( 2 - 1 ) ( - a  + 1 - p) - ( - a  + 1 - p)2r -1  > 2 -t  

6.55 

6. To simplify the analysis we consider the best case, which occurs when both min(Uk_l ) and 
max( L k) are multiples of 2 -t . 
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This simplifies to 

( 2 p -  1) - ( , o r  - 1)2r -1 > 2 -t + 2 x 2-*(a - p )  6.56 

For r -- 2 (p -- 1), this results in 2 -1 > 2 - t ,  so that a single selection function is 

possible. On the other hand, there is no solution for r > 4 (because the term in 

the left-hand side becomes negative), so that no single selection function for all j 

exists. A possible alternative is to find a value J so that a single selection can be 

used for j > J and then consider separately the cases for j < J .  

For the case j > J ,  the same considerations given before produce the fol- 

lowing. For k > 0 (same as (6.53)): 

m i n ( U k _ l ( I i )  ) - -  2(2 -1 + i  • 2-~)(k - 1 + p) 
6.57 

m a x ( L k ( I i )  ) - -  2(2 -1 + (i + 1) 3< 2-~)(k - p) 

For k < 0 (expression (6.54) replacing --1 by - ( J  + 1) in the last term)" 

m i n ( U k _ l ( I i ) )  - -  2(2 -1 + (i + 1) • 2 - a ) ( k -  1 + p) 
6.58 

m a x ( L k ( I i ) )  - 2(2 -1 + i  • 2-~)(k - p) + (k - p) 2r-(1+1) 

Introducing these expressions in (6.50) (for the worst case i - 0, k = - a  + 1), 

we get (similar to (6.56)) 

( 2 p -  1) - - ( p r  --  1)2r -(1+1) > 2 -t  + 2 • 2-~(a - - p )  6.59 

For specific values of r and p we can determine the values of J ,  t, and 8. These 

are then used to determine a selection function for j > J .  For example, for r = 4 

possible solutions are (a = 2, 8 -- 4, t = 3, J = 3) and (a - 3, 8 = 4, t = 3, and 

J - 1 ) .  
The  case j < J has to be treated separately. A possible solution is to have a 

table lookup to produce S [ J  ] directly from x; that is, obtain the first J digits of 

the result from the table. 7 As we see later in the example for r -- 4, a detailed 

analysis of the cases for j < J eliminates the need for this initial table lookup. 

Finally, the range of ~" for carry-save residual is given by 

[r min(w [j ]) - 2 -t It < ~" < [r max(w [j ]) It 6.60 

where min(w[ j ] )  and max(w[j ] )  are the bounds o fw[ j ] .  

7. In this case, it is possible to obtain an algorithm in which J is not an integer. 
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Selection Function for Radix 2 with Carry-Save Adder 

To obtain the result-digit selection, we begin by obtaining the values of L k and 
U k from expressions (6.39). That is, 

U I [ j ]  ~" 43[.]']--I- 2 - j + l  

U0[j] = 2S[j] + 2 -j-1 

U - l [ j ] - ~ 0  

L I [ j ] - - 0  

L0[j] = -2S[ j ]  + 2 - j-1 

L-I [ j ]  = -4S[ j ]  + 2 -j+l 

6 . 6 1  

We first determine the intervals of S[j ] for the staircase function and the value of 
1 t. As shown in (6.56), a single interval over the whole range 2 < S[j] < 1 exists 

so that the result-digit selection is independent of the result. Since p = 1, it is 
possible to make s 0 = 0, resulting in S[0] = 0. To obtain the selection constants 
according to (6.48), the extreme values are 

( ( ~ ) )  { 2-~ 
min Uo Uo(1) > 

' - 1 

max(El  ( ~ ) ,  E l ( l ) )  -- 0 

min(U_l  ( ~ ) ,  U_I(1)) -- 0 

m a x ( L 0 ( ~ ) ,  L0(1)) -- - 1  

This last value is obtained as follows. We have 

for j = 0  (since S [0] -- 0) 
1 for j > 0 (since S[j] > 3) 

6.62 

max(L0) = - min(2S[j ]) + 2 -j-1 6 . 6 3  

1 the selection This value is only important when we selectsj+l - -  - 1 .  Sinces > 3, 
_ _  1 2 - j  (SO that S 1] 2-J-1 1 S j+l -1  implies that S[j] > -~ + [j + -- S [ j ] -  > 3)" 

Consequently, 

(1 ) 
max(Lo) -- - 2  ~ + 2 - j  + 2- j-1 ~ __1 6 . 6 4  
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The selection constants and the value of t are now obtained so that they satisfy 

(6.48) and (6.49). A possible choice is 

t - O m l - O  t o o - - - 1  6.65 

The only case in which (6.48) is not satisfied for this choice is for j -- 0 because 

for this value of j ,  rain(U0) < max(L1). However, for j -- 0 the residual is not in 

carry-save form, but in conventional form, so that it is sufficient to have U0 > L0. 
1 Moreover, since in the result s > 3, the first bit ofs is always 1 (which is obtained 

by the selection function, since x > 0). 

The range of the shifted residual is given by (6.60). Since 12w[/]l < 4S < 4, 

the range of the estimate is - 5  < ~ < 3. That  is, 4 bits of the carry-save residual 

are needed for selection. 

Consequently, the result-digit selection is 

1 ifo_<?' 3 
Sj+l - -  0 if ~ - -  - 1  6.66 

- 1  if - 5  _<~'_< - 2  

Selection Function for Radix 4 with Carry-Save Adder 

We develop the radix-4 case with carry-save adder and result-digit set { -2 ,  - 1 ,  

0,1,2}.  

As indicated by expression (6.56) it is not possible to have a single selection 

function for all values o f j .  Consequently, we obtain a value o f ]  so that a single 
selection function is possible for j > J (and uses small t and 8). From (6.59) 

we get 

8 
1 254- /  > 2 - t  -Jr- 2 -a 6.67 
3 36 -- 3 

A possible solution is J = 3, t = 3, 8 = 4. However, the corresponding 
selection function is not feasible (Exercise 6.13); this can occur because expression 

(6.59) has been obtained for the best case in which the limits of the interval are 

multiples of 2 -t (Exercise 6.13). Therefore, we now develop a result-digit selection 

with t = 4. It has to satisfy expression (6.48), that is, 

m a x ( [ L k ( I i ) ] 4 )  < ink(i)  < m in (LUk_ l ( I i )  - 2-4]4) 6.68 
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Moreover, the maximum and minimum in the interval are described by expres- 
sions (6.57) and (6.58) with J = 3 and ~ = 4. That  is, for k > o: 

( 1 )  
min(Uk_l(Ii)) = 2(2 -1 + i  x 2 .4 ) k -  ~ 

6.69 

max(Lk(Ii)) = 2 ( 2 - 1 + ( i  + 1)X 2 - 4 ) ( k -  ~ )  

For k < 0: (1) 
min(Uk_l(Ii)) = 2(2 -1 + (i + 1) x 2 .4 ) k -  ~ 

6.7O 
( 2 )  (k  2 )  2 

_ 4-4 max(Lk(Ii) ) -- 2(2 -1 + i  • 2 -4) k -  ~ + 

Table 6.9 shows the limits of the intervals and possible selection constants. The 
following notation is used: 

m U k _ l ( i  ) = min (  [Uk_ l ( I i )  - 2-414)  
6.71 

MLk(i) = max( [Lk(Ii)]4 ) 

Now we have to consider the case j < 3. One possible approach is to have a 
module to determine from a truncated x directly the value of S[3] and to use it 
to perform the first iterations to determine w[3]. Another possibility is to analyze 
the case j < 3 and try to match the corresponding selection functions with that 
for j > 3. The particular choice of selection constants in Table 6.9 was made so 
that the same constants hold for all j.8 The resulting selection function and its 
implementation are shown in Section 6.3.1. 

The range of ~" is obtained from (6.60). Since in this case we initialize to 
4 1 13 and S[0] - 1, from (6.10) we obtain max(w[j]) - max(w[1]) < ~ + 7 - -ff 

4 min(w[j]  > -5"  Conequently, 

88 92 
< y < m 6.72 

1 6 -  - 16 

Consequently, ~" has four integer bits. 

8. This is developed in Ercegovac and Lang (1990). 
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10 
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11 

ML2(i) mUl(i) 
m 2 ( i ) *  

A 

MLI(i) mUo(i) 
ml(i) 

A 

MLo(i) mU_l(i) 
mo(i) 

A 

ML_l(i) mU_2(i) 
m 1(i) 

24 25 

24 

6 9  

8 

-10  7 

8 

-26  -25 
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28 
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A 

su] 
4 

12 

5 

13 

6 

14 
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MLI(i) mUo(i) 
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MLo(i) mU_l(i) 
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ML_l(i) mU_2(i) 
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36 
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12 
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12 

-40  -36  

-36  

38 42 

40 
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12 

-17  11 
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40 

40 45 
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16 

-18  -11 
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-46  -41 

44 

43 49 

44 

11 19 

16 

-20  12 

-16  

-50  -44  

-46  

6og 

6 , 1  

Real value is indicated value divided by 16. 

T A B L E  6 . 9  Selection function fo r r  = 4 with carry-save adder  ( j  > 3). 

Exercises 
Examples of Execution 

Obtain the 8-bit square root of 144 • 2 -8 using the following algorithms: 

(a) Radix 2, sj E { -  1, 0, 1 }, conventional (nonredundant) residual 

(b) Radix 2, sj E {-1,  0, 1}, carry-save residual 

(c) Radix 4, sj E {-2 ,  - 1, 0, 1, 2}, carry-save residual 
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6.2 

6.3 

6.4 

6.5 

6.6 

C h a r a c t e r i s t i c s  o f  the  I m p l e m e n t a t i o n  

Design a 12-bit radix-2 square root unit at the gate level. You may use full-adders, 
multiplexers, registers, and gates. Provide the necessary design details to establish 
delays of critical paths. Use a carry-save adder to form residuals in redundant form. 
Give an estimate of the overall delay in gate delay units (tg) and cost. Assume that 
a full-adder has a delay of 4tg, a 3-1 multiplexer 2tg, and a register load 3tg. 

Develop the following two ways of generating the adder input F when a signed- 

digit adder is used: 

(a) Use S[j] in its original signed-digit form. 
(b) Convert 8[j] to two's complement representation. 

Discuss the design trade-offs in these alternatives. 

[Retiming of the recurrence]. As Exercise 5.7, but for square root. 

[Overlapped radix-2 stages]. Consider a radix-2 square root algorithm with the 
result-digit set { -  1, 0, 1 } and redundant residuals in carry-save form. The result- 
digit selection is performed using the selection constants as described in the text. 

The cycle time is 

tcycl e --tSELsoRT-~-tbu f f  -~-tmu x -~-tHA ~ - t r e g -  4 + 1 + 1 + 1 + 2 -  lOt s 

To reduce the total time, we propose to obtain all three possible values o f  s j+2,  

corresponding to s j + l  m __ 1, 0 ,  1, and select the correct one once s j + l  is known, 
all of this in the same cycle. In other words, two result bits are generated per cycle. 

(a) Design the network for the selection of s j+l and s j + 2 .  Assume that the 
selection function is already implemented. Show all details; in particular, 

show the details of the conditional selection. 
(b) Design the network to produce the next residual (assume 8 bits in the 

fractional part). Show all details. 
(c) Determine the cycle time of the new scheme and compare the total time to 

obtain a result of 8 bits with the scheme described in the text. Discuss your 

findings. 

C o m b i n a t i o n  o f  D i v i s i o n  a n d  S q u a r e  R o o t  

Using the combined radix-2 algorithm described in the chapter, perform the 

following operations: 
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6 . 7  

6 . 8  

6 . 9  

6 . 1 0  

6 .11  

6 . 1 2  

6 . 1 3  

(a) 
(b) 

Division ofx -- 0.10110011 by d -- 0.10001111 

Square root of x -- 0.01110111 

Compare the cycle time and the cost of the combined radix-2 implementation 

with an implementation only for square root. 

I n t e g e r  S q u a r e  Root  

Perform the integer division algorithm for radix 4 with residual in carry-save 

representation for x = 53 and d = 9. Consider that operands and result are 

represented by 8-bit vectors. 

Give an algorithm that combines fractional square root with integer square root. 

Show the combined implementation, highlighting the modules required to in- 

clude integer square root. 

Result-Digit Selection 

Determine a result-digit selection function for a radix-2 algorithm in which a 

signed-digit adder is used in the recurrence. 

Develop a bit-level implementation for the radix-2 selection function for a digit 

s j represented in sign-and-magnitude by (Ss, s m) and the residual is in carry-save 

representation. 

For the selection function, consider using the truncated signed-digit representa- 

tion or (equivalently) the fixed value of S[[8/log(r)]] (that is, the value of S[j] 

immediately after at least 8 fractional bits are produced). Show that in this case 

(for simplicity we consider the case in which exactly 8 fractional bits are produced) 

the i th interval corresponds to the following range of S[j ]: 

2 -1 + i x 2 -8 - p • 2 -8 < S[j] < 2 -1 + i x 2 -8 + p • 2 -8 

and give a figure illustrating this method. 

Following the derivation in Section 6.6.4, develop a radix-4 selection function for 

J - 3, t - 3, and 8 - 4. Determine the selection constants. How many fractional 

bits are required? 
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6 . 1 4  

6~ 

Determine a result-digit selection function for a radix-4 square root algorithm 
with p - -1  and carry-save residual. Give only the portion for selection of 

Sj+ 1 = 2 .  

Further Readings 
A survey of square-root algorithms is presented in Montuschi and Mezzalama 
(1990). Parts of this chapter are based on the monograph Ercegovac and Lang 
(1994) which presents an in-depth study of digit-recurrence methods for division 

and square root. 
Early work in square rooting algorithms with redundancy in the result-digit 

set to maximize the number of zero digits is developed in Metze (1967). 

Radix 2 

Radix-2 algorithms and implementations are discussed in Taylor (1981) and 

Majerski (1985). 

Radix 4 and Radix 8 

Specific radix-4 implementations are presented in Fandrianto (1987) and 
Ercegovac and Lang (1989, 1991) and a radix-8 alternative in Fandrianto (1989). 
The radix-4 algorithm described in this chapter which uses a single selection 
function for all iterations, is developed in Ercegovac and Lang (1990). 

Higher Radix 

Higher radix algorithms and implementations are considered in Ciminiera and 
Montuschi (1990). A very-high-radix implementation, with prescaling and selec- 
tion by rounding, is described in Lang and Montuschi (1992, 1999). 

Combined Division and Square Root 

Combined division/square root implementations are presented in a number 
of places (Taylor 1981; Zurawski and Gosling 1987; Fandrianto 1987, 1989; 
Ercegovac and Lang 1991; McQuillan and McCanny 1994; Prabhu and Zyner 
1995). In Srinivas and Parhi (1999) the residuals are kept in signed-digit 
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representation and the result digit is overredundant, which simplifies the se- 
lection function. Self-timed designs are presented in Matsubara et al. (1995) and 
Guyot et al. (1996). 

Reciprocal Square Root 

Digit recurrence algorithms and implementations for reciprocal square root have 
recently been presented in Lang and Antelo (2001) and Takagi (2001). A very- 
high-radix version is presented in Antelo et al. (1998). 

Low-Power Design 
Radix-4 combined division/square root low-power units are described in 
Kuhlmann and Parhi (1998) and Nannarelli and Lang (1999). A self-timed low- 
power design for combined division/square-root is presented in Matsubara and 
Ide (1997). 

Combinational Implementation 

Combinational implementations of square root as linear arrays are reported in 
Majithia and Kitai (1971), Majithia (1972), Agrawal (1979), Cappuccino et al. 
(1998, 1999), and Corsonello et al. (2000). Combinational implementations of 
combined division/square root schemes are described in McQuillan et al. (1991, 
1993). 

Miscellaneous 

A square root scheme for integers is presented in Hashemian (1990). A radix-2 
square root implementation for field-programmable gate arrays is developed 
in Louie and Ercegovac (1993). Skipping of zero result digits is considered in 
Montuschi and Ciminiera (1993). 

Area/Delay Analysis 
Area/performance of square root units is discussed in Soderquist and Leeser 
(1996). 
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Verification 

Verification of square root implementations is presented in Leeser and O'Leary 
(1995) and of combined multiplication, division, and square root implementations 
in Walter (1995). 
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r H A'~TE ~ 7 Reciprocal, Division, 
Reciprocal Square Root, 
and Square Root by 
Iterative Approximation 

The methods of this chapter compute a function by iteratively improving an initial 
approximation. For the operations considered here, the most complex operation 
involved in the iteration is multiplication; because of this the methods are also 
called multiplicative methods. This contrasts with the digit recurrence method of 
Chapter 5, in which the recurrence involves a digit selection, a digit multiplication, 
and an addition. Other methods for these functions are presented in Chapters 10 
and 11. 

The methods presented here have a quadratic convergence rate, which loosely 
means that the number of bits of accuracy of the approximation doubles after 
each iteration. In contrast, the digit recurrence method has a linear convergence. 
As a consequence of this quadratic convergence, the number of iterations for 
a desired accuracy is smaller than for linear convergence. However, since full- 
precision multiplications are involved, the time of an iteration is larger and a 
detailed analysis has to be performed to compare the total execution time. 

One application in which these methods might be attractive is in the floating- 
point unit of a processor (see Chapter 8) because they essentially use the already 
existing floating-point multiplier and do not require additional hardware. How- 
ever, to perform the operations efficiently, it is necessary to do some modifications 
to the multiplier, and these modifications might increase the area and affect the 
performance. Moreover, the rounding of the floating-point results is simpler to 
perform with the digit recurrence method, as discussed in Chapter 8. 

367 
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We consider first the computation of the reciprocal function. This function is 

important in itself and is the basis for the methods for division. A similar situation 

occurs for reciprocal square root and square root. 

We consider the case of operands and result in sign-and-magnitude repre- 

sentation. Moreover, since the determination of the sign is straightforward and 

independent of the operation on magnitudes, we concentrate on the latter. 

Reciprocal 
For the reciprocal function, we describe two related methods: the application of 

the general Newton-Raphson method to obtain the zero of a function and the 

multiplicative normalization method. 

N e w t o n - R a p h s o n  M e t h o d  for  R e c i p r o c a l  A p p r o x i m a t i o n  

This is based on a general method to obtain the zero of a function, that is, the 

value ofx for which f ( x )  = 0. I f x [ j ]  is an approximation of the zero, then a 

better approximation is 

f (x[ j ] )  
x[ j  + 1] = x[j] - 7.1 

f ' (x[ j])  

where f ' (x[ j])  is the derivative o f f ( x )  with respect to x, evaluated at x[ j ] .  A 
graphical interpretation of this method for the reciprocal function is shown in 
Figure 7.1. 

This general method is applied to the reciprocal function as follows.1 Calling 

R[j] the approximation of reciprocal, we apply (7.1) to the function f ( R )  = 
1/R - d  (whose zero is 1/d). Since f ' (R )  =- - 1 / R  2 we obtain the recurrence 

R[j + 1] = R [ j ] ( 2 -  R[j]d) 7.2 

The recurrence is initiated with an initial approximation R[0]. Each iteration 

requires two multiplications and one subtraction from the value 2. 

1. For an alternative development of the recurrence, see Exercise 7.1. 



-d 

) "0 ~ " R[j] 
R[0] R[1] R[2] R[3] 

(Initial approximation) 

f(R[j]) 
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F I G U R E 7.1 Newton-Raphson iteration for finding reciprocal. 

The  convergence of this method  is quadratic;  that is, if the error  at step j is 

E[j],  then the error at step j + 1 is ~[j]2. This  can be shown as follows. Since 

R[j]  is an approximat ion of 1/d, the relative error  is 

E[j]  -- 1 - d R [ j ]  7.3 

Then  from (7.2), 

1 - ~ [ J ] ) ( 2  - (1 - E[j] ) )  
R [ j  + 1] - -  d 

1 - E[j]  2 
7.4 
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j R [ j l  dR[jl 2 - d R [ j ]  

1 

11 •  -3 

803 • 2 -9 

E X A M P L E  7.1 

R [j  + 1] 

6 [ j + l ] =  

1 - d R [ j  + 1] 

5 •  -3 

55 x 2 -6 

4015 • 2 -12 

11 x 2  -3 

73 • 2 -6 

4177 • 2 -12 

11 x 2  -3 

803 • 2 -9 -- 1.5683594 

3354131 • 2 -21 -- 1.5993743... 

0.14 

0.020 

0.00039 

T A a L E 7'. 1 Steps in Newton-Raphson approximation of reciprocal. 

so that 2 

~[ j  + 1 ] -  1 - d R [ j  + 1 ] -  E[j]  2 7.5 

The  a lgor i thm converges for ]6[0]i < 1. Moreover, the convergence is f rom 

below, since the error is always positive. The  number  of iterations required to 

achieve a desired precision depends on the initial approximation.  Specifically, if 

the relative error of the initial approximat ion is 

then to get a relative error 

the number  of iterations is 

6[01 < 2 -k 7.6 

6[m] ~ 2 -n 7.7 

m I'og2( )] 
Consequently,  the choice of  the initial approximat ion is critical for the speed of  

the algori thm. 

Cons ide r  the calculat ion of  an a p p r o x i m a t i o n  of  the reciprocal  of  d --  5_ 8" 
W e  need an appropr i a t e  initial approx imat ion .  We  consider  the issue 

of  ob ta in ing  this a p p r o x i m a t i o n  later; for n o w  let us take  R[0] = 1 (which 

assures convergence  for R[m] < 2). T h e n  the p rocedure  is i l lustrated by 
8 Table  7.1. T h e  exact resul t  is 1 /d  -- ~ -- 1.6. �9 

2. This analysis implies that all operations are performed with full precision, that is, there is 
no roundoff error; these additional errors are considered in Section 7.1.4. 
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Multiplicative Normalization Method 

This technique (presented more generally in Chapter 10), consists of two multi- 

plicative recurrences, one of which converges to one while the other converges to 

the desired function. Specifically, for reciprocal we can write 

1 1 P[O] P[1]  P [ m ]  R[m] 
R . . . . . . . . .  = 7.9 

d d P[O] P[1] P[m] d[m] 

so that R -- R[m] i fd  [m] -- 1. Consequently, we define an approximation 

J 
R[j] --  ] [  P[i] 7.10 

i=0 

and the variable that tends to one 

d[j ] - dP[j ] 7.11 

The approximation is refined by the two recurrences 

R[j + 1 ] -  R[j]P[j + 1] 7.12 

d[j + 1 ] -  d[j]P[j + 1] 7.13 

and the sequence P[j] is selected so that d[j] tends to the value 1. The initial 

conditions are R[O] = P [0], d [0] = dP[O], and P [0] an (initial) approximation of 

1/d. 
The method is illustrated in Figure 7.2. 

Determination of P[ j] 

We now determine the factors P[j] for quadratic convergence. Since R[j] is the 

approximation of 1 /d ,  the relative error is 

E[j]  = 1 - - R [ j ] d  = 1 - d [ j ]  7.14 

Therefore, for quadratic convergence (E[j + 1] = E[j]  2) 

( 1 - d [ j  + 1]) - - ( 1 -  d [ j ] )  2 7.15 

Consequently, s i nced [ j  + 1] = d[j]P[j + 1] we get 

P[j + 1] = 2 - d [ j ]  7.16 
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1/d- 

R[j], d[j] 

P[O] 

dP[O] I 

I 
I 

I I I I I 
1 2 3 4 5 

Iteration j 

F ! G U Ii E 7'.2 Illustration of iterations in the multiplicative normalization method. 

T h e  a lgor i thm is the following 3" 

1. Obtain  approximat ion P [0] to 1/d 

2. d [0] - dP[0];  R[0] - P [0] 

3. F o r j - - 0 , 1 , 2 , 3 , . . . , m - 2 d o  

P[j + 1] - 2 - d [ j ]  

d[j + l ] - -d[ j ]P[ j  + l]; R[j + I]-- R[j]P[j + I] 

P [ m ] - - 2 - d [ m  -1]; R[m]-- R[m -1]P[m] 

Implementation 

As in the Newton -Raphson  method,  an iteration of  the recurrence requires two 

multiplications and a two's complement  operation. However ,  in this case the two 

multiplications are independent ;  consequently, it is possible to use more  efficiently 

a pipelined multiplier. 

3. This algorithm for reciprocal has also been called "by series expansion" since it also can be 
obtained by using the MacLaurin series for 1/( 1 + x). 
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An implementation using a two-stage pipelined multiplier is shown in 

Figure 7.3. 

Yot ~3 Initial Approximation 

Both methods described require an initial approximation of 1/d. As stated, the 

accuracy of this approximation determines the number of iterations. However, it is 

necessary to consider also the delay of the module to produce this approximation, 

as well as its area. 

A variety of methods have been used to obtain the initial approximation. The 

selection of the most appropriate method depends on the accuracy, delay, and area 

requirements. Some of the alternatives are the following (many variations have 

been developed) 4" 

�9 Use a constant value, independent of the operand d. The minimum relative 

error is obtained by using the middle point in the range of 1/d. 

�9 A linear interpolation in the whole range. That is, the initial approximation 

is 

R[0] - -  a - bd  7.17 

where a and b are constants. The implementation is specially simple ifb is a 

power of two. A good solution for 1/2 < d < 1 is a -- 2.928 and b - 2. 

Since the maximum relative error is about 0.1, the error is not increased 

much if R[0] is truncated, say, to 5 bits. This truncation reduces the size of 

the initial multiplications. 
�9 A set of constants, one per interval ofd.  This is called a table looku p because 

the constants are usually stored in a table. The input to the module that 

produces the initial value is the number of the interval, that is, the truncated 
d. The constants are selected to produce the smallest maximum error in each 

interval. It can be shown that using k bits ofd produces an approximation 
ofk + 1 bits and a maximum error of 2-k (Exercises 7.5 and 7.6). 

�9 If the size of the table is too large for the required initial error, a piecewise 

linear approximation can be used. Let 

d - -  dt 2 - k  + dp2  -p  + dr 2-n  k < P < n 7.18 

4. These alternatives are discussed further in Chapter 10. 
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d [j] 
R[j] 

1 ~1 t,a',,. .... 

I ~OX I moOo,e 

~ux II ~ux I 

(Ini t ial  
approximat ion)  

P[j + 11 

Multiplier 
stage 1 

(PP reduction) 

+ + �9 

Multiplier 
stage 2 
(CPA) ITwo,s complement] 

d[j + 11 or R[j + l] m 
/ 

(Latched every  
second clock) 

(a) 

(b) 

F I G U R E  7.3 Multiplicative normalizat ion for reciprocal: (a) Implementa t ion  with a two- 

stage multiplier. (b) T iming  diagram. 
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The most-significant k bits ofd are used to access the table and produce 
coefficients a and b. Then 

R[0] = a + bdp2 -p 7.19 

Again, the constants are selected for smallest maximum error. This method 

requires a table lookup, a small multiplication, and an addition. The 
approximation can be truncated without significantly increasing the error. 

Typically, for an error of 2-g the number of input bits of the table is about 

g/2. 
Instead of performing a multiplication, the bipartite method obtains two 
values from tables and performs an addition. On the other hand, the 

number of input bits of the tables is about 2g/3, for an error of 2 -g (see 
Exercise 7.7 and Chapter 10). 

7,, *~i , 4  Implementation and Additional Errors 

We now consider the implementation of the reciprocal approximation algorithms 

and the effect of the additional error introduced by a practical implementation. 
In both methods the implementation consists of the following components 

(see Figure 7.3): 

~ A module to compute the initial approximation. The area requirements and 

delay depend on the precision of this approximation and on the method 

used. 

~ A multiplier. To achieve the error expressions derived before, the 
multiplications have to be performed with full precision. This means that 
the number of bits of the products increases in each iteration. For instance 

for the Newton-Raphson method, if a and n are the number of bits of R[0] 
and d, respectively, then the width of the products is as follows: 

R[j] R[j]d R[j  + 1]-- R [ j ] ( 2 -  R[j]d) 

j - - 0  a a + n  2a + n  

j - - 1  2a + n  2a + 2 n  4a + 3 n  

j = 2  4a + 3 n  4a + 4 n  8a + 7 n  
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As can be seen, the widths of  the resulting products are very large and 

would make the implementat ion impractical. Consequently, the products 

are truncated or rounded in a way that has a small effect on the final error. 

We consider two alternatives after discussing the additional errors. 

�9 A complementer  (two's complement  representation). A ones' complement  

(bit complement) can be used instead, but the error introduced has to be 

taken into account to determine the error of the approximation. 

We now consider the total relative error 6T[j] ,  which includes the effects men- 

tioned above. We saw that both algorithms considered converge quadratically; 

that is, the algorithmic (relative) error 6A[j + 1] is 

s -3r- 1] = ET[j] 2 7.20 

We call the additional relative errors, introduced by the implementat ion of the 

iteration, generated errors and denote them by Ea[ j ] ,  for iteration j .  The  total 

relative error is then 

ET[j] = ~A[j] + ~a[j] 

We now consider separately each method. 

7.21 

Newton-Raphson Method 

Including the generated error, from (7.20) and (7.21) we obtain the total error in 

iteration j 

ET[j] = ~T[j -- 1] 2 + Ea[ j ]  7.22 

The  generated error includes the following components5: 

�9 Roundoff  of  y [ j  - 1 ] = dR[j - 1 ] 
�9 Error  i n z [ j  - 1] = 2 - y [ j  - 1] 

�9 Roundoff  of R [ j  - 1]z[j - 1] 

F rom (7.22) we conclude that the final error is positive (approximation from 

below 6) if the last EG is not negative. Specifically, a final error that is positive and 

5. Usually these errors are considered as absolute errors; the corresponding relative errors are 
obtained by dividing the absolute errors by ( 1/d). 
6. This is important in some methods to produce the correctly rounded result (see Chapter 8). 
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Errors 

(not to scale) 

cA[j] 

CT[j] 

Ca[j] 

. . . . . . .  

j + l  

Iteration 

F I G u R E 7.4 Error reduction in NR iterations. 

cr[j + 1] 

~a[j + 11= or[j] 2 
, v  

less than  2 -s is obtained if 

Eo [m ] > 0 7.23 

eT[m ] = ET[m -- 1] 2 + ~G [m ] < 2 -s 7.24 

Moreover ,  since 

E T [ j ] -  ET[j -- 1] 2 - + - 6 G [ j ] -  (ET[j --2] 2 + EG[j -- 1]) 2 + EG[j] 7.25 

an error  in an i teration is reduced quadrat ical ly  by the iterations that  follow. 7 

F igure  7.4 illustrates this error  behavior. 

Multipl icat ive Normal iza t ion  Method  

In this m e t h o d  we need to dis t inguish be tween  the error  in d[ j]  and the error  in 

R[j]. 

7. Because of this, this algorithm is said to have the self-correcting property. Moreover, the 
total error is larger than the generated error in the last iteration; consequently, the multiplier 
needs to be of higher precision than the precision required for the result. 
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1. Error in d[ j ] :  

edT[j ] -- edT[j -- 1 ]2 _~_ edG [j ] 7.26 

where eds[j] includes the error in the two's complement operation and the 

roundoff error in the multiplication. As in the NR method, the final error 

edr[m] is positive as long as the generated error in the last iteration is not 

negative. Also generated errors are reduced quadratically. 

Error in R[j]" If the multiplications R[i]d are performed in full precision, 

then the error is the same as that o f d [ j ]  (including there the errors in 

roundoff and two's complement). To that error it is necessary to add the 

generated errors for all R[i] with i < j .  This error corresponds to the 

roundoff of the multiplication R[i ]P [i ]. That  is, 

J 
e RT[j ] -- edr[j] + ~_~eRG[i] 7.27 

i = 0  

Note that here e Rc [i ] is not reduced by the iterations that follow. 

Consequently, the error in R[j] is two sided (from below or from above), as 

illustrated in Figure 7.5. 

Using Reduced Multipliers 

As mentioned, full-precision multiplications are very wide. In practice, the fol- 
lowing two alternatives have been found attractive: 

�9 Using a floating-point multiplier that produces a rounded product. In this 
case, all multiplications produce products of the same number of bits. This 
alternative is used when the algorithm is implemented in a floating-point 
unit that has this type of multiplier. 
The width of the rounded product is selected so as to achieve the required 

final error. In the Newton-Raphson method, because of the quadratic 

reduction of errors, this width is determined by the multiplications in the 

last iteration. On the other hand, in the multiplicative normalization 

method, the errors in the R[j] recurrence accumulate so that the width has 

to take into account the rounding errors in all iterations. 

�9 Using an n • k rectangular multiplier. In this case, as the precision 

increases, the multiplications are performed by a sequence of several 

rectangular multiplications. This might have the advantage that the 
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Errors (not to scale) 

edA[j] 

edT[j] 

Iteration 

eda[j] 

I 

}eaSt7+ r~- 

j + l  

edT[ j + 1 ] 

edA[ j + 1] = edT[j] 2 
y 

Errors (not to scale) 

edT[j] 

Iteration 

a 

J 

j-1 

d 

_el .. . . . .  

eRr[j] 

eRr[j + 1] 

edr[ j + 1] 

j + l  

J 
a = Z e R c [ i ]  b = e R 6 [ j ]  c = Z e R o [ i ]  d = e R c [  j + l ]  

o o 

F I G U R E  7.5 Errors in the multiplicative method. 

rectangular multiplier is smaller and faster than the square multiplier. 

However, a rounding error might occur for each rectangular multiplication. 

We now compare the number  of cycles in both approaches for the Newton-  
Raphson method. 
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EXAMPLE 7,2 For the Newton-Raphson method, we compare the number of cycles used in 
Scheme A (full multiplier) and Scheme B (rectangular multiplier) to obtain 
a reciprocal of d (53 bits) with an error of no more than 2 -54. The initial 
approximation R[0] has an error of no more than 2 -8 and has a width of 
9 bits. 

The multiplier in Scheme A is a standard floating-point multiplier, while 
the multiplier in Scheme B is a dedicated multiplier. To achieve the final 
error, the operation requires at least three iterations. In order not to increase 
the delay, the additional errors should not increase the number of iterations 
(see Exercise 7.9). We neglect the delay of obtaining 2 - R[i ]d. 

Scheme A: Full multiplier 55 • 55 --+ 55 (rounded); assuming 1 cycle for 
obtaining R[0] and 3 cycles per multiplication results in a total of 1 + 3 • 2 • 
3 = 19 cycles. 

Scheme B: Rectangular multiplier 55 • 16 --+ 55; assuming 1 cycle per 
multiplication, the algorithm is performed as follows: 

�9 R[1] = R[0](2 - dR[0]). Since R[0] has 9 bits, the multiplications are 
performed by one 55 • 16 multiplication each (2 cycles). The result R[1] 
is rounded to 16 bits (15 fractional bits). 

~ R[2] = R[1](2 - dR[l]). Since RIll has 16 bits, each multiplication is 
performed as one 55 • 16 multiplication (2 cycles). The result R[2] is 
rounded to 32 bits. 

�9 R[3] = R[2](2 - dR[2]). Since R[2] has 32 bits, the multiplications are 
done by two 55 • 16 multiplications each (4 cycles). 

This results in a total of 1 + 2 + 2 + 4 = 9 cycles. �9 

A similar analysis is done for the multiplicative normalization method (see 
Exercise 7.10). 

7 . 2  Division 

The reciprocal of the divisor can be used to obtain the quotient by performing a 
multiplication by the dividend x. That is, 

Q = R[m]x 7.28 
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In the multiplicative normalization method, instead of performing this multi- 
plication at the end, it is possible to initialize q [0] = x and obtain Q instead 

of R. 
In floating-point units, the quotient has to be correctly rounded. The most 

prevalent method to do this rounding (see Chapter 8) computes the remainder 
produced by the approximation and performs a correction step. However, unlike 

in digit recurrence methods, in these iterative methods, the remainder is not 

obtained directly. Instead, at the end of operation, the product of the computed 

quotient and the divisor is formed and subtracted from the dividend. 

7 ~  Square Root 
We now present two iterative methods for square root, which follow the same 

strategies as those discussed for division. 

7 o3~ t Newton-Raphson Method 
According to expression (7.1) the Newton-Raphson method for square root is 
obtained by making f (S )  - S 2 - x ,  which has a root at S - x 1/2. Since 

f ' ( S )  = 2S, we get the following iteration 

S [ j  + 11 -- 2 -1 S [ j ]  + 7.29 

Each iteration requires one division, one addition, and one shift. 
Because of the division involved, it might be better to use an alternative 

with only multiplication and addition. This alternative is to compute instead 
the reciprocal square root of x and then multiply by x. The function to use is 
f ( R )  = 1 / R  2 - x, resulting in f ' ( R )  = - 2 / R  3 and 

R [ j  + 11 -- 2 -1R[j](3  - x R[ j ]  2) 7.30 

An iteration requires three multiplications and one addition. Similar consid- 

erations as for reciprocal apply, with respect to the effect of limited-precision 

multiplications. Also, the subtraction from 3 can be approximated by bit inver- 
sion since 3 - x R[ j ]  2 = 1 + (2 - x R[ j ]  2) and the term 2 - x R[ j ]  2 corresponds 

to a two's complement, which can be approximated by a bit inversion. 
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M u l t i p l i c a t i v e  N o r m a l i z a t i o n  M e t h o d  

Similar to the multiplicative method for reciprocal, this method consists in the 

determination of a sequence P [ j  ] such that 

m 

x H p [ j ]2  ~ 1 7.31 
j=o 

then 

and 

m 

~ H P [ j ]  
~%- j=0 

7.32 

x[j] -- 1 - ~[ j ]  

Then  for quadratic convergence we want  

x [ j  + 1] - 1 - O(~[j ]2)  

To achieve this make 

resulting in 

3 12 1 x[j + l] -- (1-- ~[j])(14- 2-1~[j]) 2 - 1 - - ~ [ j  -- [j]3 
4 4 

p [ j ] 2  - - ( 1  + 2-1~[j])  2 

7.36 

7.37 

7.38 

7.39 

m 

47 �9 H eljl 7.33 
j=0 

The algori thm consists o fm iterations to perform the recurrences 

x[j + 1] = x[j]P[j]: 7.34 

S[j + 1] = S[j]P [ j ]  7.35 

The variable x[j] tends to 1 and R[j] tends to ~/~-. The initial conditions are 

x [0] = S[0] = x. Note that reciprocal square root can be computed by making 
S[0] -- 1. P[0] is an (initial) approximation of l/q%-. 

N o w  for the determination of P[j]. Since x [ j ]  is close to 1, define ~[ j ]  such 

that 
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7 oSo3 

7 ~  

From (7.38) we get 

P[j] = 1 + 2-16[j]  = 1 + 2 - 1 ( 1 -  x[ j ] )  7.40 

That is, P[j] is obtained by complementing x[j] and shifting the fractional part 

one bit to the right. 
The iteration consists then of 

1. p[j]2 = p[ j ]p[ j ]  

2. x[ j  + l ] = x [ j ] P [ j ]  2 S[j + I ]=S[ j ]P[ j ]  

3. P[j  + 1] = 1 + 2 - 1 ( 1 -  x[j  + 1]) 

Each iteration has three multiplications, but two of them can be performed con- 

currently, or in pipelined fashion. 

Implementation and Error Issues 

The implementation of the square root algorithms and the error analysis are 

similar to that for the reciprocal operation. 

Example of Implementation of Division 
and Square Root 
We describe an implementation ofa multiplicative method for division and square 

root used in a floating-point unit. 8 The division and square root algorithms shown 

are for operands/results of 53 bits (double precision). The internal precision of the 
implementation is 76 bits to support extended precision of 64 bits and rounding 
requirements. The details of rounding are covered in Chapter 8 and will not be 
explained here. 

The main part of the implementation, shown in Figure 7.6, is a pipelined 
multiplier with a latency of four cycles. The operands have 76 bits, producing a 
152-bit internal product rounded to 76 bits. A radix-8 multiplier recoding with 
the digit set {-4,  - 3 ,  . . . ,  3, 4} produces 26 multiples, which are reduced to the 

sum and carry vectors by a tree of[4:2] adders. The 3 x multiple is produced by a 

8. This example is based on the AMD-K7 Floating-Point Unit implementation (Oberman 
1999). 
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Stage 
1 

Rounding 
constant 

(no overflow) 
Stage or dividend 

t2x152 

1 
Stage 

3 

Stage 
4 

Operand Operand 
Localbypassing ~ ~ ~ ~ Localbypassing 

-1 1 

MULTIPLE I_. 
GENERATORS F 

TREE OF 
[4:2] ADDERS 

(4 levels) 
2x152 

2x152 

Rounding 
constant 

(overflow) 
or dividend 

t2x152  

152-b'tCPA [ISB.OG,C l 2"bittCPA h 
I ROUNDING I 

To local bypassing To local bypassing 

Final result 

FIGURE 7.6 Block diagram of a division/square root unit (adapted from Oberman 1999). 

separate 78-bit adder in parallel with the multiplier recoding. The multiplication 

unit consists of four pipelined stages: 

�9 S tage  1: Performs recoding, generation of 3 • multiple, and generation of 26 

radix-8 multiples. 
�9 Stage 2: Produces the product of 152 bits in a carry-save form. Rounding 

constants are also added using additional [3:2] adders for the cases of 
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overflow and no overflow in the product (see Chapter 8, Section 8.5). 
Moreover, these [3:2] adders are used to subtract the dividend in producing 
the remainder that is needed in rounding. 

�9 Stages 3 and 4" Preparation for rounding and rounding operations are 

performed. 

The initial approximations for the divisor reciprocal and the square root reciprocal 
are obtained by a bipartite method, using several tables with a total size of 69K 
bits and one adder. 

The initial approximation of the divisor reciprocal is obtained from a pair 
of tables T1 and T2, each of 1K entries and of width 16 bits and 7 bits, respec- 
tively. The values obtained from the tables are added to produce the reciprocal 
approximation, accurate to at least 14.94 bits. A separate pair of tables T3 and 
T4, each having 2K entries, is used to obtain an approximation of the reciprocal 
square root. The width ofT3 is 16 bits and ofT4 is 7 bits, and the approximation, 
accurate to at least 15.84 bits, is obtained by adding the two words. 

The division operation is shown in Figure 7.7. It is based on the multiplicative 
method described in Section 7.2. The latency of the operation is 20 cycles, and a 
new instance of the operation can begin after 17 cycles. 

The square root operation is shown in Figure 7.8. It is based on the mul- 
tiplicative method described in Section 7.3.2. The latency of the operation is 27 
cycles, and a new instance of the operation can begin after 24 cycles. 

7 ~  Concluding Remarks 
The methods described in this chapter provide an alternative to the digit recur- 
rence methods presented in Chapters 5 and 6. Other methods are discussed in 
Chapters 10 and 11. The choice of method and of specific parameters depends on 
many considerations, such as latency, throughput, area, and energy requirements, 
as well as the sharing of components with other operations. In Chapter 8 (floating- 
point operations), we perform a comparison between methods; this is appropriate 
to do there since the methods of this chapter are mostly used in floating-point units 
and therefore the comparison should include the effect of using a floating-point 
multiplier and of the implementation of the corresponding roundoff modes. Let 
us comment here only that, as illustrated in the previous section, although the 
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where 

1. [Initialize] 

P [01 <--- RECIP(~I ) 

d [0] +-- d ; q [0] +-- x 

2. [Iterate] 

for j = 0 , 1  

d[j + 1] ~ d[j] • p [ j ] ;  q[j  + 1] +--q[ j ]  x p[j] 

p[j  + 1 ] - - C M P L ( d [ j  + 1]) 

end for 

3. [Terminate] 

q[3] +--q[2] x p[2] 

REM +-- d x q [3] - x 

q +-- ROUND(q [3], REM, mode) 

RECIP produces the initial approximation of 1/d in three cycles. 
CMPL(a ) performs bit complementation ofa.  

REM is a negated remainder (see Exercise 7.18). 

ROUND produces a quotient rounded according to the specified mode 
(rounding modes are discussed in Chapter 8). The sign and zero conditions 
of the remainder are also used. 

F I G U R E  7.9' Multiplicative division algorithm (double precision). 

multiplicative method has quadratic convergence and therefore results in a small 
number of iterations, the total number of cycles can be large. 

We have discussed two related methods: Newton-Raphson and multiplica- 

tive normalization. Both have a quadratic convergence rate and have multiplica- 
tion and addition as the primitive operations. In most instances the multiplicative 

normalization method would be preferred because the two multiplications per 

iteration are independent and can use more effectively a pipelined multiplier. On 

the other hand, the Newton-Raphson method has the self-correcting property, 

which limits the effect of generated errors and provides the possibility of having 
a one-sided approximation. 
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1. [Initialize] 

P [0] +- RECSQR(;)  

T[0] +- P[0] 2 

x [0] +- x; R[0] <-- x 

2. [Iterate] 

f o r j  = 0 , 1  

x[ j  + 1] <-- x[j] x T[ j ] ;  R[j  + 1] +-  R[j] x P[j] 

P[ j  + 1] = CMPL3(x[j  + 1]) 

T[ j  + 1] = P[ j  + 1] 2 

end for 

3. [Terminate] 

R[3] +-- R[2] x P[2] 

REM +-- R[3] • R [ 3 ] - x  

s +-- ROUND(R[3], REM, mode) 

where 

�9 RECSQR produces the initial approximation of the reciprocal square root of 

x in three cycles. 

�9 CMPL3(a ) produces 2-1(3 - a ). 

�9 REM is a negated remainder. 

�9 ROUND produces a result rounded according to the specified mode 
(rounding modes are discussed in Chapter 8). The  sign and zero conditions 

of the remainder are also used. 

F ! G U R S 7.8 Multiplicative square root algorithm (double precision). 

7 ~  

7 . 1  

Exercises 
N e w t o n - R a p h s o n  M e t h o d  for Rec ip roca l  

Obtain the recurrence for the Newton-Raphson method of reciprocal approxi- 

mation directly from the definition of the relative error (~[j] = 1 - dR[j]) and 

the requirement  of quadratic convergence. 
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7 . 2  

7 . 3  

7 . 4  

7 . 5  

7 . 6  

Perform the steps in the calculation of the reciprocal of d = 29/256 by the 

Newton-Raphson method. Use R[0] -- 2 - d truncated to four fractional bits. 
1 Perform sufficient iterations so that the maximum error in the range ~ < d < 1 

is less than 2 -lz. 

Show that the rate of convergence of the reciprocal approximation can be im- 

proved by including additional power terms in the recurrence (Ferrari 1967). 

Specifically, show that the approximation using the recurrence 

R [ j  + 1] ---- R[ j ] (1  + (1 - dR[j]) + (1 - dR[j]) 2 + . . .  + (1 - dR[j]) k) 

has a convergence rate such that 

E[j + 1 ] -  •[jlk+l 

Describe the implementation for k - 2 and determine the latency in multi- 

plication times. Compare with the case k = 1. 

Multiplicative Normalization for Reciprocal 

Obtain a reciprocal approximation ofd = 2~6 by the multiplicative normalization 

method. Use P [0] - 2 - d  truncated to four fractional bits. Do sufficient iterations 
1 so that the maximum error in the range ~ < d < 1 is less than 2 -12 

Initial Approximations 

In a faithful reciprocal table 2 a • b (i.e., with a-bi t  input and b-bit output), the 

table outputs differ from 1/x by less than 1 ulp, 1 < x < 2 (Das Sarma and 

Matula 1995). 

(a) Show that a table with a -- b, b > 3 has a max imum error greater than 

1 ulp. That  is, the table is not faithful. Hint: Analyze the second smallest 

input interval. 

(b) Show that ifa > b + 1, b > 1, a max imum error for any output is strictly 

less than 1 ulp. 

Generate a reciprocal approximation table using the midpoint reciprocal method 

(Ferrari 1967; Das Sarma and Matula 1995) for a -- 5 and b -- 4: 

for i = 2 a to 2 a +1 _ 1 step 1" 
2a+b+l 

T(i)  = [ i+0.5 -{- 0.5] 
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9 ' , 7  

9'.8 

The table entries are the reciprocals of midpoints of the input intervals 
rounded to the nearest value. The values should be divided by 2 a to correspond 
to the input range 1 < x < 2. 

A bipartite table function approximation (Das Sarma and Matula 1995; Schulte 

and Stine 1997) can be formulated as follows. Partition the bit-vector of the argu- 

ment1 < x < 2 into three parts: x - (X1, X2, X3)whereX1 - (1 .Xl , . . . ,Xk) ,  

X2 -- (Xk+l, . . . ,  X2k), and X3 - (X2k+l, . . . ,  Xsk). (n -- 3k). Define two func- 
tions f A ( X 1 ,  X2) and f g ( X 1 ,  X3) such that fA  + f g  approximates the reci- 

procal 1/x to the desired accuracy. The functions fA  and fg  can be derived using 

Taylor series expansion and stored in separate tables. The result is obtained by 

adding the outputs of the two tables. 

(a) Obtain a bipartite approximation for 1/x assuming the truncated input 

1 .Xl . . .x5 and output (0.1Zl . . .z4) .  
(b) Compare the size of the tables for fA and fg  with that of a single table 

reciprocal approximation. 

This exercise deals with a reciprocal approximation method based on MacLauren's 

series expansion. This approximation can be used as an initial approximation for 

the iterative methods. 
1 L e t R  -- 1/d where 1 < d < 2 a n d  g < R < 1. The corresponding 

bit-vectors are 

D -- ( 1, dl, d2, . . . ,  d k, dk+l, . . . ,  dn) 

R = ( O , l ,  r 2 , . . . , r n )  

Decompose d into d -- dA + 2-kdg,  where 1 < d A < 2 -- 2 -k and 0 < de < 
1 - -  2 - ( n - k ) .  Then 

{a) 

(b) 

DA = (1, dl,  d2, . . . , d  k) 

D8 -- (0, dk+l, . . . ,  dn) 

Let r A -- 1/dA. Show that 

R --rA[1 -- 2 -kdsrA + 2-2k(d~rA) 2 - 2-3k(d~rA) 3 + . . . ]  

Consider computing the approximation/~ by 

1~ - -  {;A - -  2-k;228 }t 
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7 . 9  

7 . 1 0  

7 .11  

7 . 1 2  

7 . 1 3  

where {x }t denotes x truncated to t fractional bits and ?A - -  {rA }u ,  ~2  A = {r~ }s, 

and d/~ - {dB }v. Use a table, a multiplier, and an adder. Determine relations 

between k, u, v, s, and t to obtain an economical implementation in terms of table 

and multiplier size. 

Use of Truncated Multipliers and Error Calculation 

Determine a bound on the maximum final error for the implementations of 

Example 7.2. Consider rounding errors and the error introduced by performing 

ones' complement instead of two's complement. 

Repeat Example 7.2 for implementations using the multiplicative normalization 

approach. Consider that the 55 • 55 multiplier is implemented by a three-stage 

pipeline. 

Consider computing 

R[1] -- R[01(2 - d .  R[0]) 

using (i) d truncated to t bits, (ii) the product d �9 R[0] rounded to t bits, and (iii) 

the final product rounded to t bits. Consider rounding to nearest mode in both 

CaSeS.  

Let the error of the initial approximation be in the range - 2  -16 < eR[0] < 
2 -16. Determine the range of the error in R[1] for t -- 32. 

Repeat the error analysis of Exercise 7.11 if ones' complement is used instead of 

two's complement. 

Division 

Perform the division operation for the following operands: 

x -- (0.010100011110)2 

d -- (0.101101000011)2 

Consider two cases: 

(a) Use the Newton-Raphson approximation of the reciprocal. 

(b) Use the multiplicative normalization with initial condition R[0] = x. 

Use as initial approximation 2.98 - 2d. Perform sufficient iterations to get a 
1 maximum error less than 2 -12 for the entire range ~ < x, d < 1. 
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7 . 1 4  

7 . 1 5  

7 . 1 6  

7 . 1 7  

7 . 1 8  

a < ........ Q~: 

Design a double-precision division unit (53-bit quotient) based on the Newton- 
Raphson reciprocal approximation method using 56 x 12 rectangular multipli- 
ers (Wong and Goto 1994). The initial approximation has an error of 2 -1~ and 10 
fractional bits. Determine the number of cycles and show a timing diagram. 

Square Root 

Obtain the square root of x = 0.125 using the Newton-Raphson method for 
reciprocal square root. Perform sufficient iterations so that the maximum error 

1 is less than 2 -12 in the range ~ < x < 1. 

Repeat Exercise 7.15 using the direct multiplicative method. 

Repeat Example 7.2 for square root using the direct multiplicative method. Con- 
sider a three-stage pipeline 55 • 55 multiplier. 

Explain why a negated remainder is computed in the algorithms shown in Figures 
7.7 and 7.8. Consider the organization of the corresponding implementation in 
Figure 7.6. 

Further Readings 
General treatments of iterative methods for division, reciprocal, square root, 
and reciprocal square root are presented in Flynn (1970), Krishnamurthy (1970), 
Ramamoorthy et al. (1972), and Markstein (2000). 

Multiplicative Method 

A multiplicative division method is reported in Goldschmidt (1964). Anderson 
et al. (1967) describe an implementation of multiplicative methods for division 
and square root, also known as the Goldschmidt method. 

Initial Approximation 

The problem of initial approximations has been frequently considered in the 
literature (Shaham and Riesel 1972; Parhami 1987; Das Sarma 1995; Schwarz and 
Flynn 1996; Ito et al. 1997). Table methods for initial approximations have been 
the subject of many studies (Parker and Hamblen 1992; Das Sarma and Matula 
1994, 1995; Schulte and Swartzlander 1994; Schulte and Stine 1997; Matula 2001). 



392 CHAPTER 7 Iterative Approximation 

Area/Delay Analysis 
Area/performance comparisons of digit recurrence and multiplicative division 
and square root implementations are provided in Soderquist and Leeser (1996). 

Implementation 

An overview of implementation issues is presented in Oberman and Flynn (1997). 
Specific implementations have been presented in many papers (Anderson et al. 
1967; Markstein 1990; Kabuo et al. 1994; Oberman 1999; Naini et al. 2001). 
Acceleration of the multiplicative method is proposed in Ercegovac et al. (2000). 

Miscellaneous 

Alternative convergence methods for division based on Taylor-series approxima- 
tions of the reciprocal are presented in Wong and Flynn (1992) and Agarwal et al. 
(1999). A hybrid scheme with Newton-Raphson and digit recurrence methods is 
described in Montuschi et al. (1994). Use of rectangular multipliers is discussed 
in Briggs and Matula (1993) and Wong and Goto (1994). Error analysis of the 
Newton-Raphson method for reciprocals is considered in Fowler and Smith 
(1989). 

Verification 

Correctness proofs are considered in Rusinoff (1998) and Cornea-Hasegan et al. 
(1999). Iterative methods are often used in software routines to implement high- 
precision floating-point division and square root using limited-precision hard- 
ware (Karp and Markstein 1997). 
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Ce~PTE~ 8 Floating-Point 
Representation, 
Algorithms, and 
Implementations 

Many scientific and engineering applications require computations with real 
numbers. To represent these numbers, fixed-point representations can be used. 
However, in many cases the range of this representation does not correspond to the 
range required by the applications, producing frequent overflows and underflows. 
A standard solution is the use of floating-point representations. In this chapter 
we present this representation, consider its properties, and discuss the algorithms 
and implementations for the basic arithmetic operations. 

8ot Floating-Point Representation 
As indicated, a floating-point representation is used to represent real numbers. 
Since, as in a fixed-point representation, the floating-point representation is 
encoded in a finite number of bits, it is possible to represent only a finite subset of 
the infinite set of real numbers. For a specific floating-point system, a real number 
that is (exactly) represented in the system is called a floating-point number. The 
rest of the real numbers either fall outside the range of the representation (over- 
flow and underflow) or are represented by floating-point numbers that have a 
value that approximates the real number. The process of approximation is called 
roundoffand produces a roundoff error. 

397 
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8,~I ,,,! S i g n i f i c a n d ,  E x p o n e n t ,  a n d  Base  

The representation of the floating-point number x consists of two components, 

the significand M x (also called the mantissa) 1 and the exponent Ex ,  such that 

x --  M x x b Ex 8.1 

where b is a constant called the base. The sign of the number is determined by 

the sign of the significand. The exponent is a signed integer. 

The signed significand can be represented using any representation system, 

such as sign-and-magnitude or two's complement. Today the most used repre- 

sentation is sign-and-magnitude. In such a case, a floating-point number x is 

represented by a triple (Sx, M x ,  E x ) ,  that is, 

x = ( - 1 )  sx •  •  Ex 8.2 

where Sx ~ {0, 1 } is the sign and Mx denotes the magnitude of the significand. 

We assume this representation in the rest of the chapter. Moreover, we refer to 

the magnitude of the significand as "the significand" and use the term "signed 

significand" when we include the sign. 2 The representation of the exponent is 

discussed later. 

A d v a n t a g e :  D y n a m i c  R a n g e  

The objective of using floating-point representation is to increase the dynamic 
range, with respect to a fixed-point representation. This dynamic range is defined 
as the ratio between the largest and the smallest (nonzero and positive) number 
that can be represented. 

For a fixed-point representation using n radix-r digits for the magnitude, 
the dynamic range is 

DRfxpt : r n - 1 8.3 

1. We include the superscript * to indicate a signed significand and distinguish it from the 
magnitude, which we denote Mx. 
2. Although our presentation is limited to the sign-and-magnitude representation, the 
modifications for other representations are straightforward. 



Floating-Point Representation 399 

In contrast, for the floating-point representation, 

Mmax b Emax 

D R f l p t -  MminbEmi n 
8.4 

For instance, if the n digits are partitioned so that m digits are used for the 
significand and n - m digits for the exponent, and b = r we get 

DRflpt - -  (r m - 1)r (r . . . .  1) 8.5 

As an example, ifn = 32, m = 24, r = 2 

DRfxt,  t -  232-  1 ~ 4.3 x 109 

D R  at,, - -  (224 - 1)22s-1 ~ 9.7 x 1083 

As mentioned before, a large dynamic range is required in many applications 
to avoid overflows and underflows. If the dynamic range of the fixed-point rep- 
resentation is not sufficient, complicated scaling operations have to be included 
in the program. Thus, a floating-point system is preferable in such applications. 

8,1  o3 Disadvantages: Less Precision, Roundoff Error, 
and Complex Implementation 

The precision of a representation corresponds to the number of digits of the 
significand. Since in the floating-point representation the total number of digits is 
partitioned between the significand and the exponent, for the same total number 
of digits, the floating-point representation has a smaller precision than the fixed- 
point representation. In the example given for the illustration of the dynamic 
range, the precision of the fixed-point representation is 32 bits, whereas that of 
the floating-point representation is 24 bits. 

Moreover, floating-point arithmetic introduces roundoff errors and makes 
analysis of accuracy of the results more difficult. 

Another disadvantage of using a floating-point representation is the more 
complex implementation of floating-point operations, which leads to a larger area 
and a slower execution. 



400 ,,~:;::. iiii~:~i~! .,~':~,~ ii ::::~,~ 'iii :'~ ~i!!!il ~:::;iil ~:.ii~. F l o a t i n g - P o i n t  R e p r e s e n t a t i o n ,  A l g o r i t h m s ,  a n d  I m p l e m e n t a t i o n s  

~ m ~  

XXXX.XXXXXXXX 

~ f ~  

ulp 

F I G U R E 8 .1  R e p r e s e n t a t i o n  o f  s i gn i f i c and .  

Range of Significand and Unit in the Last Position (ulp) 

For a fixed-radix representation of the significand, its range is mainly determined 

by the position of the radix point. In general, the m digits are divided into integer 

digits and fractional digits (see Figure 8.1). We denote by f the number of 

fractional digits, so that the number of integer digits is m - f .  Then, for magnitude 
representation 

m - f - ]  

M -  E diri 8.6 
i = - f  

The corresponding range of the (nonzero) significand is 

r - f  < M < r m - f  - r  - f  8.7 
m m 

One of the representations used is to have only fractional digits ( f  = m). 
That is, 

m 

M -- y ~  dir-i 8.8 
i=1 

Notice the change in the indexing convention. In this case, the range of the 
(nonzero) significand is 

r-m < M <  l m r - m  8.9 

Another common choice is to have one integer digit ( f  -- m - 1) so that 

m--1 

M -- ~ dir-i 8.10 
i=0  

resulting in a range 

r-(m-1) < M < r - r--(m-l) 8.11 
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The difference between two consecutive values of the significand is called an ulp 
(unit in the last place). In terms of the representation described (see Figure 8.1) 

ulp -- r - f 8.12 

The error introduced by representing a real number with a floating-point 

number is typically given in ulps. For example, if the floating-point result is 
1.374 x 10 -4 (with an ulp of 10 -3) and the exact result obtained using infinite 

precision is 0.00013755, the error is 1.5 ulps. 

Normalized, Unnormalized, and Denormalized Representation 

The floating-point representation is redundant; that is, a floating-point number 

can have several representations. For example the number 1 can be represented 
as M = 1, E = 0 or M = 0.5, E = 1, with b = 2. This redundancy is not 

convenient, for instance, for the comparison of values. Consequently, a unique 

representation is used. Moreover, to improve the potential "accuracy" of the com- 

putations it is convenient to eliminate nonsignificant leading zeros. For this, 
the normalized representation is defined so that the most-significant digit of the 
significand is always different from zero (except for the zero value). 

On the other hand, using a normalized representation reduces the range of 

floating-point numbers since now the smallest significand is 

m 

r ~" ~ _ - f - 1  1 0 . . . 0 . 0 . . . 0  r ~ 

f 

so that the smallest floating-point number is 

8.13 

m- f -1  Emin r • b 8 .14  

To avoid this reduction in range, unnormalized representation is also included 
for the values that cannot be represented in normalized form. That is, in this 

case unnormalized significands are only allowed with the minimum exponent. 

These unnormalized numbers are called denormalized numbers (denormals). With 

the use of denormals, as numbers decrease in magnitude they gradually include 

more most-significant zeros in their significand; this is called gradual underflow. 
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Significand 

0.100 
0.101 

0.110 I 
0.111 

Denormals 

I , , , I , , , I  
I ' ' ' 1 ' ' ' 1  

1 1 
0 "g a" 

1 1 1 

[A, B] - -  negative floating-point numbers (normalized) 
[D, E] - -  positive floating-point numbers (normalized) 
(B, b] & [d, D) - -  denormals 
C - -  zero 
> E - -  positive overflow 
< A - -  negative overflow 
(B, C ) -  negative underflow (normalized) 
(C, D) - -  positive underflow (normalized) 

(a) 

I I I I I I I "- "- 

1 
1 2 

Exponent -2 -1 0 1 

( b )  

F ! G U R E S.2 (a) Regions in floating-point representation. (b) Example for m -- f = 3, r --  2, 

a n d - 2  < E < 1 (only positive region). 

For the value zero also a unique representation is used. The usual convention 
is to represent zero by M -- 0 and the minimum exponent. 

8o l  ~,6 Values Represented and Their Distribution 

The set of floating-point numbers (values represented by a floating-point system) 
depends on the range of the significand and of the exponent. Figure 8.2(a) shows 
the different regions in which a floating-point system divides the real numbers. 
The points A, B, and so on in the figure are defined in the following table: 
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A 

B 

C 

D 

E 

Floating-Point System 

Normalized Unnormalized 

( r m - f  r - f )  • b Em~x 

- r  m - f - 1  x bEmin --r - f  X b Emin 

+0 

r m - f - 1  • b Emin r - f  x b Emin 

(r m - f  r - f  ) X b Emax 

The overflow regions correspond to values that have a larger magnitude than 
what can be represented. Similarly, the underflow regions correspond to small 

values that cannot be represented. 
As an example, Figure 8.2(b) shows the values represented for a floating- 

point system with a normalized fractional significand of f - 3 radix-2 digits, 
and an exponent in the range - 2  < E < 1. For simplicity, only positive values 

are shown. 
As indicated in Figure 8.2, the floating-point numbers are not uniformly 

distributed along the real number line. They are more dense close to 0. Density 
depends on the exponent base and the partitioning of bits among significand and 
exponent. The difference between two consecutive values is (for same exponents 

E and r - b) 

A - - r - f r  E - - r  E - f  8.15 

Tables 8.1, 8.2, and 8.3 and Figure 8.3 illustrate the distributions of floating- 
point numbers for three representations with n -- 6 bits, a normalized fractional 
significand ofm - f bits, and an integer exponent of e bits (for positive signifi- 
cand and exponent). 

Choice of b 

As illustrated by Tables 8.1 and 8.3, the choice of the base b affects the range and 
number of values represented as well as the distribution of these values. Moreover, 
it has an impact in the implementation of floating-point addition, where variable 

shifters are required (see Section 8.4). 
In summary, larger b results in a larger range and more values but in less den- 

sity. Moreover, larger b simplifies the shifter required for floating-point addition. 
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8 . 1 . 8  

Significand 

0.1000 

0.1001 

0.1010 

0.1011 

0.1100 

0.1101 

0.1110 

0.1111 

2 E 

2 4 8 

1 2 
9 9 
8 4 

10 10 
8 4 

11 11 
8 4 

]2 3 
8 

13 13 
8 4 

14 14 
8 4 

15 15 
8 4 

T A B  L �9 8.1 Distribution for b = 2, m = f = 4, and e = 2. 

Significand 

0.100 

0.101 

0.110 

0.111 

1 2 4 8 

2 E 

16 

8 

10 

12 

14 

32 

16 

20 

24 

28 

64 

32 

40 

48 

56 

128 

64 

80 

96 

112 

TABLE S.i Distribution for b = 2, m = f = 3, and e = 3. 

Many studies have been made to quantify these trade-offs, and the present con- 

clusion is that best is b = 2. 

Representation of Significand 
As mentioned in the introduction, the significand is a signed number, so that a 

representation system for signed numbers is required. The most used are sign- 

and-magnitude and two's complement.  Today sign-and-magnitude is preferred 

because it is considered a more natural representation, and it simplifies some- 

what the implementation of multiplication and most aspects of floating-point 

addition. Although two's complement representation simplifies the addition of 

significands, this is a relatively small portion of overall floating-point addition. 

In the rest of the chapter we assume a sign-and-magnitude representation. 
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Significand 

0.0100 

0.0101 

0.0110 

0.0111 

0.1000 

0.1001 

0.1010 

0.1011 

0.1100 

0.1101 

0.1110 

0.1111 

1 
1 
4 

5 
16 

6 
16 

7 
16 

1 

9 
16 

10 
16 

11 
16 

12 
16 

13 
16 

14 
16 

15 
16 

4 ~ 

16 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

64 
16 

20 

24 

28 

32 

36 

40 

44 

48 

52 

56 

60 

T ABLE 8.S Distribution for b = 4, m = f = 4 (r = 2), and e = 2. 

For r - -  2 and normalized format, the most-significant bit of the significand 

is always 1. Consequently, it does not have to be included in the representation. 

This is called the hidden bit. 

8ol  os Representation of Exponent 

The exponent E is a signed integer, which can be represented by any of several 

systems, such as sign-and-magnitude, true-and-complement,  and biased. The 
biased representation is preferred in this case because 

�9 it simplifies the comparison of floating-point numbers, making it the same 
as fixed-point comparison 

�9 the min imum exponent is represented by 0, so that the representation of the 

floating-point value 0 is all zeros (0 sign, 0 exponent, 0 significand) 

In a biased representation with bias B, the signed integer E is represented by the 

positive integer denoted by E8 such that 

E s = E + B  8.16 
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b=2 ,  f = 4 ,  e = 2  

E: 1 2 

I I . . . . . . .  I . . . . . . .  I 
I I ' ' ' " " 1 ' ' " ' " 1  

1 0 ~ 1 2 

b = 2 ,  f = 3 ,  e = 3  

E: 1 2 

I I , , , I , , , I  
I I ' ' ' 1 ' ' ' 1  

1 0 ~ l 2 

4 8 

, I  , I I I 
' ' 1  ' I I I 

4 5 6 7 

( a )  

4 8 

I , I I I 
I ' i I I 

3 4 5 6 

(b) 

16, 32, 64, 128 

o e e  
I I 
I I 

7 8, 10, 12, 14, 16, 20, 24, 28, 
32, 40, 48, 56, 64, 80, 96, 112 

b = 4 , f = 4 ,  e = 2  

E: 1 

I I , I  . . . . . . .  I , ,  I 
I I " ' l ~ ' ' " ' |  ' ' '  I 

1 1 1 2 O ~ g  

4 

, I  , , I  
' I ' ' I  

3 4 

(e) 

16, 64 

c o o  
I I I I I 
I I I I I 

5 6 7 8, 9 ..... 16, 20, 24 ..... 60 

F I G U R E  8.3 Examples  of  distr ibutions of  f loat ing-point  numbers .  

To represent the minimum exponent by E/3 -- 0, we obtain 

B - -  - Emin 

Moreover, for a symmetric exponent range 

- B  < E  < B  

resulting in 

O < _ E B  < _ 2 B  

Ife is the number of bits of the binary representation of Et3, then 

8.17 

8.18 

8.19 

2B < 2 e - 1 8 . 2 0  m 
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8o~!~ 10 

Consequently, for B integer we obtain 

1 
B < - ( 2  e - 2 ) - 2  e - l - 1  8.21 

- 2  

For instance, for e -- 8 we can make B -- 127 and 

E/3 -- E + 127 8.22 

for a symmetric exponent range o f -  127 < E < 127. Note that the maximum 

value of Et3 is 255, so that this value can be used to represent E -- 128 (nonsym- 

metric range) or as a singularity condition. 

Special Values 
These are values that are not representable in the floating-point system, but are 

useful. Two examples, which are included in the IEEE Standard presented later, 

are N A N  (not a number) and infinity (positive and negative). For instance, the 

result of the square root of a negative number is set to NAN. Moreover, an 

operation that has a N A N  as an operand produces a N A N  result. These features 

allow computations to continue in the presence of NANs, without special checks. 

The availability of infinities allows the use of arithmetic on infinities. 

Exceptions 
There are cases in which a floating-point operation produces a value that is not 

representable in the floating-point number system. In such cases, a flag is set. The 

computation can continue or a trap to an exception handler performed (depending 

whether the exception handler is enabled). The most important exceptions are 

the following: 

�9 Overflow (exponent). Occurs when the magnitude of the result is larger 

than the largest floating-point number. 
�9 Underflow. Occurs when the (nonzero) magnitude of the result is smaller 

than the magnitude of the smallest floating-point number. 

Roundoff Modes and Error Analysis 
The result of a floating-point operation is a real number that, to be represented 

exactly, might require a significand with an infinite number of digits. Since the 

representation of the significand has only f fractional digits, it is necessary to 
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F1 F2 
x 

F I G O R S 8.4 Relation between x, Rmode(x), and floating-point numbers F 1 and F 2. 

obtain a representation that is close to the exact result. This is achieved by per- 

forming a roundoffoperation (also called rounding). We use the following notation: 

�9 The  exact (infinite precision) results are denoted by x, y, and so on. 

�9 The  floating-point number  that represents x by applying the roundoff  

mode  Rmode is denoted by Rmode(x). 

For  a satisfactory roundoff  scheme the following relations have to be satisfied: 

1. Order ing.  I fx  < y, then Rmode(x) < Rmode(y). 

2. Representability. I fx  is representable in the floating-point system (x is a 

floating-point number) ,  then Rmode(x ) -- x. 

3. Conta inment .  If  F 1 and F2  are two consecutive floating-point numbers  

such that F 1 < x < F 2, then Rmode(x) should be either F 1 or F 2, as 

illustrated in Figure  8.4. Observe that F 1 and F 2 have the sign o fx .  

Several roundoff  modes are used. We now give the definition of the modes used 

in the I E E E  Standard and then discuss them in more  detail. Other  modes are 

described in the references. 

Consider the real number  x and the consecutive floating-point numbers  F 1 

and F2  such that F 1 < x < F 2, as shown in Figure  8.4. Then:  

�9 Round to nearest (tie to even). Rnear(x) is the floating-point number  that is 

closest to x. If  there is a tie, the significand of Rnear(x) should be even 

(least-significant bit equal to 0). 3 Tha t  is, 

F1 if I x - E l l  < I x - F 2 ]  

Rnear(x)--  F2  if I x - E l l  > I x - F 2 [  8.23 

even(E1, F2) if Ix - E l l -  Ix - F2l 

3. It is also possible to define a round to nearest mode with tie to odd; we use the convention 
of the IEEE Standard. 
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�9 Round toward zero. For this mode, Rzero(x) is the closest to 0 among F 1 

and F2.  Tha t  is, 

F1 ifx > 0 8.24 
Rzero(x)- -  F2  ifx < 0  

�9 Round toward plus infinity. For this mode, Rpinf(x) is the largest among 

F 1 and F 2, so 

Rpinf(x ) -- F 2 8.25 

�9 Round toward minus infinity. For this mode, Rninf(x) is the smallest 

among F 1 and F 2, so 

Rninf(x) = F 1 8.26 

The  roundoff  modes are characterized by numerical and implementat ion 

characteristics. The  numerical characteristics can be described by the following 

set of errors: 

1. The  (maximum) absolute representation error ABRE (MABRE). The 

absolute representation error is defined as the difference between the 

represented value and the exact value. Tha t  is, 

ABRE = Rmode(x ) - x  8.27 

so that 

. 

MABRE = maxx ( IABREI) 8.28 

The  bias (RB). This is defined as the average absolute error considering 

an unsigned significand 4 and measures the tendency toward errors of a 

particular sign. To compute this average, it is necessary to consider a 

frequency distribution of the values of  the unsigned significand. The  usual 

assumption is a uniform frequency distribution, 5 in which case 

RB lim ~-]M~{Mm+tl(Rm~ -- M) 
- -  8.29 

t~oo #M 

4. If the signed significand is used, the bias would be zero for most rounding modes. 
5. Although this uniform distribution might not occur in typical applications. 
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where  {Mm+t } is the set of  all unsigned significands with m + t bits, and 

# M  is the number  of  significands in the set. 

3. The  relative representat ion error (RRE), defined as 

Rmode(x ) - x 
RRE - -  8.30 

x 

We now discuss fur ther  the errors and implementa t ion  characteristics of  the previ- 

ously defined modes. We consider the case of  s ign-and-magni tude  representation 

of  the significands. 6 For  this, we describe x exactly by the triple (Sx, Ex, Mx), 

with Mx normal ized  but having infinite precision. 7 Moreover, we decompose Mx 

into two components  M f  and Ma such that 

Mx -- M f + Md • r - f  8.31 

with 0 < Ma < 1. Namely,  M f  has the precision of  the significand in the 

f loating-point  system and Ma represents the rest. 

8os Round to Nearest (Unbiased, Tie to Even) 

Since in this mode  the value represented is the closest possible to the exact value, 

it produces the smallest absolute error. Because of this, it is the default  mode  of 

the I E E E  Standard.  

In terms of the operat ion on the infinite precision significand, 8 round to 

nearest can be described as follows: 

M f  -+-r - f  if Ma > ! 
R n e a r ( x ) -  - 2 

1 M f if Ma < 
8.32 

6. From this discussion, the determination for other representations, such as two's comple- 
ment, is straightforward. 
7. Because of this infinite precision x might not be a floating-point number. On the other 
hand, note that x is inside the range of the floating-point numbers. 
8. The definitions of the roundoff modes refer to the "infinite precision significand" (exact 
value). However, in the implementation of the floating-point operations, this exact value 
might not be obtained; consequently, it is necessary to implement the operations so that the 
approximation to the exact value obtained is suitable for the rounding. We discuss this 
further for each operation. 
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Equivalently, the round to nearest consists of adding ( r - f ) ~ 2  to the infinite 

precision significand and keeping the resulting f fractional digits. That  is, 

r - f  f ) r  - f  R n e a r ( x ) - - ( [ ( M x + - - f f - ) r  ] 8.33 

For Md ~ 1, the addition of r - f  can produce a significand that cannot be 

represented (significand overflow). In such a case, the resulting significand is 

multiplied by/)-1 and the exponent incremented by 1. 

E X A M P L E  8 .1  The exact value 1.100100011101 is rounded to nearest with 8-bit precision as 
follows: 

1.100100011101 

+ 1 

1.10010010 �9 

The absolute error is 

ABRE[Rnear] -- [ - M d r - f  x b E 

I (1 - M d ) r  - f  • b E 

1 if Ma < -~ 

1 ifMd > 3  
8.34 

1 The maximum absolute error occurs when Ma -- 3, resulting in 

r - f  
MABRE[Rnear] = • b Emax 8.35 

2 

We now consider the bias. As indicated above, the absolute errors for Ma = a 
1 and for Ma -- 1 - a (for a < 3) have the same magnitude but different sign. 

Consequently, with respect to the bias, these errors cancel each other. The only 
1 remaining case is for a -- 3, which produces a positive error. To have a bias 

equal to 0, this case is treated in a special manner. As indicated before, the IEEE 

Standard specifies that in this case the rounding is done to even. 9 That  is, the 

9. Rounding to odd in the tie case also has a bias of zero. However, round to even is preferable 
because it leads to less error when the result is divided by 2ma common computation. 
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8 . 2 . 2  

unbiased round to nearest is 
1 ifMd < 2  

1 ifMd > g  

1 if Md -- g and M f  -- even 

1 if Md -- g and M f  -- odd 

Ms 
M f  + r  - f  

Rnear(x) = 8.36 
Ms 
M f  -{-r - f  

Consequently, for this mode 

RB[Rnear] = 0 8.37 

This roundoff mode is illustrated in Figure 8.5(a) for f = 2. 

In summary, round to nearest (unbiased) produces the smallest possible 
absolute error 1~ and has a zero bias. However, the implementation of this mode 

requires an addition, so it is slow. We will see ways of reducing the delay for 
specific operations. 

Round Toward Zero (Truncation) 

In terms of the operation on the infinite precision significand, the rounded sig- 
nificand is obtained by discarding Md. That is, 

Rzero(x) = ( Lm x r f j ) r  - f  - -  m f  8.38 

The absolute error is 

ABRE[Rzero] = - M a r  - f  x bE 8.39 

Since Ma < 1 the maximum absolute error is 

MABRE[Rzero] ,~ r - f  • b Emax 8.40 

This absolute error is larger than for round to nearest. Moreover, since for un- 

signed significand the absolute error is always negative, the bias is significant. Its 
value is 

1 
RB[Rzero] , ~  - - r  - f 8.41 

2 
This roundoff mode is illustrated in Figure 8.5(b) for f = 2. The imple- 

mentation of this mode is simple. 

10. Since it selects the nearest floating-point number. 
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Round Toward Plus and Minus Infinity 

These two directed modes are useful for interval arithmetic, in which the op- 

erands and the result of an operation are intervals. This permits the monitoring 

of  the accuracy of the result. 

In terms of the infinite precision significand and the sign, 

M f  + r - f  i fMa > 0 and S -- 0 8.42 
Rpinf(x)  -- MU i f M a - - 0 o r S - - 1  

M f  -+- r - f  if Ma > 0 and S - 1 8.43 
Rninf(x)  -- M f  i f M a - - 0 o r S - - 0  

As in the round to nearest, the addition of r - f  c a n  produce a significand 

overflow. 

These roundoff  modes are illustrated in Figure 8.5(c) and (d) for f = 2. 

Note  that in an implementat ion using sign-and-magnitude,  these modes require 

the use of the sign. The determination of errors and bias are left as an exercise. 

IEEE Standard 754 
As we have seen, there are many parameters that define a floating-point rep- 

resentation system. This resulted in a variety of floating-point processors with 

different representations, producing different results to the execution of the same 

program. In some cases, because of anomalies, the results might  be very different. 

To avoid this, the IEEE Floating-point Standard 754 was developed. It is claimed 

that this standard 

�9 minimizes anomalies 

�9 enhances portability 

�9 enhances numerical quality 

�9 allows different implementations 

We now describe the main components of the IEEE Standard 754, which is used 
11 today by most floating-point processors. 

11. The reasons for the choices, as well as additional details, are presented in several of the 
references at the end of this chapter. 
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8~176  1 Representation and Formats 

The two parts of the representation are as follows: 

First, the significand is in sign-and-magnitude representation. Consequently, 

it is represented by two components: 

�9 Sign S. One bit. S = 1 if negative. 

�9 Magnitude (also called the significand). Represented in radix 2 with one 

integer bit. That  is, the normalized significand is represented by 

1 .F 8.44 

where F of f bits (depending on the format) is called the fraction and the 

most-significant 1 is the hidden bit. The range of the (normalized) 

significand is 

1 < 1 .F < 2 -  2 - f  8.45 
m 

Second, the exponent is base 2 and in biased representation. The  number  of 

bits of the exponent field is e, depending on the format. The  representation is 

biased with bias B = 2 e-1 - 1. 

The  three components are packed into one word, in which the order of the 

fields is S, E,  F.12 This order makes comparisons simpler. 

The  value zero, denormals, and the special values N A N  and infinities are 

represented as follows: 

�9 The  representation of floating-point zero is E = 0 and F = 0. The  sign S 

differentiates between positive and negative zero. Because of this 

representation and the hidden bit, the value 1.0 • 2 -8  is not represented. 
�9 The  representation E = 0 and F :fi 0 is used for denormals; in this case 13 

the floating-point value represented is v = ( -1 ) s2 - ( /3 -1 / (0 .F ) .  

�9 The  max imum exponent representation (E = 2 e - 1 = 2B + 1) is used to 

represent not-a-number (NAN) for F ~ 0 and plus and minus infinity for 

F = 0 .  

The system has two formats: basic and extended. Moreover, the basic format al- 

lows representation in single and double precision. We now describe these formats. 

12. To simplify the notation we use here E (instead of E/3) to denote the biased representation 
of the exponent. 
13. Note that in this case the hidden bit is not used. 
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In each case we give the three components with the number  of bits in parentheses. 

We call v the value represented. 

1. Basic: single (32 bits) and double (64 bits) 

�9 Single: S(1), E(8), F(23) 

(a) If  1 < E < 254, then v - (--1)S2E-127(1.F) (normalized fp 

number).  

(b) If E -- 255 and F --J: 0, then v - -  N A N  (not a number).  

(c) If E -- 255 and F -- 0, then v - ( - 1 )  s oo (plus and minus 

infinity). 
(d) If  E -- 0 and F =/: 0, then v - ( - 1) s 2-126(0.F) (denormal,  

gradual underflow). 
(e) If E -- 0 and F -- 0, then v -- ( - 1) s 0 (positive and negative 

zero). 

�9 Double: S(1), E(11), F(52) 

- Similar representation to single, replacing 255 by 2047, and so on. 

2. Extended: single (at least 43 bits - S (1), E (11), F (31)) and double (at least 

79 bits - S(1), E(15), F (63)). 

Rounding 
Rounding modes are: 

�9 Default: Round to nearest, to even when tie 

�9 Directed" Round toward plus infinity; Round toward minus infinity; and 

Round toward 0 (truncate) 

Operations 
Operations include: 

�9 Numerical :  Add, Sub, Mult, Div, Square root, Rem 

�9 Conversions: Floating to integer; Binary to decimal (integer); Binary to 

decimal (floating) 

�9 Miscellaneous: Change formats; Compare  and set condition code 
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E x c e p t i o n s  

The IEEE standard defines the following five exceptions. By default these excep- 
tions set a flag and the computation continues. The implementation can include 

a trap handler for each exception that, when enabled, is called when an exception 

O c c u r s .  

�9 Overflow (when rounded value is too large to be represented). Result is set 

to +infinity. 

�9 Underflow (when rounded value is too small to be represented). 

�9 Division by zero. 

�9 Inexact result (result is not an exact floating-point number). Infinite 
precision result different from floating-point number. 

�9 Invalid. This flag is set when a N A N  result is produced. 

Floating-Point Addition 
We now consider the algorithm and implementations for floating-point addition. 

The algorithm is given in generic terms, whereas the implementations are tuned 

to the IEEE standard. 

Let x and y be the operands represented by (Sx, Mx, Ex) and (Sy, My, Ey), 
respectively. The significands are normalized. We consider addition or subtrac- 

tion, so that the result 

z - x + y  

is represented by ( Sz, Mz, Ez),whereMz is also normalized. Let M x -- (-1)SxMx 
and define similarly My and M z . The high-level description of this operation is 
composed of the following four steps: 

1. Add/subtract significand and set exponent: 

M] -- (M] -4-(My • N(Ey-Ex))). X b Ex 

( ( M  x x b (Ex-Ey)) Jr- My) • b Ey 

Ez -- max(Ex, Ey ) 

ifEx > E y 

ifEx < E  y 
8.46 

That is, the significand of the number with the smallest exponent has to be 

multiplied by b to the power of the difference between the exponents 

8.47 
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(this operation is called alignment) and then added/subtracted to the other 
significand. This is illustrated as follows: 

Ex - Ey = 4 

Mx 1 .xxxxxxxxxxx 

My (2 (Ey-Ex) ) 0.000 lyyyyyyyyyyy 

Z . Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z  

The exponent of the result is equal to the largest of the exponents of the 
operands. 

2. Normalize significand and update exponent. The result of Step 1 might be 
unnormalized (as described later). Consequently, it has to be normalized 
and the exponent has to be updated accordingly. 

3. Round, normalize, and adjust exponent. 

4. Set flags for special cases. 

We now give the basic algorithm corresponding to this description. 

Basic Algorithm 

The above high-level description results in the following basic algorithm: 

1. Subtract exponents (d = Ex - Ey). 

2. Align significands. This consists of the following: 

�9 Shift right d positions the significand of the operand with the smallest 
exponent. 

�9 Select as the exponent of the result the largest exponent. 

3. Add (subtract) significands and produce sign of result. This is a signed 
addition. The effective operation (add or subtract) is determined by the 
floating-point operation (ADD or SUBTRACT) and the signs of the 
operands, as follows: 



Floating-Point Addition 419 

Floating-Point Signs of Effective Operation 

Operation Operands (EO P) 

ADD equal add 
ADD different subtract 

SUBTRACT equal subtract 
SUBTRACT different add 

From now on we refer to the effective operation. 
The sign of the result depends on the signs of the operands, the 

operation, and the relative magnitude of the operands (see exercise 8.15). 

Normalization of result. Three situations can occur: 

(a) The result is already normalized: no action is needed. 

1.10011111 

0.00101011 
ADD 

1.11001010 

(b) When the effective operation is an addition, there might be an 
overflow of the significand. The normalization consists of the 
following: 

�9 Shift right the significand one position. 

�9 Increment by one the exponent. 

1.1001111 

0.0110110 
ADD 

10.0000101 

NORM 1.00000101 

(c) When the effective operation is subtraction, the result might have 
leading zeros. The normalization consists of the following: 

�9 Shift left the significand by a number of positions corresponding 
to the number of leading zeros. 

�9 Decrement the exponent by the number of leading zeros. 
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1.1001111 

1.1001010 

SUB 

0.0000101 

NORM 1.0100000 

Round. Perform the rounding according to the specified mode. This 

might require an addition. If an overflow occurs because of this 

addition, it is necessary to normalize by a right shift and increment the 

exponent. 

Determine exception flags and special values. Exponent overflow (special 
value 4- infinity), exponent underflow (special value gradual underflow), 

inexact, and the special value zero. 

8 . 4 , 2  Basic Implementation 

The previous algorithm is implemented by the block diagram of Figure 8.6. To 

make the description more specific, we consider a representation of the type of 

the IEEE standard. Namely: 

�9 The significand is normalized and represented in sign-and-magnitude. The 
magnitude is M -- 1.F, where the 1 corresponds to the hidden bit and is 
appended to the fraction at the beginning of the operation. 

�9 The base of the exponent is 2. This results in the use of radix-2 shifters. 14 

Note the following: 

1. To have only one alignment shifter, it is convenient to swap the significands 
of the operands, according to the sign of the exponent difference. 

2. The adder is a sign-and-magnitude adder. Since direct implementation of 

sign-and-magnitude addition is complicated, several options using two's 

complement addition are presented in Section 8.4.7. 

14. Although the IEEE standard uses a bised representation for the exponents, in all 
operations we give the descriptions using the unbiased value. When using biased 
representations we include the subscript B. 
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0 
sgn(d) 

EOP 

Sy 

I SIGN 

Sz 

MUX 

UPDATE 

Ez 

I EXPONENT 
DIFFERENCE I 

d 

Ss 

I SM-ADD/SUB I~'EOP 
ovf 

"1 L/R1-SHIFTER 

ovf_rnd I ROUND I 

l 

Mx= I.F x My= I.Fy 

I SWAP }.---. sgn(d) 

1 
I R-SH,FTER t - - - d  

LOD I 

(fraction only) 

I SPECIAL 
CASES I 

Exponent overflow/underflow, 
zero, inexact, NAN 

EOP: effective operation 
R-shifter: variable right shifter 
IERl-shifter: variable left/one position right shifter 
LOD: Leading one detector 

F i G U R E S . 6  Basic implementation of floating-point addition. 

3. The normalization step requires 

�9 the detection of the position of the leading 1, done with the block 
labeled LOD (Leading-One-Detector) 

�9 a shift performed by the shifter (no shift, right shift of one position, or 
left shift of up to m positions) 

�9 the appropriate updating of the exponent 

4. The rounding step uses several guard bits as discussed in the next section. 
The overflow due to rounding results in the significand of the form 
1 0 . 0 0 0 . . . 0 .  A right shift to produce the correct significand 1.000..0 leaves the 
fraction part unchanged and requires no implementation since the integer 
bit (hidden bit) is implicit. Of course, the exponent is incremented in the 
case of rounding overflow. 



422 c N A ~ ~t ~!i ~;z 8: Floating-Point Representation, Algorithms, and Implementations 

8o4,~3 Guard Bits and Rounding 

Because of the right shift of one of the operands during the alignment step, the 

result of the addition/subtraction may have more fractional bits than the operands. 
Moreover, during the normalization a left shift of the result might be performed. 
Finally, during the rounding step these additional bits are disposed of and the 

result has a significand of f fractional bits. 
To get the correct final result after the normalization and rounding, a possi- 

bility is to obtain all the fractional bits of the addition. However, we now show 

that this is not necessary, and a few additional fractional bits are sufficient. These 

additional bits are called guard bits. 
To determine the number of guard bits, we first review the requirements for 

the normalized result of the addition for the different rounding modes: 

�9 For rounding toward zero (truncation), only the f fractional bits are 

required. 
�9 For rounding to nearest, one additional bit is required ( f  + 1 fractional 

bits). Moreover, for unbiased rounding to even, it is necessary to know 

when the rest of the bits are all zero. 

�9 For rounding toward infinity, it is necessary to know when all the bits to be 

discarded are zero. 

In summary, to be able to perform any of the rounding modes, f + 1 fractional 
bits of the normalized result are required, plus the indication of whether the rest 
of the fractional bits of the normalized result are all zero. 

So the question we consider now is how many bits have to be produced by 
the effective addition/subtraction before normalization. We consider two cases: 
effective addition and effective subtraction. 

In effective addition, the result of the addition is either normalized or pro- 
duces one additional integer bit. Consequently, the normalization might require 

a 1-bit right shift and no left shift is required. 

Therefore, f + 1 fractional bits of the result are required. Moreover, it 

is necessary to determine whether all the discarded bits are zero. Since these 

discarded bits are produced by the alignment and are obtained by adding 0 to the 

bits shifted out by the alignment, it is sufficient to determine whether all the bits 

shifted out by the alignment are O. This situation is represented by the sticky bit 
T, which corresponds to the OR of the discarded bits. 
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EXAMPLE 8.2  

EXAMPLE 8 .3  

ADD 

1.0101110 

0.00010101010 

1.01110001 T = OR(010) = 1 �9 

The second case is effective subtraction. Here we consider two subcases: 

The difference of exponents d is larger than 1. Then, as shown in the 

following example, the smallest operand is aligned so that there are more 
than one leading zeros. As a consequence, the result of the subtraction is 
either normalized or, if not normalized, has only one leading zero. Since, 
for this last case, the normalization is performed by a left shift of one 

position, in addition to the bit for rounding to nearest, another bit is 

required in the result of the addition. Consequently, f + 2 fractional bits of 
result are required. 

Moreover, during the subtraction, a borrow into position f + 2 is 

produced if any of the shifted-out bits is different from zero. This borrow 
is determined by the sticky bit, defined in the previous situation, which 
also serves for the unbiased rounding to nearest and for rounding toward 
infinity. 

Therefore, the width of the subtraction has to be of f + 3 fractional 
bits, the last bit being the sticky bit. 

After alignment: 

1.0000011 

0.000011011001 

SUB 

During al ignmentcompute T = O R ( 0 0 1 ) = I  resulting in 

1.0000011 

0.0000110111 

SUB 

N O R M  

0.1111100001 

1.1111000010 
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. The  difference of exponents is either 0 or 1. Only in this case, the result 

might  have more than one leading zeros (up to m). Consequently, a left 

shift of up to rn positions is required. However, as shown in the example, 

since the alignment shift was only of zero or one position, at most one 

nonzero bit is shifted in during the normalization. Consequently, only one 

additional bit is required in the result of the subtraction. 

EXAMPLE 8 . 4  

SUB 

1.0000011 

0.11111001 

0.00001101 

N O R M  1.10100000 �9 

In summary, in all cases it is sufficient to perform the addition with three addi- 

tional bits. These are called guard (G), round (R), and sticky (T). 

We now consider the use of these bits to perform the different rounding 

modes. First the normalization is performed and the bits after normalization are 
labeled as follows: 15 

L G R T  

1 .XXXXXXXXXXXX 

Note that during the shift right of normalization the sticky bit has to be 

recomputed as the OR of the previous value of T and the previous value of R. 

Round to Nearest (Tie to Even) 

As indicated by (8.36) in rounding to nearest mode we round up (add 1 to position 

L) if G = 1 and R and T are not both 0, and round to even if G = 1 and 

15. Actually, after normalization only two bits are needed if the sticky bit is recomputed as 
R+T.  
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8~,,..~4o4 

R = T = 0. Consequently, calling rnd the value to be added to bit L, we get 

�9 If G = 1 and R and T are not both zero, rnd = G ( R  + T) .  

�9 If G - -  l a n d R = T = 0 t h e n r n d = G ( R + T ) ' L .  

Combining both cases, 

rnd = G ( R  + T) + G ( R  + T ) ' L  = G ( L  + R + T) 8.48 

Note that in this implementation, we need to determine first the bits L, G, R, T 

to compute rnd and perform the increment. In some implementations it might 
be preferable to do as follows: 

1. Always add 1 in position G (which produces the rounding to nearest). 

2. Correct the bit in position L if there is a tie. Namely, make L -- 0 if 
G ( R + T ) ' = I .  

R o u n d  t o w a r d  Zero  

In this case the result after normalization is truncated at bit L. 

Round toward Infinity 

For round toward positive infinity, add one to L when the sign is positive and G, 
R, and T are not all zero. That  is, 

rnd = sgn'( G + R + T) 8.49 

where sgn is the sign of the result. 

Similarly for round toward negative infinity: 

r n d -  sgn( G + R + T) 8.50 

Exceptions and Special Values 

We now discuss the exceptions and special values that may occur in floating-point 
addition and subtraction. 

Overflow: This situation can occur when the exponent is incremented 

during normalization (because of overflow of addition requiring a right 

shift of significand) and because of overflow of significand during the 

rounding step. It is detected by an exponent E > 255. The overflow flag is 
set, and the result is set to -+-infinity. 
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�9 Underflow: This situation can occur when the exponent is decremented 

during normalization (left shift of significand). The underflow flag is set, 

and the result exponent is set to E = 0. The fraction is left unnormalized 

(denormal, gradual underflow). 

�9 Zero: This situation occurs when the significand of the result of addition is 
0. The result is E -- 0 and F = 0. 

�9 Inexact: This situation is detected before the rounding; the result is inexact 

if G + R + T = 1. The inexact flag is set. 

�9 NAN:  If one operand (or both) is a NAN,  then the result is set to NAN. 

8,~4o5 Denormal and Zero Operands 

When an operand is a denormal number (E = 0 and F ~ 0), then there is no 

hidden 1. Consequently, the operand of addition should be set to E = 1 and 0.F. 

The rest of the algorithm remains unchanged. 

The zero operand (E = 0 and F = 0) is treated in the same way as a 

denormal number. 

8o4~,6 Delay and Pipelining 

The delay, or latency, of the floating-point addition corresponds to the critical 
path, obtained from the delay graph shown in Figure 8.7. As in any combina- 
tional network, the critical path might not be the sum of the critical paths of the 
individual modules. However, if networks with logarithmic delay are used for 
the adders and the LOD, a reasonable first approximation is to add the critical 

path delays. Since the delay is large and floating-point additions are frequent, the 

unit is usually pipelined. The number of stages depends on the clock cycle. 

8~.4~ Alternative Implementations 

There are several modifications that have been developed for the implementation 

of floating-point addition. The main objective of these modifications is to reduce 

the latency, and the approach is to combine mutually exclusive steps and/or to 

perform in parallel independent steps. Since a variety of possibilities exist, we 

illustrate the approaches by two designs, one single-path implementation and 
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C, Exponent difference ) 

C Swap ) 

C ) 

( Add significands ) 

C .oo ) 

C ) 

C Special cases ) 

F I G U R E  8.7 Dependence graph for basic implementation of floating-point addition. 

one double-path implementation. Other variations are described in the references 
listed at the end of the chapter. 

Single-Path Implementation 16 

This implementation is shown in Figure 8.8. It results from the following changes 
to the basic implementation considered before: 

1. The sign-and-magnitude addition is performed using a two's complement 
adder. When an effective subtraction is performed, one of the operands is 
complemented (bit-inversion put carry-in to the adder) and the result is 
complemented if negative. To avoid the complementation of the result, 
which would require a bit-inversion and the addition of one ulp, the 

16. Although this implementation has two partial paths, it is called a "single-path" 
implementation to distinguish it from the next one, which has two completely distinct 
significand datapaths. 
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I - .  

I EXPONENT 
DIFFERENCE I 

a ~ I 
sgn(d) 

EOP 
Sy 

sgn(d) 
zero(d) crop 

MUX I 

f , 
UPDATE 

EOP: effective operation 
R-shifter: variable right shifter 
L-shifter: variable left shifter 
L1/Rl-shifter: one position left/right shifter 

SWAP i s~'('~ 

I , 
I R-SH~ER h--  

I I 

CONDITIONAL BIT-INVERT I CONDITIONAL BIT-INVERT I 
I 

LZA I OV~ Two's COMPLEMENT L 
ADDER / sub 

3 ms bits of 
L-SHIFTER I I LI/RI"SHIFTER ~ adder output 

ovf_rnd I" ~ (ovf, A[O], a[l]) 

I COMPARE I I  ~ c~p 

zero(d) control 

I MUX 

Mz 

ROUND I 
I 

] (ovf, A[O], A[1]) = 000  

(handling of special cases not shown) 

F I G U e E S . S  Improved single-path floating-point addition. 

smallest operand is complemented so that the result is always positive. To 
determine the smallest operand, two cases are considered: 

�9 The exponents of the two operands are different. In this case, during 
alignment, the significand corresponding to the operand with smallest 
exponent is shifted right. Consequently, this corresponds to the 
smallest operand to the adder and is complemented. 

�9 The exponents of both operands are the same. In this case, it is 
necessary to compare the significands. This comparison is performed 
in parallel with the alignment module, so it does not increase the delay. 
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EXAMPLE 8.S 

. 

. 

Leading-zeros anticipation (LZA). 17 This module determines the position 

of the leading one in the result, concurrently with the actual addition. In 

this way, it eliminates the delay of the leading-one detector from the critical 
path. 

Performing the rounding in parallel with the massive left shift. The 
massive left shift (more than one position) is required only when the output 

of the adder has at least two leading zeros (actually, three including the 
carry-out). As discussed before, this can only occur when there is an 
(effective) subtraction and the difference in exponents is 0 or 1. Therefore, 
the shift left of at least two positions introduces a 0 into bits G, R, and T, 
and no roundup is required. 

SUB 

1.0000101 

0.11111101 

0.00001101 

N O R M  1.11010000 = Round down in all modes �9 

Consequently, two concurrent paths can be designed, as follows: 

�9 Path 1, including a 1-bit left/right shift (to incorporate also normaliza- 
tion in effective addition) and the rounding 

�9 Path 2, massive left shift (2 or more positions) 

After these paths a selection is performed so that the left path in the figure is 
chosen when the three most-significant bits of the output of the adder (including 
the carry-out) are 0. 

Note that in this implementation we have included the comparator and the 
bit inverters, required by the scheme that uses a two's complement adder with an 
output that is always positive. 

17. This has also been called leading-one prediction (LOP). For algorithms and implemen- 
tations, see the references at the end of the chapter. 
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I swAP I 

l 
I l- 

LZA I 

CLOSE PATH 

sub AND (Id[ = 0 or 1) 

[ RI-sHIFTER ] 
t 

INVERT, ADD, 
ROUNDAND 

INVERT 
MODULE 

FAR PATH 

add OR (sub AND Id[ > 1) 

1 
I R-sHIFTER I 

CONDITIONAL BIT-INVERT I 

l 
ADD, 

ROUND AND 
NORMALIZE 

MODULE 
.~1 L-SHIFTER ] "-I 

I Control signals, / 1 
handling of exponent, sign, 1 ~ 0 ~ 

special values not shown I MUX , ~-- sub AND (Idl = 0 or 1) 
! 

R1-SHIFTER: one-position right shifter 
R-SHIFTER: variable right shifter 

u 

L-SHIFTER: variable left shifter Mz 

F ! G U R �9 8 . 9  D o u b l e - p a t h  i m p l e m e n t a t i o n  o f  f l o a t i n g - p o i n t  a d d i t i o n .  

Double-Datapath Implementation 
In the single-datapath implementation the critical path includes two variable 

shifters: one for alignment of the operands and the other for normalization of 

the result. However, as indicated before, the normalization of the result requires 

a shift of more than one position only when the operation is subtraction and the 

exponent difference is zero or one; moreover, for this case the alignment is at most 

of one position. Consequently, as shown in Figure 8.9, it is possible to define two 

disjoint paths: 
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Swap 
r 

( LZA ) 

( Rl-s.,. ) 

I Invert, add, round, 1 and invert 

"-( L-shi~ ] 
-L 

C Conditional bit-invert ) 

1 

( Mux ) 

Add, round, 1 and normalize 
I 

F ! G U R t O. 10 Dependence graph for double-path scheme. 

CLOSE, for subtraction and exponent difference of zero or one 

FAR, for addition and for subtraction with exponent difference larger than 
one 

In the CLOSE path, there is a simple shifter for alignment of at most one 

position, the adder, the variable left shifter for normalization, and the module for 
rounding. 18 In contrast, the FAR path has a variable right shifter for alignment, 

the adder, a one-position left-right shifter for normalization, and the module for 
rounding. 

The dependence graph of the double-path scheme (significand part only) is 
shown in Figure 8.10. 

To balance the delay of both paths, the following has to be considered: 

1. To achieve a higher throughput, the floating-point adder is pipelined, as 
shown in Figure 8.11. As can be seen, to pipeline the double-datapath 
implementation it is necessary to have two adders, one per path, because the 
addition occurs in different stages of the pipeline: in the CLOSE path 
simultaneously with the variable right shifter of the FAR path, and in the 
FAR path simultaneously with the variable left shifter of the CLOSE path. 

18. Note that in Figure 8.9 (for both paths) the rounding is included in the module together 
with the adder and is performed before the normalization; this is explained later. 
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To reduce the latency, the rounding is combined with the adder and 

performed before the normalization. This combined addition + rounding 

is performed by having a compound adder (which produces the sum and 

the sum plus 1) and the correct rounded result is selected from the two 

possible outputs. Specifically: 

�9 For the CLOSE path, roundup might be required when the exponent 

difference is one and the output of the adder is normalized. 

EXAMPLE 8 .6  

SUB 

1.1100100 

0.10000001 

1.01000111 

R O U N D  1.0100100 �9 

For the FAR path, roundup might be required both when the result of 

addition is normalized or unnormalized (with one additional integer 

bit for addition and with one leading zero for subtraction). Since the 

rounding is done before normalization, the selection of the correct 

output has to take into account the various positions of the rounding 
bit. 

To illustrate the operation of the ADD, ROUND, and 

NORMALIZE module we show the case of effective addition and 
rounding to nearest. 19 In this case, the ADD part produces two 

outputs: Sum (of inputs) and Sum + one (sum-plus-one), both up to bit 
position m - 1 (L). Moreover, we have also bits m (G),rn + 1 (R), and 

the sticky bit (T),  which correspond to the operand that has been 

19. The complete description can be obtained from references at the end of this chapter. The 
operation has additional complications for subtraction because of the 1 to be added for two's 
complement, and for round toward infinity when overflow occurs because an additional 
output of sum plus two is needed. 
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shifted right. Then, for the selection among the two outputs of the 

adder, two situations have to be considered: 

The result of addition (Sum) is normalized. In this situation, the 

rounded result is (L is bit position m - 1 of Sum) 

rounded -- I Sum 
! Sum + one 

if (G' + L' R' T') = 1 

i f G ( R + T + L )  = 1  
8.51 

The result of addition (Sum) has one additional integer bit. In this 

situation, the rounded result is (L* is position m - 2 of Sum) 

R1SHIFT(Sum) 
rounded -- 1SHIFT (Sum + one) 

i f (L '  + (L*) 'G'R 'T ' )  -- 1 

i f L ( L ' + G  + R + T )  = 1  

8.52 

3. The magnitude subtraction is performed with a two's complement adder, 
as discussed for the single-datapath case. However, for the case in which the 

exponents are the same (CLOSE path) it is not possible to perform a 

comparison of the significants before the adder, since this adder is in the 
first stage of the pipeline. Consequently, to avoid the two's complement of 
the result when it is negative (which would require an incrementer), we do 

as follows: 

�9 Bit-invert one operand. 
�9 Select the sum plus one output if the result is positive and the bit invert 

of the sum if the result is negative. 

Note that because of the swap at the input, the difference can be negative 
only when the exponents are equal, and therefore this situation does not 

conflict with the roundup. 
In the FAR datapath, the swap assures that the output is always 

positive. 

4. Leading-zeros anticipation (LZA) is included in the CLOSE path (as 

discussed for the single-datapath case). 

As seen in Figure 8.11, the use of a double-path implementation might reduce 
the latency by one pipeline stage. However, it increases significantly the area. 
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8 .~<,,~ ~xr %~. .  Floating-Point Multiplication 
We now consider the algorithm and implementations for floating-point multi- 
plication. The algorithm is given in generic terms, whereas the implementations 
are geared to the IEEE standard. 

Let x and y be the operands represented by (M], Ex) and (My, Ey), respec- 
tively. The significands are signed and normalized, and the result 

z - - x x y  8.53 

is represented by (M z, Ez), where M z is also signed and normalized. The high- 
level description of this operation is composed of the following four steps: 

1. Multiply significands and add exponents. 

M z - -  M x x My 8.54 

Ez -- Ex + Ey 8.55 

2. Normalize M] and update exponent. 

3. Round. 

4. Determine exception flags and special values. 

Basic Implementation 

As in addition/subtraction we now consider an implementation in which operands 
and result significands are in sign-and-magnitude representation. Moreover, to 
be specific we consider the representation of the significand as in the IEEE 
Standard 754, that is, normalized and in the range [1, 2). The number of bits of 
the significand is m - -  f -~- 1 bits, of which the most-significant bit is hidden. 

The first three steps are implemented as follows: 

1. Multiplication of magnitudes, addition of exponents, and generation of 
sign. 

�9 Multiplication of magnitudes produces a magnitude P of 2m bits. 
Since only m bits are required in the result, from the second half we 
require only one guard bit and the sticky bit, for rounding. No 
additional guard bit is necessary, as discussed below. 
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. 

�9 The implementation of the addition of the exponents depends on the 
representation. In a biased representation, the addition is performed by 
adding the representation of the exponents and subtracting the bias. 
That is, 

E/3,z --  E/3,x + E/3,y - -  B 8.56 

�9 The sign of the result is 

Sz -- Sx @ Sy 8.57 

Normalization. Since 1 < Mx, My < 2, the result of the multiplication is 
in the range [1, 4). Consequently, it might be necessary to normalize by 
shifting one position to the right and incrementing the exponent. 

Since no normalization left shift is required, the result of multiplica- 
tion requires only one guard bit (and the sticky bit) for rounding. Note that 
the sticky bit has to be updated during the normalization shift, so that the 
new sticky bit is equal to the OR of the previous guard bit and the previous 
sticky bit. The output of multiplier module P is in positions: 

( -1)0 .123. . .  (m - 2 ) ( m  - 1)m(m + 1) . . . (2m - 2 )  8.58 

If P [ -  1] - 0, P is normalized: 

L - -  P[m - 1 ] ,  G -- P[m], T - - O R ( P [ m  + I ] , . . . , P [ 2 m  - 2 ] )  

8.59 

If P [-1] -- 1, normalize P by shifting right one position: 

L -- P[m - 2], G -- P[m - 1 ] ,  T -- OR( P[m], . . . ,  P[2m - 2]) 

8.60 

Rounding. The four rounding modes are implemented as in floating-point 
addition, but now with only one guard bit (G) and the sticky bit (T). 

R o u n d  to Nearest  (to Even  i f  Tie) 

The rounding is done by adding rnd to the L position (least-significant position 
of the result), where 

rnd = G T  + G T ' L  = G ( T  + L) 8.61 

with G and T being the two bits following L after the normalization. 
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As discussed for floating-point addition, it is also possible to do the rounding 
by adding 1 to the G position (after normalization) and updating the L bit for a 
tie. This method will be used in the modified implementations discussed later. 

R o u n d  toward Zero 

In this case the result after normalization is truncated at bit L. 

R o u n d  toward Infinity 

For round toward positive infinity, add rnd to L for 

rnd = sgn' ( G + T) 

where sgn is the sign of the result. 
Similarly for round toward negative infinity: 

rnd = sgn( G + T) 

Figure 8.12 illustrates the basic implementation discussed above. 

8.62 

8.63 

8 ~ 1 7 6  Exceptions and Special Values 
The exceptions and special values that happen in floating-point multiplica- 
tion are: 

Control signals, 
handling of exceptions 

not shown 

s~ Sy 

1 
I xoR I 

I EXPONENT 
ADDITION 

I EXPONENT 
UPDATE I 

Ez 

mby m 
MULTIPLIER 

P[-1:2m - 2]~ 2m 
/ 

P[ml+ 1:2m-21 [ 
m + 2 ] "  s  ~l STICKY 

P[ - 1 :m] 
I NORMALIZE ]L'G~~~ 

m+l~ lind 
I ROUND I ~ 

m I 
Mz 

F I G U R E  8,12 Basic implementation of floating-point multiplication. 
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8 ...... 5,~ 4, 

�9 Overflow: This situation can occur because the resulting exponent is too 

large. This is detected after the exponent update. The overflow flag is set 

and the result value is +infinity. 
�9 U n d e r f l o w :  The resulting exponent can be too small to be represented. In 

such a case, the underflow flag is set and the exponent is set to E -- 0. 

Moreover, the significand is shifted right to represent a denormal. 

�9 Z e r o :  The result of multiplication is zero when one of the operands has 

value 0 and the other is not +infinity. The zero result is set. 

�9 I n e x a c t :  The result is inexact if, after normalization, G + T -- 1. 

�9 NAN: The result is a N A N  if one (or both) of the operands is a N A N  or if 

one of the operands is a 0 and the other +infinity. 

Denormals 

As in addition, denormal operands do not have a hidden 1. When one (or both) 

operands are denormal, then the output of the multiplier will have leading zeros. 
Consequently, a variable left shift is necessary for normalization, as in floating- 

point addition (and a subtraction in the exponent). 
When there is an exponent underflow, the significand is shifted right to allow 

for gradual underflow (denormal result) and the exponent is set to 0. 

Delay and Pipelining 
The delay, or latency, of floating-point multiplication corresponds to the sum of 
the delays of the modules in the significand path of Figure 8.12. To increase the 
throughput, the unit is usually pipelined. The number of stages depends on the 
clock rate. Since the multiplier module has a larger delay than the other modules, 
it might be decomposed into several components, such as recoder, adder tree, and 
final adder, and these components included in different pipeline stages. 

Alternative Implementation 

To reduce the latency of floating-point multiplication, the following items can be 

included, as shown in Figure 8.13: 

�9 Computing only the most-significant half (plus the guard bit) of the result 

of multiplication in conventional representation and simplifying the 

computation of the effect of the second half on this first half. 
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Mx I MY I Control signals, 
handling of exponents 

and exceptions 
ruby  m 

MULTIPLIER not shown 

with CS OUTPUT 

PC [ - l : 2 m  - 3] 2m - 1 2m PS[-l:2m - 2] 
m -2 PS[m + 1:2m - 2] 

/ 

m -3 PC[m + l :2m - 3] | 

m + 2  ~ m + 2  Cm I T 
I 

i I: S z > NORMALIZE 
ROUND 

F ! G U R E  8 . 1 3  A l t e r n a t i v e  i m p l e m e n t a t i o n .  

STICKY 

One way to do this is to use the standard approach to implement 
multipliers in which the bit array is first reduced to two rows (carry-save 
representation of product) and then this carry-save representation is 
converted to a conventional representation. As shown in Figure 8.13, for the 
floating-point multiplier only the first part is converted, including the carry 
Cm produced by the second part. In this case, the delay of generating Cm is in 

the critical path. 
Overlapping the computation of the sticky bit with the multiplication. 
The basic way to compute the sticky bit requires that the second half of the 
product is produced in conventional representation. This would require 
a carry-propagate adder for the last part. The following two methods 
eliminate the need for this adder: 

1. The sticky bit can be determined directly from the operands for the 
multiplication. This results from the fact that for a prime radix, such as 
radix 2, the number of trailing zeros of the product is equal to the sum of 
the trailing zeros of the operands. Consequently, the value of the sticky bit 
is obtained from this sum. The implementation of this method requires 
detectors of the number of trailing zeros, an adder, and a comparator. 

2. The sticky bit can be determined from the carry-save representation 
of the second half of the product. This method is based on the general 
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method to determine whether the sum of two operands is zero, without 

actually performing the addition. This method can be described by 

adding - 1  to the sum and detecting the value -1 .  Since the repre- 

sentation o f -  1 is 1111..1 and this value can only occur when for all bit 

positions the sum bit plus the carry bit add to 1, the algorithm is as follows: 

S s s s s s s s s  

C c c c c c c c c  

- 1  1 1 1 1 1 1 1 1  

Z Z Z Z Z Z Z Z  

t t t t t t t  

Consequently, 

Zi - -  (S i ~ )  Ci )  t 

t i  --- S i +  1 + C i + l  
8.64 

Now we compute 

W i  - -  Zi f ~  ti  8.65 

and the sticky bit is 

T = N A N D  (w i ) 8.66 

�9 Combining in one module the carry-propagate addition (with inclusion of 
the carry from the second part), the normalization, and the rounding. 

A method to reduce the delay by removing the carry from the second 

half from the critical path is described at the end of this section. 

As shown in Figure 8.14, the carry from the second part (Cm) is added 
at the guard bit position. 

Now consider the rounding. We consider rounding to nearest (up if a tie) and 

then include the effect of sticky. The other rounding modes are left as an exercise 

(Exercise 8.31). Since we want to perform the rounding before the normalization, 
we need to consider two situations: 
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Product  P [ -  1:2m - 2] 

~ . ( m  + 2 ) ~  ~ , ( m -  2 ) ~  

XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXX 

Cm 

C m is the carry produced by 

the least-significant m - 2  bits of  product  P 

and added in position m. 

F I G U R S 8.14 Adding carry from the least-significant half. 

Bit position: (-1)(0) .123. . .  ( m - 2 ) ( m - l )  m 

0 1 .xxx. . .  x x x 

C m  

1 

(a) 

Bit position: ( - 1 ) ( 0 ) . 1 2 3 . . .  ( m - 2 ) ( m - l )  m 

1 x .xxx. . .  x x x 

1 Cm 

(b) 

F ! G U R E 8. lS Rounding position: (a) Normalized product. (b) Unnormalized product. 

1. The  product  is normalized.  Then  the rounding is performed by adding 1 to 

bit position m (see Figure 8.15(a)). 

The  product  is not normal ized (that is, it has to be shifted 1 position right 

for normalization).  Then  the rounding is performed before normalization by 

adding 1 to bit position m - 1, as shown in Figure 8.15(b). 

Since the product  is in carry-save form, it is not known  whether  it is normalized.  

Therefore,  to combine the rounding with the addition, both additions should be 

performed and then the correct one selected when it is de termined whether  the 

result is normalized.  

. 
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PS 

PC 

( - 1 )  O. 1 2 3 . . .  ( m - 2 ) ( m - l )  (m) 

X X X X X X X X 

X X X X X X X X 

! 
Cm C m < =  > (Cm + 1)2 - m  

PS" x x x x x x x x 

PC" x x x x x  x x 

G e t  P0 and  P1 = P0 + 2-m: 

PS* x x x x x  x x x 

PC* x x x x x  x x 0 

P0 ovf  x x x x x x x 

P1 x x x x x  x x x 

Af te r  selection: 

P 1. x x x . . ,  x L 

FIGURE 8.10 Adding carry Cm and rounding. 

Consequen t ly ,  cal l ing P M  the mos t - s ign i f ican t  par t  of  the produc t ,  ob ta ined  

by a d d i n g  PS plus PC up to posi t ion m,  we need  to c o m p u t e  

and  

and  then  select 

PO = P M  + (Cm + 1) X 2 -m 

P 1 --  P M  + (C m Jr- 2) X 2 -m 

P _ [ P 0  i f P 0 [ - l ]  - 0 

/ 2 - 1 p 1  if P 0 [ - 1 ]  --  I 

8.67 

8.68 

8.69 

Th i s  is i l lus t ra ted in F i g u r e  8.16. 

T h e  comple te  process can be i m p l e m e n t e d  as s h o w n  in F i g u r e  8.17, wh ich  

consists o f  the fo l lowing  parts: 
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P0[-1] 

L G 
PS[-1..m - 2] PS[m - 1] PS[m] 

PC[-1..m - 2] / PC[m - 
i 

_~_ m - t  m ...... 
m Half-Adders 

PC* { m + 2 ~ m + 2  PS* 

COMPOUND ADDER 

] (shifted) I ~  

MUX 

P0[ 1..m] 

P[1..m] \ 

m-2 

m - 1  

P[m -1, m] 

F z [1..m- 1] 
Rounded and normalized 

fraction of the result significand 

(r + 1) 2 -m 

~Cmm ~ 
C m 

Pl[m] 

' t 
I LAD  I 

I 
Last digit 

adjustment network 

F I G U R E 8.17 Adding carry, normalization, and rounding implementation. 

1. A row of HAs and FAs to add (C m + 1)2 -m tO PS[--1, m] and PC[-1, m]. 

2. A compound adder that produces the sum P0 and the sum plus 1 (P 1). 

3. A multiplexer that selects P0 or the normalized (shifted) P 1 depending 
whether P 0 does not overflow or overflows, respectively. 

4. A module LADJ that determines the least-significant bit of the significand. 
The tie situation (round to even) needs the use of the sticky bit. This sticky 
bit includes the guard bit when there was an overflow in the addition. 
Consequently, the sticky bit is updated by 

T* = T + P 1 [m ] �9 P 0 [ -  1] update sticky bit 8.70 

The expression for the adjustment of the least-significant bit in the tie case 
is based on the fact that the 1 added for rounding complements the bit in 
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position m. So, if tie corresponds to (bitm, T) = 10 before rounding, it 

corresponds to ( bitm, T) -- O0 after rounding. Consequently, 

L = P[m - 1](P[m] + T*) 8.71 

R e m o v i n g  8 m f r o m  Critical Path 

The carry of the second half can be taken out of the critical path as follows. As 

indicated, it is necessary to add to the position m of the carry-save representation 

of the product either (Cm + 1) or (Cm + 2), depending on the overflow condition. 

Then a compound adder produces the sum and the sum plus one, and the correct 

result is selected. Consequently, taking into account the sum and carry bits in 

position m, it is necessary to produce a value (~) from 1 to 5 in that position. This 

addition produces a carry (Cm_l) tO position m - 1, which can have a value from 

0 to 2. Therefore, a direct implementation of this would require the computation 

of the sum, sum plus one, and sum plus two, and the selection after ~ is known. 

This implementation is not convenient because of the three values required. 

The implementation can be simplified to select only among sum and sum 

plus one because three of the five bits that compose ~ are known in advance, 

specifically the sum and carry bits of the carry-save representation and the one 
added for rounding to nearest. In order to reduce the values of the carry tTm_ 1 tO 

(0, 1), a 1 is preadded to the carry-save representation in position m - 1 (reducing 

the range of ]E by 2). The different cases are shown in Table 8.4. 
The preaddition requires a row of half-adders as shown in Figure 8.18. The 

control of selection is done using the four bits composing ~ (see Exercise 8.33). 
Note that, in contrast to the previous implementation, in this case a right shifter 

is included after the selection. This is because, when there is overflow, P1 is not 

always selected. 

Carry + Sum Range of Range of 

in Position Y~ before Range Preadd E after 

m Preadd Of Cm-1 17 Preadd 

Range 

Of Cm-1 

0 [1,3] [0,1] 

1 [2, 4] [1, 2] 
2 [3,5] [1,2] 

no [1,3] [0,1] 

yes [0, 2] [0, 1] 

yes [1, 3] [0, 1] 

T A B  L E 8.4 Preaddition cases. 
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PC[-1. .m - 1] PS[ -1..m - 1] 

tm+l tm+l 

m + 1 Half-Adders 

tm tm+l 
~  

(m - 1) 

PS [m] 

PC [m] t 

"Preadd 1" 

I 
PP[-1] 

I J 
1 

tm+l tm+l 
COMPOUND ADDER 

I Pl[-1..m- 1] 

PC[m] PS[m] 

1 PO[-I] I~ ~ ~ l~Cm 
~Ot-lm-ll I S~, I 

MUX 

t PP[-1 . .m-1]  
PP[O..rn - 1] 

R1 S H I F T E R  

P[1..m-1] 

m-2 
P[m - 11 

m-1 

I_ I 
I- 

PP[m] 

PP[-1] 1 PO[m] 
~ I ~ ~T(sticky) 

I 

F z [1..m - 1] 
Rounded and normalized 

fraction of the result significand 

FIG U n t a. la Adding carry, normalization, and rounding implementation with carry out of 
critical path. 

8~176 Floating-Point Multiply-Add Fused (MAF) 

We describe the algorithm and implementation for fused floating-point mul- 
tiplication and addition z = x y + w .  This operation reduces the number of 
interconnections between floating-point units, the number of adders and nor- 
malizers, and provides additional accuracy compared to separate multiply and 
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add units. The increased accuracy is a consequence of having to perform a single, 
instead of two, round/normalize steps. It also helps compilers produce more effi- 
cient code. On the other hand, it increases the precision and delay of the adder and 
requires a more complex normalizer. The MAF unit can also be used to perform 
floating-point addition and floating-point multiplication by setting y = 1.0or 
w -- 0.0, respectively. 

The algorithm is given in generic terms, whereas the implementations are 
geared to the IEEE standard. Let x, y, and w be the operands represented by 
(M x, Ex), (My, Ey), and (M x, Ew), respectively. The significands are signed 
and normalized, and the result 

z = ( x  x y ) + w  8.72 

is represented by (M z, Ez), where M z is also signed and normalized. The high- 
level description of this operation is composed of the following five steps: 

1. Multiply significands M x and My, add exponents Ex and Ey, and 
determine the alignment shift and shift M w. Produce the intermediate 
result exponent Ez = max(Ex + Ey, Ew). 

2. Add the product and the aligned M w. 

3. Normalize the adder output and update the result exponent. 

4. Round. 

5. Determine exception flags and special values. 

Implementation 

We now consider an implementation in which operands and result significands 
are in sign-and-magnitude representation. Moreover, to be specific in the nor- 
malization step, we consider the representation of the significand as in the IEEE 
Standard 754, that is, normalized and in the range [1, 2). Again, the number of 
bits of the significand is m = f + 1, with a hidden most-significant bit. 

The organization ofa MAF unit is shown in Figure 8.19. For biased exponent 
representation, we have 

max(Ex + Ey, Ew) -- max (E~,x + EB,y -- B, EB,w) 8.73 

The alignment of the addend Mw with respect to the double-precision product 
is performed concurrently with the multiplication step. Since the product is not 
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E x Ey E w 

111 
I SHIFT DISTANCE/[ d 

EXPONENT [ 

max(E x + Ey, E w) 

EXPONENT 
UPDATE 

1 
Ez 

Control signals, sign, 
handling of exceptions 

not shown 

m W 

._l RIGHT 
"-[ SHIFTER 

3m+2{ 

LOP 

Mx My 

mby m 
MULTIPLIER 
(CS RESULT) 

I CSA 

, I t , 
II II 

3m+2 f 

_1 REALIGN/ I 
"-I NORMALIZE I 

m+lr 
[ ROUND r" 

 zmi 
F I G U R E a.  19 Basic i m p l e m e n t a t i o n  o f  M A F  operation.  

STICKY 

l 

shifted for alignment, the alignment requires a left shift of at most m + 3 positions 
(Figure 8.20(a)) and a right shift of at most 2m - 1 positions (Figure 8.20(b)). The 
maximum left shift is obtained by observing that the guard (position m) and the 
round (position m + 1) bits are 0 when the result significand corresponds to Mw. 
Consequently, two additional positions are included, resulting in the shift ofm + 3 
positions. The maximum right shift assures that Mw is shifted to the right of the 
least-significant bit of the product Mx x My. 

To avoid the bidirectional shifter, the addend Mw is positioned m + 3 bits 
to the left of the product, as indicated in Figure 8.21 (a), and shifted right by the 
distance 

d --  Ex  + Ey - Ew + m + 3 

which for biased exponent representation is performed as 

d --  EB,x + EB,y -- EB,w -- B + m + 3 

No shift is performed for d < 0 and the maximum shift is 3m + 1. 

8.74 

8.75 
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Product x.y:  

Addend: 

~ m ~  ~ 2 m ~  

00xx.xxxxx...xxxxxxxxxx 

l .XXXXXXXXXXXXX 

[ ~ m - l + 4 ~ ]  

(a) 

- - 2 m ~  

Product x.y: xx.xxxxx...xxxxxxxxxx 

Addend: 01 xxxxxxxxxxxxx 

Shift distance: ] m  2 m  - 2 + 1 ~ ]  

(b) 

FIG U R S 8.2O Position of addends using bidirectional shift: (a) Maximum left shift. (b) Max- 

imum right shift. 

The two zero bits shown in the figure are used as the guard and round bits 

when Mw is not shifted, that is, the result significand is Mw. Figures 8.21 (b), (c), 

and (d) show the different alignment situations. 
The multiplier produces 2m-bit carry and sum vectors that are reduced, 

together with the aligned Mw, in a (3rn + 2)-bit adder to produce a result (possibly 
unnormalized). Since the leftmost m + 2 bits of the adder input produced by the 
multiplier are always 0, the corresponding adder positions can be implemented as 
an incrementer with the carry-out of the lower part of the adder as the increment 
input. This implementation is shown in Figure 8.22. The sticky bit is adjusted 
after normalization. 

The output of the adder may require a realignment/normalization left shift 

to place the leading 1 in the leftmost position, as shown in Figure 8.23. Since 

the product is not shifted for alignment, the left shift can be up to about 2m 

positions, which is twice as much as in the floating-point addition. The additional 

rn positions are due to the initial position of the adder operands, as shown in 

Figure 8.21 (a). As in floating-point addition, for fast implementation, the leading- 
one position of the adder output is computed by a LZA module, concurrently 

with the addition. Moreover, the sticky bit is updated by the normalization. 

The rounding is performed after realignment/normalization. It involves 
obtaining the guard, round, and sticky bits and performing the actual rounding. 
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Initial  position: 

P roduc t  x.y: 

Addend"  

~ m ~  

1 .xxxxxxxxxxxxx 

] m m - - l + 4 ~  

2 m  

00xxxxxxxx . . . .  xxxxxxxxxxxx  

I 
] ~  sticky 

region 

(a) 

A l i g n m e n t  w h e n  Exy -- Ew: 

~ m ~  

P roduc t  x ,y :  

Addend"  

Shift distance: I m m - 1 + 4 

2 m  

00xx.xxxxx . . . .  xxxxxxxxxxxxxxx  

1 .XXXXXXXXXXXXX 

I-sticky] 

I 

(b) 

A l i g n m e n t  w h e n  Exy - E w  = k: 

~ m ~  ~ 2 m ~  

P r o d u c t  x ,y :  00xx.xxxxx . . . .  xxxxxxxx 

A d d e n d :  l xxxxxxxxxxxxx  

Shift distance: ] ~  m + 3 ~ ] ~  k ~ ]  

(c) 

A l i g n m e n t  w h e n  E x y -  E w  > 2 m -  1" 

~ m ~  ~ 2 m ~  

P roduc t  x ,y :  00xx.xxxxx . . . .  xxxxxxxx 

A d d e n d :  01xxxxxxxxxxxxx  

Shift distance: ] ~  m + 3 ~ ] - -  2m - 1 ~ ]  

(d) 

F I G U R E 8.21 Alignment with right shifter. 
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m W 

t m 
RIGHT 

SHIFTER 

t 
3m+2 

m+2  

tm 
mby m 

MULTIPLIER 

INCREMENTER ' ~  C S A + A D D E R  

•/m+ 2 .~2m 

To realign/normalize 

F I G U R E  8.22 Implementation of MAF adder. 

Adder output 1 ~  m+2 ~ l ~  2m ~ l  

Before shift 0000000000000000001.xxxxxxxxxxxxxxxxxxx 

After shift 1.xxxxxxxxxxxxLGRT 

F I G U R E 8 . 2 3  Left shifting of the adder output. 

In floating-point addition the delay of the rounding is reduced by performing it 
together with the addition and before the normalization. In the MAF case, this 
delay reduction is difficult because, at the adder output, the radix point can be 
anywhere in the leftmost m + 3 bits, so too many cases have to be considered. 

To increase the throughput, the MAF unit is usually pipelined. For example, 
in a three-stage pipeline, Stage 1 implements the multiplication, alignment, and 
3-2 carry-save addition; Stage 2 performs 2-1 addition and predicts the leading 
one in the sum; and, finally, Stage 3 performs normalization and rounding. 
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8~i 6 Floating-Point Division and Square Root 
We now consider algorithms and implementations for floating-point division and 
square root. The algorithms are given in generic terms, while implementations 
are determined by the IEEE standard. 

Division: Algorithm and Basic Implementation 

The operands are x and d, represented by ( M  i ,  Ex) and (M~, Ed), with M] 
and M~ signed and normalized. The result 

q = x / d  8.76 

is represented by (Mq,  Eq ), with Mq also signed and normalized. The high-level 
description of the floating-point division algorithm is composed of the following 
steps: 

1. Divide significands and subtract exponents. 

, 

3. 

4. 

M; - Mx/V; 

Eq -- Ex -- Ed 

Normalize M; and update exponent. 

Round. 

8.77 

Determine exception flags and special values. 

Figure 8.24 shows the basic implementation. For biased representation of the 
exponents, we produce the intermediate result exponent as 

E B,q - -  E B,x -- E B,d + B 8.78 

For the division of the significands the methods discussed in Chapters 5 and 7 
are used. 

The normalization step depends on the range in the representation of the 
significands. For instance, for the IEEE standard the range is [1, 2) so that Step 1 
results in a range ( �89 2). Consequently, normalization is required when the value 
is less than 1 (a left shift of one position and a decrement of the exponent). To 
perform this normalization, a guard bit (G) is needed. 
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Con olsi,n s  1 
sp ec i a l  c a s e s  

not s h o w n  
SIGNIFICAND 

EXPONENT DIVIDER 
DIFFERENCE 

Sx Sy 1 

UPDATE I I ROUND I 
s~ E~ Mqi 

F I G U R E S.14 Basic implementation of floating-point division. 

To perform the four rounding modes (after normalization), it is necessary to 

compute the significand of the quotient as a truncation of f + 1 fractional bits 

of the infinite precision quotient (that is, including another bit, the round bit R), 

as well as the sticky bit T. This sticky bit is needed for rounding to plus and to 

minus infinity and to determine whether the result is exact. However, it is not 

needed for rounding to nearest, since the tie condition cannot occur. This can be 

seen as follows: 
The tie condition corresponds to an ( f  + 1) -bit exact quotient when dividing 

operands with f - b i t  fractions. To show that this cannot happen, consider dividing 

Mx = 1 .x 1 . . .  x f by Md = 1 .d 1 ' ' '  d f .  The "exact" quotient with f + 1 fractional 
bits would be Mq = 1.q 1 . . .  q f  1 • 2 -e where e = {0, 1 }, because this quotient 
can be normalized or unnormalized.  Then,  (Ma • 2 f )  • (Mq X 2 f + l + e )  = 

Mx • 2f2 f +l+e, or 

l d l . . . d f  • l q l . . . q f l  x 21-e = l x l . . . X f  X 2 f+2 

Since the second factor of the left side is odd, the product cannot have more than 

f + 1 least-significant zeros. However, the right-hand side has at least f + 2 

least-significant zeros. Consequently, the identity cannot be true, and the tie case 

cannot occur. 
The actual rounding step depends on the method used to obtain the signifi- 

cand of the result (digit recurrence or iterative approximation). We consider these 

two situations now. 
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8 , 6 , 2  D i v i s i o n :  R o u n d i n g  

As indicated, to perform the rounding it is necessary to produce the normal- 
ized infinite precision quotient (significand) truncated to f + 1 fractional bits. 
Moreover, it is necessary to obtain the sticky bit. 

Rounding for  Digit Recurrence 

In the digit recurrence method the truncated quotient is directly obtained by the 
iterations of the recurrence, after the correction step to make the remainder posi- 
tive and the normalization. The sticky bit is provided by the condition "remainder 

not equal to zero." Consequently, the rounding requires the detection of the zero 

remainder and a conditional incrementation of the significand, depending on the 

roundoff mode and on bits G and T. The number of bits to be computed by the 

iterations is the number of bits of the normalized significand (m) plus two (the 

guard and the round bits) plus p, where, because of the initialization, p = 1 for 
p = 1 and p = 2 for p < 1 (see Section 5.2.2). 

To reduce the overhead of correction, normalization, and rounding, it is pos- 

sible to combine these steps in one cycle, together with the on-the-fly conversion 
of the last digit. We show now how to do this for the simplified case z~ in which 
the following applies: 

�9 We consider only rounding to nearest (remember that the tie case cannot 
occur). 

�9 The number of bits m + 2 + p is a multiple of K -- log 2 r. These bits are 
computed in (m + 2 + p ) / K  iterations. 

Let us call qL the digit obtained in the last iteration of the recurrence. For the 
correction step, it is necessary to determine the sign of the residual, defined by 

1 if residual is negative 
sign -- 8.79 

0 otherwise 

Since a negative residual makes it necessary to decrement the result, the correct 
value of the last digit becomes (qL -- sign), as shown in Figure 8.25. If the value 
ofqL is in the range [ - a ,  a ], the corrected digit is in the range [ - a  - 1, a ]. 

20. The more general case is described in references listed at the end of this chapter. 
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qL: 

G R  

~ K ~  

X X  . . .  X X X  

- s i g n  

+ n o r m  

+1 

qL: YYY "'" YYY 
t= ! a U R t= 8.2s Adjustment of the last quotient digit due to correction and rounding. 

We now consider the rounding. If it is done after normalization, it is per- 

formed by adding one in position G. However,  we need to consider also the 

case when the quotient is not normalized: in such a case a one should be added 

in position R. Consequently, both cases are included by adding in position R 

one plus n o r m ,  where n o r m  -- 1 if the quotient is normalized and 0 otherwise. 

Consequently, the corrected and rounded digit is 

q L - -  q L + n ~  + ( 1 - -  sign ) , q L E [--a , a + 1 ]  8.80 

Note that the value ofqL can be larger than r - 1, requiring one additional bit. 

Figure 8.25 shows this process. 

To determine n o r m ,  it is necessary to determine whether  the result would be 

normalized after performing the correction and the conversion, but before the 

rounding. Since this conversion is not performed, the situation has to be detected 

using the already converted part 21 (Q [L - 1], Q M [ L  - 1]), the digit qL, and 

sign. Specifically, 

n o r m  - -  

1 i fqc  - sign > 0 and Q [L - 1] is normalized 

1 i fqc  - sign < 0 and Q M [ L  - 1] is normalized 

0 otherwise 

8.81 

21.For the on-the-fly conversion, see Section 5.2.3. 
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o r  

Q [ L -  l]msb i f  q 6  - - s i gn  > 0 
norm --  - 8.82 

Q M [L - 1 ]msb if q L -- sign < 0 

Since qL can be larger than r - 1, it is necessary to incorporate to the on-the-fly 

conversion a third form 

Q P [ L  - 1] - Q [ L  - 1] 4- r - ( L - l )  

so that the rounded  significand before normal iza t ion  and t runcat ion to m bits is 

I 
( Q P [ L -  1],u) 

M M q  --  ( Q [ L  - 1 ] ,  u)  

( Q M [ L  - 1], u) 

with u - q c m o d  r .  

The  final m-bi t  significand is 

M M q [ O ' m  - 1] 

M q [ O ' m  -- 1 1 -  M M q [ 1  "m] 

i fq~  > r (condition K 1) 

i f 0 < q L  < r - 1  (cond i t ionK2)  

i fq~  < 0 (condition K3) 

8.83 

if MMq [0] = 1 (normalized case) 

discard M M q  [m, m + 1] bits 

i f M M q  [0] = 0 (unnormal ized  case) 

shift left and discard M Mq [m + 1] bit 

8.84 

where  V[a" b] denotes bits Va, . . . , Vb. 

The  updat ing  of  Q[ j ]  and Q M [.1.] are described in Chapter  5 for the on- 

the-fly conversion. For  the rounding,  the form Q P [j] - Q [ j ]  + r - J  is also 

needed,  22 and the updat ing  is done according to the following expression" 

(Q P F], 0) 

Q P[j + 1 ] -  (Q[j], (qj+l + 1)) 

(QM[j], (r -[qj+l] + 1)) 

i f  q j + l  = r - 1 

if - 1  < q j + l  < r - 2 

if q j + l  < - 1  

8.85 

Table 8.5 describes the updat ing  for the radix-4 case, with signed-digit  set q j E 

{-3, ...,3}. 

22. Note that this form is only needed when qL > r, which can occur when a > r - 2. For 
instance, this form is not needed in the radix- 16 implementation with a = 10 (see Exercise 
8.43). 
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qj+l Q[j + 1] Q M[j + 1] Q P[j + 1] 

3 
2 
1 
0 

-1  
- 2  
- 3  

(Q[j], 3) 
(Q[j], 2) 
(Q[j], 1) 

(Q[j], 2) 
(Q[j], 1) 
(Q[j], o) 

(Q P[ j ] ,  o) 

(Q[j], 3) 
(Q[j], 2) 

(Q[j], o) (QM[j], 3) (Q[j], 1) 
(QM[j],2) 

(QM[j], 1) 
(QM[j], O) 

(QM[j],  3) 
(QM[j],  2) 
(QM[j], 1) 

(Q[j], o) 
( Q M[j 1, 3) 
(QM[j],2) 

T A B L E 8.5 Updating of forms for radix 4. 

EXAMPLE 8 .7  The following example illustrates the rounding-to-nearest process for a radix- 
4 division with a - 2. Since a -- r - 2, it is necessary to include QP. We show 
the conversion of quotient digits qL-1 and qL. Note that we have already 
shifted the quotient by two bit positions, which is required by the fact that the 
initial condition is x /4 .  

Q[L - 2] 

QP[L - 2] 

QM[L - 2] 

q L - 1  

Q [ L -  11 

Q P [ L -  11 

Q M [ L -  1] 

qL 

SUm 

carry 

1.xx . . . x 2 3  

1.xx . . .x30 

1.xx . . . x 2 2  

- 1  

1.xx . . . x223  

1.xx . . . x230  

1.xx . . . x 2 2 2  

--2 

residual 

01011001 

00101000 

The residual is negative (sign - 1). Moreover, q L is negative and 
QM[L - 1] is normalized, so that norm - 1. Consequently, 

qL -- --2 + 1 + 0 -  --1 8.86 
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E X A M P L E  8,8 

Therefore, MMq -- ( Q M [ L  - 1], 3). Since MMq is normalized, we get 

Mq = QM[L - 1] = 1.x x . . . x 222 8.87 

To verify that this is correct let us compare with the result when the round- 
ing is done after conversion, correction, and normalization. The conversion 
would produce 

Q[L] = (QM[L  - 11, 2) = 1.xx . .x2222 

Since the residual is negative, correction produces 

Q [L] = 1.x x ..x 2221 

8.88 

8.89 

The result is already normalized, so for rounding, 2 has to be added to the 
last digit, namely, 

Q[L] 1.xx...x2221011 

1 

Then the result is truncated, producing Mq = 1.xx ...x 222. 

Implementation. A possible implementation of the rounding-to-nearest scheme 
is shown in Figure 8.26. It consists of three left-shift registers to keep the forms 
Q[j  ], Q M [j], and Q P [j], logic to generate the digit to concatenate, and the 
loading controls. 

The rounding is performed by the selection described by expression (8.84). 
In addition, it is necessary to have a network to detect the sign of the residual 
from its redundant representation, as discussed in Section 5.3.1. 

R o u n d i n g  f o r  I terat ive Approx imat ion  

The algorithms presented in Chapter 7 result in approximations that do not 
produce directly the truncated quotient required for rounding, even if the error 
is small enough. This is illustrated by the following example. 

In this example q is the infinite precision quotient (here 16 bits) and qc 
are two approximations (also 16 bits) with error less than 2 -l~ We see that 
for the first approximation the truncation to four bits does not produce the 
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truncated q" 

qc  

1 2 3 4 5 6 7 8 9 0  1 2 3 4 5 

1 . 1 0 1 1 [ 0 0 0 0 0 0  0 0 1 0 1 

1 . 1 0 1 0 1 1 1 1 1 1 1  l x x x x  

1 . 1 0 1 1 ] O 0 0 0 0 0 x x x x x  

Parallel load with 
wired left shift 

,11 

ri [ 
QMin 

I.. Load/shift |-. 

Qin 

Q [ ]<Load/shift 
~z 
< 

o 

qj+l 

K1 
K2 
K3 

K 
-~ j<l qL 
(.9~ l~ Q[L-1]msb 

QM[L - 1]msb 
i< sign 

u ~ K K = log2r 

Q~ Q~; QP! 
I vANol I vANol I A,61 

' 

vector gates 
Jfm + 2 MMq 

I ~H'F~"ONC'~ I 

M~ 
F!G U RE 8 . 2 6  A n  implementation of quotient conversion, correction, normalization, and 
rounding. 
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Moreover, the algorithm does not produce the sticky bit (zero remainder). 23 

As illustrated in the previous example, the cases for which it is not correct to 

truncate the approximation correspond to approximations that have a string of 

all zeros or all ones after the truncation bit. It has been shown that for division 

the maximum length of this string is about 2 f  bits (for the exact number, see the 

references at the end of this chapter). Consequently, it is correct to truncate an 

approximation that has an error of about 2 -2f .  This method has the disadvan- 

tage that producing such an accurate approximation might require additional 

iterations and a wider multiplier and adder. 

An alternative is to produce the truncated approximation with an error 

of about 2 - f  and then compute the corresponding remainder and correct the 

approximation for the cases in which the remainder is not correct (not positive or 

not bounded by d • 2-~f+1)). This also allows the detection of the zero remainder 

condition. We now consider two cases depending on whether the approximation 

is always from one side (for instance, from above) or from either side. 

Case 1: Approximation from One Side. As discussed in Chapter 7, the one-sided 

approximation is achieved by the implementation of the Newton-Raphson algo- 

rithm with a suitable roundofferror in the last iteration. In this case, the approx- 

imation is from below. However, the rounding is simpler if the approximation is 

from above, e4 To achieve this approximation from above with an error bound of 

2 -w, the approximation from below with the same error bound is incremented 
by 2 -w. 

So, we consider that the approximation is from above. Moreover, we assume 
that the approximation has an error of less than 2 -(f+l) . That is, ifq is the infinite 

precision quotient and qc is the approximation, then 

0 < qc - q  < 2-(f+1)  8.90 

This situation is described by Figure 8.27, which represents the discrete real- 

numbers line. 

As can be seen, qt, the truncated qc to f + 1 fractional bits, has the two 

possible values A and B, and only A is the correctqT. Consequently, to determine 

23.As indicated in the previous section, this remainder can only be 0 i f q f + l  = 0. 
24. For the case from below, see Exercise 8.39. 
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q 

q T  

q c  

Y 

q t  

is infinite precision value 

truncation of q (to granularity 2 -(f+l)) 

computed value (from above error <2 -(f+l)) 

region of qc 

truncation of qc (two possible values A and B) 

qc 

q t  

r t  + -- 

F I G U R E 8.27 Quotient approximation. 

. . . . . . . . .  qqqqqqqq . . . . . . . . .  Discrete real-number line 

] ] ] ] points of granularity 2 -(f+l) 

q T  

YYYYYYYYYYYYYYYY 

A B 

whether the computed qt is correct, it is necessary to obtain 

rt - -  x - - q t  • d 8.91 

Because the approximation is from above, rt > 0 for qt n A and rt < 0 for 

q t -" B .  Consequently, 

q r  - qt i f  rt > 0 

q T  - - q t  -- 2-(f+1) i f  rt < 0 

The sticky bit is zero i f r t  = 0 or i f r t  -- - d  • 2 -(f+l).  

All four rounding modes can be achieved by observing the sign and zero 

value of rt and position f + 1 of qt (called the guard bit g) and selecting q f ,  

q f  -~- 2 - f ,  or q f  - -  2 - f ,  where q f  is q t truncated to position f .  
For instance, for rounding to nearest the rounded value is qT + 2-(f+1) 

truncated to f fractional bits. Consequently, we have the following cases: 

�9 rt > O. ThenqT -- qt and the rounded value i s q f  + g 2  - f .  

�9 rt < 0. Then qT -- qt - 2-(f+l) and the rounded value i s q f .  

Case 2: Two-Sided Approximation. As described in the previous chapter, the 

direct method produces a one-sided approximation if the precision of the multi- 
plications is sufficient, but a two-sided one for less precision. 
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8~176 

. . . . . . . . .  qqqqqqqq . . . . . . . . .  

I I I I 
q T  

q c yyyyyyyyyyyyyyyyyyyyyyy 

q t  A B C 

r t  + + - 

F I a U R m 8 . 2 8  Two-sided quotient approximation. 

For a two-sided approximation, 

]q - qc ] < 2-(f+1) 8.92 

The situation is described by Figure 8.28. 

As can be seen, qt can take three possible values. So, rt - -  x - q t d  is com- 
puted and 

q T  - - q t  if0 < rt < 2-(f+l)d 

q T  - - q t  + 2-(f+l) i f  rt > 2-(f+l)d 

q T  - -  qt  - -  2-(f+l) i f  rt < 0 

This requires a comparison o f r t  with 2-(f+l)d.  A variation does not require this 

comparison, but an approximation with an error of less than 2 -(f+2), that is, 

[q - qc [ < 2-(f+2) 8.93 

We then produce 

resulting in Figure 8.29. 

q = qc + 2-(f+2) 8.94 

Consequently, q T can be obtained by detecting the sign of r ]  as in Case 1. 
Moreover, the rounded value is obtained in a similar manner. 

Square Root: Algorithm and Implementation 

The operand x is represented by (Mx, E x), with M x signed and normalized. 

The result 

s - -  x / 7  8 . 9 5  
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q c  

q 

qt 
r 

t 

. . . . . . . . .  qqqqqqqq  . . . . . . . . .  

I I I I 
qT 

YYYYYYYYYYYYYYY 

Z Z Z Z Z Z Z Z Z Z Z Z Z Z  

A B 

+ 

F I G U R E 8 . 2 9  Case with error less than 2 - ( f + 2 )  . 

is represented by (M s, Es ), with Ms also signed and normalized. The high-level 

description of the algorithm is composed of the following steps: 

1. Obtain the square root of the significand and produce the exponent of the 

result. 

Ms - -  x / / M ;  8 .96  

To obtain an integer, exponent Ex should be even. Consequently, if Ex is 

odd, we utilize Mx/2 and Ex + 1. 

2. Normalize M 7 and update exponent. 

3. Round. 

4. Determine exception flags and special values. 

The implementation of this operation is very similar to floating-point division. 

Consequently, here we give a short summary. 
Figure 8.30 shows the basic implementation. For a biased exponent repre- 

sentation, the intermediate result exponent is computed as 

Et3,s - [(Es,x + B)/2~ 8.97 

To obtain the square root of the significand, the methods discussed in Chapters 6 

and 7 are used. 

The normalization step depends on the range in the representation of the 
12)25 significands. For instance, for the IEEE standard the range is [3' so that 

25. Because of the division by two for odd exponent. An alternative is to have an operand 
range of[l, 4), producing a result in the range [1, 2), so no normalization and exponent 
update is required; in this case, E~ -- [Ex/2J and the significand input is either Ms or 2Mx. 
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ceiling (Ex/2) 

Mx or Mxl21 

SIGNIFICAND 
SQUARE 

ROOT 

Control signals, sign, / 

/ 

special cases 
not shown 

EXPONENT 
UPDATE 

I NORMALIZE I 

I ROUND I 

F I G U R E 8.30 Basic implementation of floating-point square root. 

Step 1 results in a range (l /x/2,  x/2). Consequently, normalization is required 
when the value is less than 1 (a left shift of one position and a decrement of the 
exponent). To perform this normalization a guard bit (G) is needed. 

To perform the four rounding modes (after normalization), it is necessary to 
compute the significand of the quotient as a truncation of f + 1 fractional bits 
of the infinite precision quotient (that is, including another bit, the round bit R), 
as well as the sticky bit T. This sticky bit is needed for rounding to plus and to 
minus infinity and to determine whether the result is exact. However, it is not 
needed for rounding to nearest, since the tie condition cannot occur. 

The actual rounding step depends on the method used to obtain the signifi- 
cand of the result (digit recurrence or iterative approximation). The correspond- 
ing methods are variations of those discussed for division (for additional details 
see the references at the end of this chapter). 

8 ~ 1 7 6  C o m p a r i s o n  b e t w e e n  D i g i t  R e c u r r e n c e  

a n d  M u l t i p l i c a t i v e  M e t h o d s  

In Chapters 5, 6, and 7 we have presented two methods to perform division 
and square root. Moreover, in this chapter we have extended these methods 
to perform the corresponding floating-point operations. We now discuss the 
elements required for a comparison between these methods. This is not intended 
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to determine which of the methods is preferable, since this depends on many 

characteristics of the implementation and on system requirements. 
The main aspects that are considered in the evaluation of an implementa- 

tion are timing aspects, such as execution time, throughput, and effect on other 
operations; cost issues, such as the additional hardware required to perform the 
operations; and energy consumed. We now compare the methods in terms of 
timing and cost. We consider the case in which for the digit recurrence method 

dedicated hardware is used (no sharing with other operations), whereas for the 

multiplicative method a (modified) floating-point multiplier is used (shared with 

floating-point multiplication). 

Timing 
The execution time depends on the number of cycles and the cycle time. In the 

digit recurrence method, the convergence is linear and each iteration is usually 
performed in one cycle. Consequently, the number of cycles corresponds to the 

ratio between the number of bits of the quotient and the number of bits per 
iteration. Moreover, one cycle is needed to terminate the operation. Since the 
rounding is simple, this cycle can also include the rounding process. 

On the other hand, in the multiplicative method the convergence is quadratic 

so that the number of iterations is much smaller than in the digit recurrence 
method. However, each iteration includes floating-point multiplications, 26 so 
that it is performed in several cycles. Moreover, the rounding process is more 
complex and requires some additional cycles. 

The cycle time depends on the desired clock rate and affects the radix to be 
used in the digit recurrence method and the number of stages in the pipelined 

floating-point multiplier. 
To get a rough feeling of the corresponding execution times for double- 

precision floating-point operations, we consider the following situation, in which 

the cycle times are assumed to be the same so that the relative execution times 

correspond to the ratio of number of cycles: 

�9 A radix-16 digit recurrence implementation (see Chapter 5), resulting in 

about 54/4 + 1 = 15 cycles. The same number of cycles is required for 

division and for square root. 

26. In this situation, each iteration performs complete floating-point multiplications so that 
the improvements resulting from using limited multiplications are not applicable. 
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A multiplicative implementation with a four-stage pipelined floating-point 
multiplier. The number of iterations depends on the initial approximation. 
If the error of this approximation is about 2 -15, two iterations are required 
and the total number of cycles is about 20 for division 27 and 25 for square 
root. 

Moreover, since digit recurrence implementation uses dedicated hardware, it does 
not affect the execution of the other operations. On the other hand, the multiplica- 
tive method utilizes the multiplier so it prevents the execution of multiplications 
while the division/square root is being executed. In addition, it requires a modi- 
fication of the multiplier, which can make it slower. 

Additional Hardware 

The digit recurrence implementation uses dedicated hardware. The number of 
equivalent gates is estimated in Chapter 5. 

The multiplicative method could be implemented using directly the floating- 

point multiplier or fused multiply-add. However, to implement it more efficiently, 

in most cases some modifications to the multiplier are included. Specifically, it 
might be necessary (1) to increase the size of the multiplier to achieve the required 

approximation accuracy, and (2) to incorporate some feedback paths to implement 
the recurrence and the rounding. Moreover, a module is required to obtain the 
initial approximation. 

Concluding Remarks 
Floating-point representation produces a high dynamic range that simplifies the 
design and programming of numerical computations. However, with respect 
to fixed-point representations, it reduces the available precision and makes the 
implementation of operations slower and more complex. Moreover, because it 
eliminates the need for specific scaling operations, it might lead unaware users to 
unsatisfactory results. 

The definition of a specific floating-point representation consists of a vari- 
ety of parameters, such as the number of bits for each component, the base of 

27.For instance the algorithm described in Oberman (1999) has 3 cycles to obtain the initial 
approximation, 9 cycles for the two iterations, 4 cycles for a final multiplication, and 4 cycles 
to compute the residual and correct the result. 
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the exponent, the range and representation of the significand and of the expo- 
nent, as well as the definition and representation of special cases. Although these 
parameters can be optimized for a particular application, the tendency today is to 
use the IEEE Floating-Point Arithmetic Standard 754 (ANSI and IEEE 1985). 
This provides portability among systems and assures that experts have consid- 
ered the possible anomalies and designed a good compromise among the different 
characteristics. 

The algorithms and implementations of the basic operations for floating- 
point representation are based on the corresponding fixed-point ones, as pre- 
sented in the previous chapters. On top of these, it is necessary to incorporate the 
effect of the exponents, the requirement for normalization and rounding, and the 
detection of special cases. Division and square root are implemented either using 
digit recurrence schemes, discussed in Chapters 5 and 6, or iterative (convergence) 
schemes, described in Chapter 7. In the latter case, additional modules such as 
tables are needed to provide initial approximations. The resulting algorithms/ 
implementations are complex and have been the object of much research and de- 
velopment in order to produce the desired objectives, in terms of delay, through- 
put, area, and energy. 

8 ~  

8 . 1  

8 . 2  

Exercises 
F l o a t i n g - P o i n t  R e p r e s e n t a t i o n  

[Range and precision] How many radix-10 digits are needed in a fixed-point 
format to represent the approximations of both Planck's constant (6.63 • 10 -27) 
and Avogadro's number (6.02 x 1023)? How many radix-10 digits are needed to 
represent these constants in a floating-point number format (consider a base 10 
for the exponent, and radix-10 biased representation of the exponent, such that 

E b i a s e d  - -  E + 50) ? 

[Range and precision] Consider computing x P for 2 -1 < x < 1 and p -- 64 for 

a 32-bit fixed-point representation with the radix point at the left. 

(a) Determine the range ofx for which at least 16 significant bits in the result 
are representable. 

(b) What is the maximum value ofx for which no significant bits of the result 
are representable? 
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8 . 3  

8 . 4  

8 . 5  

8 . 6  

8 . 7  

8 . 8  

[Spacing of F L P T  numbers] Consider a floating-point representation with a 40- 
bit word, composed of a normalized significand in sign-and-magnitude with a 

fractional part of 8 hexadecimal digits, and a sign-and-magnitude exponent with 
7 bits (exponent base 16). 

(a) Determine the maximum and minimum difference between successive 

floating-point numbers. 

(b) Determine the maximum relative spacing 

X ~ X  
c~ - max 

x' 

where x ~ and x are two successive floating-point numbers. 

[FLPT representation with different bases] Consider two floating-point repre- 

sentations, both with m bits for the normalized significand and e bits for the 

exponent. Determine the ratio between the number of floating-point numbers 

that are represented by systems A and B for 

(a) System A has base 16 and system B base 2. 

(b) System A has base 16 and system B has base 4. 

[ulp and relative error] A value x is represented by a floating-point number with 
1 an error in the significand of gulp.  Determine the relative error in ulps. For 

details on the relation between relative error and ulp, see Goldberg (1991). 

[Unnormalized form] How many different floating-point numbers represent 
3 exactly the value ~ if the format consists of 24-bit fractions and 8-bit exponent? 

The base is 2. 

[Normalized form] How many normalized significands can be represented in a 
base-64 floating-point system with 48-bit significands? 

[Effect of base b ] Show that for a given machine word of n -- f + e bits, the 

choice of base b -- 2 always provides as much accuracy and more exponent range 
than some b -- 2 k. The accuracy (maximum relative spacing) is defined as 

X ~ X  

a( f , k~ - - m ~ x  
x 

where x '  and x are two successive floating-point numbers. The exponent range 

is defined as E ( f ,  k )  - k (  2 " - f  - 1). For details, see Brown and Richman (1969). 
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8 . 9  

8 . 1 0  

[Biased arithmetic] In a binary biased number representation a number x is 
represented by x + B where the bias B = 2 n-1 or B = 2 n-1 - 1 and n is the 

number of bits in the bit-vector. Develop bitqevel algorithms for the following 
operations and the two choices for B: (1) conversion from/to two's complement; 
(2) change of sign; (3) addition; (4) subtraction; and (5) overflow detection. 

(a) Compare (1) through (5) for the two choices of B. 
(b) Compare (2) through (5) for the two choices of B with the same operations 

in the two's complement number representation system. 

RoundoffModes and Error Analysis 

[Rounding] Consider the following rounding schemes: round-to-nearest-even 
(RNE), round-to-nearest-odd (RNO), round towards zero (truncate) (RZ), and 
round toward +inf  (RP). Show the final rounded result in the following three 
cases (fill in the blanks in the table): 

Sign Exponent Fraction Guard Round Mode 

00011111 1111111111 

RNE 

RNO 

RZ 

RP 
0 11111110 1111111111 1 

11111110 1111111111 

RNE 

RNO 

RZ 

RP 

RNE 

RNO 

RZ 

RP 

8 .11  [Bias for the four rounding modes] Derive the expressions for the total and 
average bias for each rounding mode. 
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8 . 1 2  

IEEE Floating-Point Standard 

[Representation] Complete the following table assuming the IEEE FLPT Stan- 
dard single-precision format: 

Hex-Vector Value 
0.0 

80000000 
A73FF801 

_248 

7F7FFFFF 
00800000 

plus infinity 
FF800000 
7FC00000 

8 . 1 3  

8 . 1 4  

[Errors in the rounding modes] Determine the absolute and relative error in 
representing the number 0.1 (decimal) using the IEEE Standard single-precision 
format with significands of 8 bits instead of 24 bits for each rounding mode. 

[Denorms] How many denormalized numbers are there in the IEEE Standard 
single-precision format, and what is their range? 

8 . 1 5  

8 . 1 6  

Floating-Point Addition 

[FLPT additionmsign of result] Determine a switching expression for the sign 
of the result of an addition/subtraction in terms of the signs of the operands, their 
relative magnitudes, and the operation (addition/subtraction). 

[Examples of execution for basic implementation] Perform the following oper- 
ations using the basic implementation. Include the guard bits, perform all four 
rounding modes, and determine if there is an exponent overflow. The represen- 
tation is IEEE Standard single precision, with significands of 10 bits instead of 
24 bits. Indicate the outputs of each module in Figure 8.6. 
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8 . 1 7  

8 . 1 8  

8 . 1 9  

8 . 2 0  

Operation X Y 
Add 000110001001111000 000110011100011101 

Add 000110001001111000 100110011100011101 

Sub 000110001001111000 000110001001110111 

Sub 011111110111100011 111111100001010101 

[FLPT additionmexceptions] For the basic implementation of Figure 8.6 deter- 
mine expressions for the five special cases. 

[FLPT addition--special values] Give sets of operands (in IEEE Standard 
single-precision representation with 10-bit significands) and operations (add/ 
subtract) that produce each of the five special cases. Indicate the output of each 
module in Figure 8.6. 

[Denormals] 

(a) Modify the basic implementation of Figure 8.6 to allow denormal 
operands and produce a denormal result. 

(b) Give one example of the execution of addition and one example of 
subtraction for the case in which one of the operands is denormal. Show 
the output of each module. 

[Calculation of delay for basic implementation] For critical path delays of the 
modules in Table 8.6, determine the delay of the floating-point adder in Figure 8.6 

Module Delay (ns) 
Exponent difference 
Swap (includes buffer for control) 
Right shift 
Add significands (s + m) 
LOD 
Left shift (includes buffer) 
Round 

Right shift (one position, including buffer) 

Special cases 

0.3 [log 2 el + 0.5 
0.5 

0.2 [log 2 m] 
0.3 [log 2 m] + 1.0 

0.3 [log 2 m ] 
0.2 [log 2 m ] + 0.2 

0.2 Flog 2 m ] 
0.5 

0.8 

T A B L E 8 . 6  Delay of modules. 
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8.21  

(as stated in the text, as an approximation the delay can be obtained by the sum 
of the delays in the critical path) for single precision and for double precision. 

Pipeline the floating-point adder (for single precision and for double) for a 
clock rate of 200 MHz. To account for clock skew and other delays, the stage 
delay should not be larger than 80% of the clock cycle. 

[Executing FLPT addition and subtraction on improved single-path implemen- 
tation] Perform the following operations using the implementation of Figure 8.8. 
Include the guard bits, perform all four rounding modes, and determine if there 
is an exponent overflow. The representation is IEEE Standard single precision, 
with significands of 10 bits instead of 24 bits. Indicate the outputs of each module 
in Figure 8.8. 

Operation X Y 

Add 000110001001111000 001001100100011101 

Add 000110001001111000 101001100100011101 

Sub 000110001001111000 000110001001110111 

Sub 011111110111100011 111111100001010101 

8 . 2 2  

8 . 2 3  

[Design details] Determine switching expressions for the shift control of the 
L1/R1 shifter of Figure 8.8. 

[Executing add/sub on double-path implementation] Perform the following 
operations using the implementation of Figure 8.9. Include the guard bits, perform 
rounding to nearest (only for the case of effective addition), and determine if there 
is an exponent overflow. The representation is IEEE Standard single precision, 
with significands of 10 bits instead of 24 bits. Indicate the outputs of each module 
in Figure 8.9. 

Operation X Y 

Add 000110001001111000 001001100100011101 

Add 000110001001111000 101001100100011101 

Sub 000110001001111000 000110001001110111 

Sub 011111110111100011 111111100001010101 
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Module Delay (ns) 
Exponent difference 

Swap (includes buffer for control) 

Rl-shifter 

Compare 

R-shifter 

Bit-invert control (includes buffer) 

Conditional bit invert 

Bit invert 

Two's complement compound adder 

LZA 

Two's complement adder 

L1/Rl-shifter (includes buffer) 

L-shifter (includes buffer) 

Round and norm overflow 

MUX 

Add, Norm, and Round 

0.3 [log 2 e ] + 0.5 
0.5 

0.5 

0.2 [log 2 rn ] 

0.2 [log 2 rn ] 

0.5 

0./3 

0.1 

0.3 [log 2 m ] + 0.6 

0.2 [log 2 m ] 

0.3 [log 2 m ] + 0.3 
0.7 

0.2 [log 2 m] + 0.2 

0.3 [log 2 m ] 
0.5 

0.3 log m +2.0 

T A B L E  8.7 Delay of modules. 

8 . 2 4  

8 . 2 5  

[Calculating delays of single-path and double-path implementations] For the 
module delays in Table 8.7, determine the maximum clock rate for the pipelined 
adders of Figure 8.11 for double precision. To account for clock skew and other 
delays, the maximum stage delay should not be larger than 80% of the clock cycle. 

In the single-path implementation, how would you change the positioning 
of the stage latches to reduce the clock cycle? 

In the double-path case, modify the implementation so that no swap is needed 
in the CLOSE path. Determine the new clock cycle. 

Floating-Point Multiplication 
[Example of execution for basic implementation] For the following floating- 
point operands in the IEEE Standard single-precision representation (10-bit sig- 
nificand, instead of 24), perform the multiplication using the basic implementa- 

tion. Show the four rounding modes. Verify the correctness of your result. 
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8 . 2 6  

8 .27  

8 . 2 8  

8 . 2 9  

8 . 3 0  

X Y 

001010101010110011 101111111101110011 
110011110101110010 111000111011111100 

[Delay of basic implementation] Give an estimate of the delay (in inverter 
delays with a load of four) of the floating-point multiplication implementation of 
Figure 8.12 for single- and double-precision formats. Make reasonable estimates 
(and justify them) of the delay of each module. 

Propose a pipelining structure so that the delay of a stage is about the delay 
of 20 inverters. 

[Exceptions and specials] Show an example of a pair of operands in the IEEE 
Standard single-precision representation (10-bit significand, instead of 24) that 
produce an underflow in floating-point multiplication. Indicate the representa- 
tion of the result. 

[Denormals] Indicate which of the two operands (in IEEE Standard single- 
precision representation, with 10-bit significand) is denormal and perform the 
floating-point multiplication with rounding to nearest. Verify the correctness of 
your result 

X Y 

001010101010110011 000000000000101010 

[Calculation of sticky] Determine the sticky bit in the floating-point multipli- 
cation for the following operands (in IEEE Standard single-precision represen- 
tation, with 10-bit significand). Use the two methods described in Section 8.5.5. 

X Y 

001010101010111000 001010101010010000 
010000000001100000 O01010101011000000 

[Example(s) of execution for alternative implementation] For the following 
floating-point operands in the IEEE Standard single-precision representation (10- 
bit significand, instead of 24) perform the multiplication using the implementation 
of Section 8.5.5. Show the four rounding modes. Verify the correctness of your 
result. 
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8.31  

8 . 3 2  

8 . 3 3  

X Y 

001010101010110011 101111111101110011 

110011110101110010 111000111011111100 

[Other rounding modes] Extend the alternative implementation to perform 

(a) round to zero 
(b) round to plus infinity 
(c) round to minus infinity 

[Comparing delay of basic and alternative implementations] Give an estimate 
of the delay (in inverter delays with load of four) of the alternative floating- 
point implementation of Figure 8.13 for single- and double-precision formats. 
Estimate the reduction in delay of this implementation with respect to the basic 
implementation of Figure 8.12. 

Make reasonable estimates (and justify them) of the delay of each module. 
Propose a pipelining structure so that the delay of a stage is about the delay 

of 20 inverters. 

[Selection when Cm not in critical path] Determine the control of selection in 
Figure 8.18 using the four bits composing E. 

8 . 3 4  

F l o a t i n g - P o i n t  M u l t i p l y - A d d  F u s e d  

[Example of execution for basic implementation] For the following floating- 
point operands in the IEEE Standard single-precision representation (10-bit sig- 
nificand, instead of 24) perform the multiply-add using the basic implementation. 
Show the four rounding modes. Verify the correctness of your result. 

X Y W 

8 . 3 5  

001010101010110011 lOllllllllOlllO011 110011110101110010 

[Delay of basic implementation] Give an estimate of the delay (in inverter delays 
with a load of four) of the floating-point MAF implementation of Figure 8.19 
for single- and double-precision formats. Make reasonable estimates (and justify 
them) of the delay of each module. 

Propose a pipelining structure so that the delay of a stage is about the delay 
of 20 inverters. 
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8 . 3 6  

8 .37  

[Adder output realignment] Determine the amount of left shift needed to realign 
the adder output when the product is unnormalized, the exponents and the signs 
of the addends are equal, and 

(a) there is no overflow in addition 
(b) there is an overflow 

[Exponent updating] Describe the updating of the result exponent in floating- 
point MAF operation. 

8 . 3 8  

8 . 3 9  

8 . 4 0  

8 .41  

Floating-Point Division 

[Example of execution for digit recurrence method] For the following floating- 
point operands in the IEEE Standard single-precision representation (10-bit sig- 
nificand, instead of 24), perform the division using the radix-2 digit recurrence 
method. Show the round-to-nearest mode. Verify the correctness of your result. 

X D 

001010101011010011 101111111110110011 

110011110001011010 111000111101011101 

[Rounding with approximation from below] Consider an approximation of the 
quotient from below with an error less than 2 -(f+l) . Show that a direct algorithm 
for rounding to nearest involves a comparison with 2-(f+l)d (see notation in this 

chapter). 

[Example of execution for iterative method] For the following floating-point 
operands in the IEEE Standard single-precision representation (10-bit signifi- 
cand, instead of 24), perform the division using the NR iterative method with an 
initial approximation of 4 bits (computed using 5 bits of the divisor). Show the 
round-to-nearest mode. Verify the correctness of your result. 

X D 

001010101011010011 101111111110110011 

110011110001011010 111000111101011101 

[Example of execution for the multiplicative method] Repeat Exercise 8.40 for 
the direct (multiplicative) division method described in Section 7.3.2. 
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8 . 4 2  

8 . 4 3  

8 . 4 4  

8 . 4 5  

8 . 4 6  

[Combined quotient conversion, correction, normalization and rounding] For 
the following floating-point operands in the IEEE Standard single-precision 
representation (10-bit significand, instead of 24), perform the division using the 
digit recurrence method and show the bit-vectors used in the combined scheme 
for quotient conversion, correction, normalization, and rounding for the round- 
to-nearest mode. Verify the correctness of your result. 

X D 

001010101011010011 101111111110110011 

[Conversion and rounding] Consider the on-the-fly conversion and rounding of 
the quotient in the digit recurrence method. Develop an algorithm for updating 
of Q, Q N, and Q P when a < r - 2. Show that Q P is needed for the rounding 
but not for the updating of registers when a - r - 2. Consequently, no register 
Q P is required. Show that for a < r - 2, Q P is not required at all. 

[Overflow after rounding] Show that in floating-point division overflow after 
round to nearest cannot occur. 

[Normalization control] In the algorithm given for rounding to nearest for 
floating-point division for the digit recurrence case, two different signals are used 
to determine whether the result is normalized: the signal norm before rounding 
and the bit MMq [0] after rounding. Show thatnorm can be used for both situations; 
that is, show that the situation "unnormalized" is not changed by the rounding. 
Indicate the advantage in delay of this approach. 

[Rounding to plus infinity] Describe an algorithm for rounding toward plus 
infinity in floating-point division for the digit recurrence case. 

8~ Further Readings 
There are several general treatments of floating-point arithmetic (Sterbenz 1974; 
Kulisch 1977; Kulisch and Miranker 1981; Knuth 1998; Goldberg 1991; Overton 
2001). The choice of base and its effect on range and relative accuracy for a given 
machine precision is discussed in Brown and Richman (1969). Brent (1973) reports 
on the precision attainable with various floating-point number systems. Statistical 
properties of floating-point addition obtained from program traces, presented 
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in Sweeney (1965), led to the adoption of base 16 floating-point format in the 
IBM S/360 systems. Underflow and the denormalized numbers are discussed in 
Coonen (1981). Loss of significance in floating-point subtraction and addition is 
discussed in Feldstein and Goodman (1982). Algorithms for arbitrary precision 
floating-point arithmetic are presented in Priest (1991). Bohlender et al. (1991) 
present semantics for exact floating-point operations. 

Floating-Point Representation" Rounding 
A classic on rounding errors in algebraic processes is Wilkinson (1963). Kuck et al. 
(1977) discuss the basic measures and characteristics of errors. Statistical studies 
of the accuracy and static and dynamic numerical characteristics of floating-point 
arithmetic are reported in Kuki and Cody (1973) and Cody (1973). Early work on 
rounding in floating-point arithmetic is presented in Yohe (1973). An axiomatic 
approach to rounding is discussed in Kulisch and Miranker (1981). 

Floating-Point Standards 
The IEEE Floating-Point Standard and its implementation aspects are discussed 
in Coonen (1980). Cody et al. (1984) describe a standard independent of radix and 
word length. An analysis of proposals for floating-point standards is described 
in Cody (1987). The reasons for rounding to even if tie are discussed in Reiser 
and Knuth (1975). The issues and status of the standard are presented in Kahan 
(1996). 

Implementation of Floating-Point Unit: General 
Design and implementation of floating-point arithmetic are the subject of 
numerous articles. Early designs are described in Bucholz (1962), Anderson et al. 
(1967), and Gosling (1971). More recent design issues are presented in Oberman 
(1996), Oberman and Flynn (1996b, 1997), and Even and Paul (2000). There 
are many descriptions of specific designs and implementations in the literature 
(Ware et al. 1982; Benschneider et al. 1989; Montoye et al. 1990; Darley et al. 1990; 
Dobberpuhl et al. 1992; Dao-Trong and Helwig 1992; Ide et al. 1993; Nicks 
et al. 1994; Flynn et al. 1995; Bannon and Keller 1995; Hunt 1995; Williams et al. 
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1995; Schwarz et al. 1999; Gerwig and Kroener 1999; Sharangpani and Arora 
2000; Naini et al. 2001). 

Implementation of Floating-Point Adder 

Implementations of floating-point adders are presented in Vassiliadis et al. (1989), 
Beaumont-Smith et al. (1999), Seidel and Even (2001), and Bruguera and Lang 
(2001) among others. The FAR/CLOSE path scheme was proposed in Farmwald 
(1981), and its implementations are reported in Greenlay et al. (1995) and Oberman 
et al. (1999). A variable-latency adder is discussed in Oberman and Flynn (1998). 
Nielsen et al. (2000) propose a packet-forwarding adder to reduce the stage delay. 
Schemes for fast detection of leading one/zero are developed in Hokenek and 
Montoye (1990), Oklobdzija (1994), Suzuki et al. (1995), and Bruguera and Lang 
(1999). 

Implementation of Floating-Point Multiplier 

Designs of floating-point multipliers are described in many articles (Uya et al. 
1984; Yu and Zyner 1995). Specific details of rounding schemes for multiplication 
have been presented in Santoro et al. (1989), Kabuo et al. (1994), Yu and Zyner 
(1995), Park et al. (1999), and Even and Seidel (2000). 

Implementation of Floating-Point Multiply-Add Fused 
Multiply-add fused designs are discussed in Hokenek et al. (1990), Jessani and 
Putrino (1998), and Chen et al. (2001). 

Implementation of Floating-Point Division and Square Root 

Soderquist and Leeser (1996) present area and performance trade-offs in floating- 
point division and square root implementations. Floating-point division/square 
root schemes using multiplicative approach are presented in Anderson et al. 
(1967), Oberman (1999), Clouser et al. (1999), Horel and Lauterbach (1999), and 
Agarwal et al. (1999). The digit recurrence schemes for division and square 
root described in Chapter 5 are applicable to floating-point operations and have 



Bibliography 479 

been used frequently in practice (Prabhu and Zyner 1995; Yeager 1996; Inui 
et al. 1999). A self-timed floating-point divider is reported in Williams et al. 
(1995) and Suzuki et al. (1997). Rounding for digit recurrence and convergence 
division/square root are discussed in Ercegovac and Lang (1992) and in Markstein 
(1990), Kabuo et al. (1994), Schwarz (1995), Oberman and Flynn (1996a), and 
Markstein (2000), respectively. Design and implementation aspects of rounding 
units are presented in Burgess and Knowles (1999). Bounds on the number of bits 
of result required to perform correct rounding for division, square root, reciprocal, 
and square root reciprocal are presented in Iordache and Matula (1999) and Lang 
and Mullar (2001). 

Verification and Testing 

Verification of floating-point implementations supporting the IEEE Standard 
754 is presented in Chen et al. (1996), Rusinoff (1998), Moore et al. (1998), and 
Cornea-Hasegan et al. (1999). An approach to the verifiable design of floating- 
point units is proposed in Even and Paul (2000). Benchmarks for floating-point 
arithmetic are presented in Karpinsky (1985). A number-theoretic approach to 
testing of rounding modes is developed in Parks (2000). A tool for testing of 
floating-point implementations is discussed in Verdonk et al. (2001). 
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Introduction 
In the previous chapters we described algorithms and implementations for arith- 
metic modules that have the inputs applied all at once (in parallel) and deliver the 
results in the same way. However, since the numerical values are represented by 
digit vectors, it is possible to apply the inputs and deliver the output one digit at a 
time (serially), so that all digits of the same numerical operands/results share the 
same digit lines. The system is usually clocked so that one digit is applied/delivered 
per clock cycle. This serial alternative is the topic of this chapter. We consider the 
case in which all operands and results are serial, although it is possible to have 
a mixed system in which some inputs and outputs are serial and others parallel. 
The methods to design these mixed systems can be devised from those for parallel 
and serial systems. 

The main reason for having serial input/output is to reduce the number of 
signal lines connecting modules and to simplify their interface, since these con- 
nections and interfaces influence both area and energy dissipation. The drawback 
is the time (number of cycles) required to receive the inputs and to deliver the 
results. This delay can be compensated for by overlapping the execution of suc- 
cessive operations (even if dependent), since the successor operation can begin 
when a few digits of the operands have been received. 

Although the algorithm to perform the operation, as well as the imple- 
mentation of the module, is affected by the serial characteristic of the signals, it 
is important to distinguish between the characteristics of the input/output sig- 
nals and that of the algorithm and implementation. For instance, one possible 
algorithm for serial input/outputs is to collect all the input digits before beginning 
the operation and to produce the result in parallel, before delivering it in a serial 
manner. However, this would add the delay of collecting and delivering to the 
time to perform the operation; consequently, a reduction of delay is achieved if an 

489 
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Cycle: 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

Inpu t  ', ', ', ', ', ', ', ', ', ', ~ ~ ~ 
C o m p u t e :  : ', ', ', ', : ', ', ', : ~ ~ 
Outpu t  : : ', ', ', : ', ', '. '. ', , t .. 

5 = 0  

T12 = 1+ 12 
(a) 

Cycle: 
Inpu t  
Compute  
Outpu t  

- 3 - 2 - 1 0  1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

. . . .  I I I I I I I I I 

1 l l : l l l l : I I I I > 

', : ', ', ', ', I I l I i l i > ,5=3 

T12 = 3 +  1 + 12 

(b) 

F I G U R E  9 . 1  Timing characteristics ofserial operation withn = 12. (a) With 8 = 0. (b) With 

8 = 3 .  

algorithm is devised that takes into account the serial nature of the signals. Simi- 
larly, in parallel input/output systems some algorithms use operands and produce 
results in a digit-serial manner; examples of this are the sequential multiplication 
a l g o r i t h m  a n d  the  d ig i t  r e c u r r e n c e  d iv i s ion  a l g o r i t h m .  1 

Modes  of  Opera t ion  and A lgo r i t hm and Imp lemen ta t i on  Models  

W e  c o n s i d e r  the  case in w h i c h  the  n u m e r i c a l  va lues  are  r e p r e s e n t e d  in a r ad ix -  

r n u m b e r  sys tem.  In  s o m e  cases, w e  use c o n v e n t i o n a l  r e p r e s e n t a t i o n s ,  w h i l e  in 

o t h e r s  r e d u n d a n t  r e p r e s e n t a t i o n s  a re  p r e f e r ab l e .  

A ser ial  s igna l  is a n u m e r i c a l  i n p u t  or  o u t p u t  w i t h  one  d ig i t  pe r  c lock  cycle. 

F i g u r e  9.1 s h o w s  typ ica l  t i m i n g  d i a g r a m s  for  a ser ial  o p e r a t i o n ,  in w h i c h  in 

each  cycle one  d ig i t  o f  each  o p e r a n d  is a p p l i e d  a n d  one  d ig i t  o f  the  o u t p u t  is 

d e l i v e r e d .  N o t e  t h a t  by c o n v e n t i o n  w e  d e n o t e  as cycle 1 the  cycle in w h i c h  the  

1. Although in this case the digits produced are in a signed-digit representation, so that a 
conventional representation can only be delivered when all digits have been obtained. 
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first digit of the output is delivered. The total execution time is the sum of two 
components: 

�9 The initial delay 8, which corresponds to the additional number of operand 
digits required to determine the first result digit. That is, the first output 
digit is delivered 8 + 1 cycles after the application of the first input digits. 
So, as shown in Figure 9.1(a), 8 = 0 corresponds to the case in which the 
first output digit is delivered one cycle after the application of the first input 
digits. Figure 9.1(b) shows a case in which the first output is delivered in 
the cycle after four input digits have been applied (8 = 3). 

�9 The time to deliver the n output digits. Since one digit is delivered per cycle, 
for an output ofn digits, this time is equal to n cycles. 

Consequently, the execution time is 

T~ -- 3 -+- 1 + n  9.1 

Serial Modes 

Two serial modes are typical: 

1. Least-significant dig#first (LSDF) mode. The digits of the operands (result) 
are applied serially starting from the least-significant digit. This mode is 
also known as right-to-left mode and, since it was the first serial mode, 
typically this mode is implied when the term "serial arithmetic" is used. 

Because of the order of the digits, the indexing is simplified if right- 
to-left indexing is used, as in the representation of integers, namely, 

n--1 

X - -  x i r  9.2 

i=0 

2. Most-significant dig#first (MSDF) mode. The digits are applied starting 
from the most-significant digit (left-to-right mode). Arithmetic performed 
in this mode is known as online arithmetic, and the corresponding initial 
delay is called online delay. 

The indexing is simplified here by using left-to-right indexing, as in 
the representation of fractions, that is, 

x - -  x i r  9.3 

i=1 
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Algorithm and Implementation Model 

We now describe a general model for a serial algorithm and its implementation. 
Consider an operation with two n radix-r digit operands, x and y, and one result 
z. The input-output model is described as follows. 

In cycle j the result digit Zj+I is computed. Consequently the cycles are 
labeled from - 8 ,  . . . ,  0, 1, . . . ,  n so that in cycle j the operand digits Xj+I+ 8 

and yj+l+8 are received, output digit Zj+ 1 is computed, and output digit zj is 
delivered (Figure 9.2(a)). To conform with both serial modes, in LSDF (MSDF) 

mode digits are counted from the least-significant (most-significant) side. 
The algorithm consists of recurrences on numerical values. In each of the 

n + 8 iterations, one digit of the operands is introduced (for the last 8 iterations the 
input digits are set to zero), an internal state w (also called a residual) is updated, 
and one digit of the result is produced (zero for the first 8 cycles). 2 An additional 
cycle is needed to deliver the last result digit. 

Calling x [j  ], y [j  ], and z[j ] the numerical values of the corresponding signals 
when the representation consists of the first j + 8 digits for the operands and j 
digits for the result, iteration j is described by 

x[j + 1] = (x[j] ,  X ' j+I+8)  

y[j + 1] = (y[ j ] ,  Yj+l+a) 

• j+ l  - -  F(w[j], x[j], Xj+l+8, y[j], Yj+l+~, z[j])  9.4 

z[j + 11 = (z[j],zj+l) 

w[j + 1] = G(w[j], x[jl, Xj+I+8, y[j], yj+l+a, z[j], zj+l) 

Figure 9.2(b) depicts the serial algorithm and implementation model. 
The initial delay 8 depends on the serial mode and on the specific operation 

(Table 9.1). As can be seen from the table, for the MSDF mode all basic oper- 
ations can be performed with a small and fixed (independent of the precision) 
initial delay. On the other hand, for the LSDF mode, only addition and multi- 
plication have a small initial delay, whereas division, square root, and max/min 
have an initial delay O (n), which means that this mode is not suitable for these 

2. When more than n digits of the result are required, such as in some multiplications in 
which all 2n digits are delivered, the number of iterations is increased correspondingly. 
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J 
Cycle I I 

Xj+l+8 

Yj+I+5 
Input I I 

x[j + 1] ---q 

Zj+l 
Compute I I 

Output I I 

( a )  

j + l  
I 

Xj+2+8 

Yj+2+5 
I 

/ 

x[j + 2] -~  

%2 
I 

%1 
I 

Xj+l+5 Yj+l+8 

I 

x;Y [ 
y[j] 

Zj+l qr ql Y Y l V .  

~[ F; G I 
zj w[j + ll ~ 

z[j] [ 
w[j] (residual) 

Digit-serial 
zj ~ Digit-parallel 

(b) 

F I G U R E 9.2 Serial a lgori thm model: (a) Timing.  (b) Implementat ion.  

operations. Moreover, the initial delay is also O (n) for multiplication if only the 
most-significant half of the product is required (see Figure 9.3(a)). 

As seen in Figure 9.3(b), online arithmetic is well-suited for variable precision 
computations: once a desired precision is obtained, the operation can terminate. 
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O p e r a t i o n  L S D F  M S D F  

A d d i t i o n  

M u l t i p l i c a t i o n  

2 ( r  = 2 )  

l ( r  > 4 )  

3 ( r  = 2 )  

2 ( r  = 4 )  

O n l y  M S  h a l f  o f  p r o d u c t  n 

D i v i s i o n  2 n *  4 

S q u a r e  roo t  2 n *  4 

M a x / m i n  n 0 

* The result digits delivered LS first. 

T A U L E  9.1 Initial delay (8). 

L S D F  mode  

n-d ig i t  addition: 

Cycle: 0 1 2 . . .  

L S D  M S D  

Inputs:  x x x x x x x x x  

Output :  x x x x x x x x x 

n by n --+ 2n multiplication: 

L S D  M S D  

Inputs:  x x x x x x x x x  

Output :  x x x x x x x x x x x x x x x x x x 

MS half  
(a) 

M S D F  mode  

Cycle: 2 1 0 1 2 . . .  

n -d ig i t  operation: 

M S D  L S D  

Inputs:  x x x x x x x x x  

Output :  x x x x x x x x x 

online delay = 2 

(b) 

F I G U R E  9.3  (a) L S D F  and (b) M S D F  modes. 
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81 

(online 
delay) 

Xh Yh  

I 

l a i i = h - 8 1 - 1  bi I 
I 
I 

Operation: 

~ / / /  

OLADD J / /  I- 

OL O TI 
g~p=k_83_l  I ~ 

" )i OLDIV ] 84 

q = p - ~ 4 - 1  I Sq 

Squaring 

\ 

\ \ 8 2 1  Addition 

(p-bit shift A = p 
register) 

83 

[-- Division 84 OLDIV r 

Square root 

(a) 

x , y  . . . .  : I I I I I ', ', I I.~ 
a , b  81 ' ' ' I I I i I i I : I : : 
f 52 '. '. '. '. '. ', ', : I I : : I I~ 
g 53 : : : ' ' : : : : : : ', ', ',~ 
c , s  ~ I I : 1 ', ', ', ', ', I I 1 1 I 

(b) 

FLOUR[ 9.4 Online computation in 2D vector normalization: (a) Network. (b) Timing 

diagram. 

C o m p o s i t e  A l g o r i t h m  

Since the execut ion  t ime  of  a serial ope ra t ion  can be h igh,  it is conven ien t  to develop  

compos i t e  a l go r i t hms  in wh ich  the execut ion  o f  successive (dependen t )  opera t ions  

over lap;  tha t  is, a successor ope ra t ion  can begin  as soon as the resul t  digits  o f  its 

p redecessors  are available.  Th i s  is i l lus t ra ted in the fo l lowing  e x a m p l e  w h e r e  

a sequence  of  opera t ions  is i m p l e m e n t e d  by a n e t w o r k  o f  digi t -ser ia l  (online) 

a r i t hme t i c  modu les .  T h e  n e t w o r k  in F i g u r e  9.4(a) i m p l e m e n t s  the express ions  
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for the 2D vector normalization) 
x y 

c = s - 9 . 5  v/.2 +y2 ../,2 +y2 
The corresponding timing diagram is given in Figure 9.4(b). 

The online delay of the network is the sum of online delays of the operations 
on the longest path. For r -- 2, we obtain from Table 9.1 

A n o r m  - -  81 + 82 + 83 + 84 = 3 + 2 + 4 + 4 = 13 9.6 

The total execution time for the composite operation is D,orm - -  A n o r m  -~- 4 + n. 

The more levels there are in a sequence of operations and the longer the 
precision, the more advantageous is the online approach. 

To reduce further the execution time, the three modules in the dashed box in 
Figure 9.4(a) can be merged into a single online module, called a composite module, 

with a shorter online delay than the sum of the online delays of the dependent 

components. 
The latency in the case of LSDF arithmetic is obtained in a similar manner 

(Exercise 9.1). 

LSDF Arithmetic 
We consider now the algorithms and implementation for addition/subtraction 
and for multiplication for the LSDF mode. As discussed before, these are the 
basic operations that result in a small initial delay. This is true for multiplication 
if all result digits are required. 

L S D F  A d d i t i o n  a n d  S u b t r a c t i o n  

In addition/subtraction the internal state corresponds to the carry. Consequently, 
the initial delay is 8 = 0 and the radix-2 k implementation consists of a k-bit 
adder with a carry flip-flop (or a latch), as illustrated in Figure 9.5(a). Subtraction 
is performed by adding the two's complement of operand y. This is done by 
(bit) complementing input yi and initializing the carry flip-flop to 1. Overflow is 
detected as in a bit-parallel adder (see Chapter 1). 

3. Ercegovac and Lang (1988b, 1999). 
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Operand Y: 
xi 

SUB 

Operand X: 

k-bit / m Zi-1 
"k [~4 CPA Result digit 

register 

I '  c[-. 
Carry/borrow FF 

(initialize to 0 if ADD 
1 if SUB) 

(a) 

Operand Y: Operand X: 

yi,o  ) xi,o :[ 
yi, l_ >Xi, l :, 

", ~ ~  xi'3 21..] 

SUB I 
Carry/borrow FF ] ~ ]  

(initialize to 0 if ADD 
1 if SUB) 

Result Z: 
Zi'o ~ ~ Zi-l'O 

z/,l _1~  I z/;1,1 

Zi,2 Zi-1,2 

Zi'3 ~l~l Zi-l'3 

(b) 

F I G U R E  9.5 (a) Radix-2 k digit-serial adder/subtractor. (b) Radix-16 digit-serial adder/ 

subtractor. 

The cycle delay is 

tLSDFadd_ k -- tCPA(lO + tFF 

and the total time for n-bit addition is 

TLSDFadd-n -- ( k + l )tLSDFadd-k 

9.7 

9.8 

The cost is one k-bit CPA, k xo  R gates, one flip-flop, and one k-bit output register. 

A radix-16 adder/subtractor is shown in Figure 9.5(b). 
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9~  ~2 LSDF Multiplication 

There are many schemes for performing LSDF multiplication, differing in the 
treatment of inputs and outputs and in the design of basic cells. We concentrate 
on the two most commonly used digit-serial multipliers for radix-2 and two's 
complement representation: 

1. Serial-serial (LSDF-SS) multiplier, with both operands used in digit-serial 
f o r m .  

2. Serial-parallel (LSDF-SP) multiplier, in which one operand is first con- 
verted to parallel form. It is similar to the sequential multiplier discussed 
in Chapter 4. 

In both types of multipliers the output is produced digit-serially. Since there 
are n input digits and 2n product digits with the most-significant half obtained 
in cycles n + 1 to 2n + 1, the operation cannot be completed during the input of 
the operands. 

Serial-Serial Multiplier (Radix 2) 

We define an internal state (residual) 

w[j] = 2-ff+l)(x[j] x y [ j ] -  p[j])  9.9 

where 

J 
x[j] = ~ x i  2 i  

i=0 

and similarly for y[j ] and p[j]. Since now both operands are used in serial form, 
the recurrence is 

w[j + 1]--  2-ff+2)(x[j + 1] x y[j  + 1 ] -  p[ j  + 1]) 

-- 2-(J+2)((x[j]+xj+12J+l)(y[j]+ yj+12J+l)_(p[j]+ Pj+12J+l)) 

= 2-1(w[j]  + y[j + 1]Xj+l  + x[j]yj+l - -  P j + I )  9.10 

Calling 

v[j] -- w[j] + y[j + 1]Xj+l + x [ j ] y j + l  9.11 
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Xj+2 ~ [ 

Xj+l 
Yj+I ~[ 

(Shift-register for load control in left-append registers not shown) 

LA-Reg X 
n~x[j] n~x[j] 

SELECTOR [ 

w[j+l]: 

2w[j]: 

,11 
[4:21 

ADDER 

Shifted W 

xj+l 

l n+l 
n Shifted WS 

]Shift-RegWCI IShift-RegWS 

nt nI 

LA-Reg Y I 

Yj+I n~y[j+l] n+y[j+l] 
.J 
"-1 SELECTOR 

n4" 
sign(x) 

~sii(Y) cyclen 

LS bits 
=1 FA] ~Pj+I 

Carry-out 

r 

~1 A[ ~ MS bits 

(Register control signals not shown) SA (Serial adder) 

F I G U R E  9 . 0  Serial-serial two's complement radix-2 multiplier. 

to keep w[j + 1] an integer and P j+l ~ {0, 1} we make 

w[j + 1]-- /2-1v[jlJ 

pj+l - v[j]mod 2 
9.12 

With a carry-save form of the residual w[j] (two bit-vectors) and adding to 
it two multiples (y[j + 1]Xj+l and x[j]yj+l), the addition to produce v[j] is 
implemented by a [4:2] adder of n positions, as shown in Figure 9.6. The bit- 
vectors x[j] and y[j + 1] are generated using two left-appending registers with 
load controlled by a "moving" 1 shift-register. The input latches for xj+l and yj+l 
are used to avoid left-appending in both X(Y) registers and the corresponding 
selectors at the expense of one extra cycle. 

The residual is produced by a (wired) shift right of one position. The least- 
significant digit is peeled off as the result digit. 
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This recurrence is performed n times. After that, since the input digits are 

0, we obtain w[j  + 1] - 2-1w[j]  - zj+l, so that the rest of the result digits are 

obtained by shifting right the residual. 

For two's complement representation, the operand bits Xn_ 1 and Yn-1 have 
negative weights and the last two multiples are possibly negative. Instead of 

subtraction, addition of their two's complements is used. This is performed as 

usual by taking ones' complement and adding a 1 as carry-in. The two carry-ins 

are incorporated in a FA stage as shown in Figure 9.6. During the cycles 0 to 
n - 1 the FA stage simply transmits the LS product bit. During the n th cycle the 

FA stage produces product bit Pn-1 and a carry-out as the result of adding Xn-1, 
Yn-1 (carry-ins for two's complement) and the LS sum bit of the [4:2] adder. The 

carry-out initializes the carry-in FF in the serial adder SA, which produces the 

remaining product bits Pn, . . . ,  P2n-1. 
The total execution time of the operation is 

TSSMVLT = 2nt~yc 9.13 

where the delay of the critical path in a cycle is 

tcyc  = tseL + t[4:2] + tFF 9.14 

The cost is one n-bit [4:2] adder, 5 n-bit registers, and gates to form multiples. 

Compared to a serial-parallel sequential multiplier, a serial-serial multiplier has a 

longer t~yc and requires more circuits. Its main justification is the ability to begin 
producing product bits while inputting the operands. 

Serial-Parallel Multiplier (Radix 2) 

The core of this multiplier is similar to the sequential multiplier discussed in 
Chapter 4. To that core it is necessary to add modules to (1) convert one of the 
operands to parallel form and (2) deliver the result in serial form. One possible 
implementation is to perform the operation in 3n cycles split into three phases: 

�9 Phase 1: Serial input and conversion of one operand to parallel form--not  

necessary if one operand is constant. 4 The second operand can be entered 

together with the first and stored in a register, or it can be entered during 
Phase 2, maybe using the same digit lines as the first operand. 

4. This case with a constant operand is frequent in signal-processing applications, such as FIR 
filters (Oppenheim et al. 1999). In such a case, this type of multiplier is especially convenient. 
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(Shifted-in 
in Phase 1 or 
constant) 

xj 

(Used serially 
in Phase 2) 

Yj 

"~[ Shift-Reg X I 
-I I 

n x n x 

=1 SELECTOR 

n I { 0_x,x } 

[3:21 
ADDER 

Shifted W w[j + 1] n Shifted WS 

(Register control signals not shown) 

sign(y) 
Cycle n 
in Phase 2 

(Shifted-out 
A._. in Phase 2) 

~[ HA] ~ LS bits 

Carry-out 

| (Shifted-out 
_d, in Phase 3) 

~[ SA~ ~ MS bits 

SA (Serial adder) 

Phase 1: shift-in operand X (n cycles) 
Phase 2: serial-parallel carry-save multiplication (n cycles) 

shifted sum and carry bit-vectors loaded bit-parallel 
Phase 3: MS bits obtained using bit-serial adder SA operating 

on bits shifted out of WC and WS shift-registers (n cycles) 

F I G U R E  9 .7  Three-phase serial multiplier. 

�9 Phase 2: Serial-parallel processing and output  of the LS half  of the product. 

�9 Phase 3: Serial output  of the MS half of the product.  

The  multiplier in Phase 2 corresponds to the sequential multiplier discussed in 

Chapter  4. The difference here is the serial delivery of the result. Figure 9.7 shows 

a block diagram of the implementation.  

If the multiplier is negative, a subtraction is performed in the last cycle of 

multiplication by adding the two's complement  of the multiplicand. A half-adder 
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9 ~  

is used to add a carry-in in cycle n. This assures that one product bit is produced 

per cycle. 
Since the least-significant bit of the product is produced in the first cycle 

of Phase 2, the initial delay is n for the case of nonconstant operands (cycles of 

Phase 1) and 0 if one of the operands is constant. On the other hand, for fractional 

operands and n-bit result (most-significant n bits), the LS bits are suppressed and 

only the MS half is delivered. This increases the initial delay by n. To obtain a 

rounded MS half of the product, a 1 is inserted in the least-significant bit of the 

initial carry-save partial product. 

The critical path in a cycle is 

tcyc = tSEL -Jr- tCSA n t- tFF 9.15 

The delay of the LSDF-SP multiplier (from time of LS bit of operand to MS bit 

of product) is TsPrn d = 3n • tcyc. The cost is similar to the cost of a sequential 

multiplier. 
This design can be extended to radix 4 with recoding using the scheme 

described in Chapter 4, Section 4.1. 
This approach is suitable for systems where a high throughput  is the primary 

objective: the phases can be used as pipeline stages so that up to three multiplica- 

tions can be in progress. 

MSDF: Online Arithmetic 
As indicated in Section 9.1, online arithmetic algorithms operate in a digit-serial 

MSDF mode. Moreover, as shown in Figure 9.8 there is an online delay 8 so 

that to compute the first digit of the result, 8 + 1 digits of the input operands 
are needed. Thereafter, for each new digit of the operands, an extra digit of the 

Cycle - 2  - 1 0 1 2 

Input X 1 ,t" 2 ,X" 3 X 4 , I '  5 �9 �9 �9 

Compute Z l  z 2  z 3  �9 �9 �9 

Output Zl z2 �9 �9 �9 

8 = 2  

F I r U R E 9.8 Timing in online arithmetic. 
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result is obtained. As indicated in the figure, another cycle is needed to output 

the computed result digit. 
The left-to-right mode of computation requires a flexibility in computing 

output digits on the basis of partial information about inputs. This is achieved by 
the use of redundancy in the number representation system, which allows several 
representations of a given value. The main redundant representation systems are 
signed-digit and carry-save, as presented in Chapter 2. With these representa- 

tions, there is a flexibility in choosing an output digit so that, if necessary, a com- 
pensation can be introduced in the following iterations. In online arithmetic the 
most-frequent representation used is signed-digit, with both symmetric { - a ,  . . . ,  
a } and asymmetric {b, . . . ,  c } digit sets. Overredundant digit sets are also useful. 

Since different redundant representations are possible, an integrated ap- 
proach for a complex computation can use heterogeneous representations to op- 

timize the implementation. 
In addition to redundancy in the representation of the serial signals, to have 

fast addition operations some internal signals also use a redundant representation, 

as discussed in Chapter 2. 
In some cases, conversion from redundant to conventional representation is 

needed; this conversion in parallel arithmetic requires a carry-propagate addition. 
In the online approach, the conversion can be performed efficiently without carry- 
propagate addition using an on-the-fly conversion method discussed in Chapter 5. 

Algorithms have been developed for most of the basic arithmetic operations, 
as well as for certain composite operations. Of significance is the larger set of 
operations for which an online implementation has a small initial delay, in contrast 
with the LSDF approach. 

We first describe the algorithms and implementations for online addition and 
subtraction, which can be obtained directly from the parallel counterparts. Then 
we develop a general method of designing online algorithms and implementations 
and apply the method to multiplication and division. 

Addition/Subtraction 

The online addition/subtraction algorithm can be obtained from the serialization 
of a redundant adder (carry-save or signed-digit, see Chapter 2). As indicated 
there, for radices larger than 2 witha > r /2 ,  redundant addition allows a transfer 
digit that propagates only to the adjacent more significant digit. Consequently, the 



504 c !i~i::li :,~:~::, ~:~:::~,,: ::~{~:: i,~{,~i~!zi~: ll!::~i~!: :o, Digit-Serial Arithmetic 

F I G U R E 9 . 9  (a) A segment ofradix-r > 2 signed-digit parallel adder. (b) Radix-r > 2 online 

adder. All latches cleared at start. 

corresponding online adder, shown in Figure 9.9, has an online delay of 1 and 

corresponds to the following expressions: 

and 

(t j+l ,  wj+2) -- / 

(0, x j+2  -[- Yj+2) 

( 1, Xj+2 -]- Yj+2 -- r ) 

(--1, xj+2 -]-Yj+2 + r )  

i f  Ixj+2 -+- Yj+2[ _< a -- 1 

ifxj+2 --]- Yj+2 >__ a 

ifxj+2 + Yj+2 <~ --a 

9.16 

gj+l - -  Wj+l -]- t j+ l  9.17 

where  x j ,  y j ,  z j  E { - a  , . . . ,  a }. 

EXAMPLE 9.1 In Table 9.2, we illustrate a radix-4 online addition with a - 3 and operands 

m m 

x - - ( . 1 2 3 3 0 1 )  
m m  

y - ( . 2 1 3 3 2 2 )  

The result is z - (1.101221). 
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J 

--1 

0 

1 

2 

3 

4 

5 

6 

ocj+2 Yj+2 

1 2 

2 -1  

- 3  - 3  

3 3 

0 2 

-1  2 

0 0 

0 0 

* Latches initialized to 0. 

tj+l 

1 

0 

- 1  

1 

0 

0 

0 

0 

w j+2 

- 1  

1 

- 2  

2 

2 

1 

0 

0 

Wj+l 

O* 

- 1  

1 

- 2  

2 

2 

1 

0 

Zj+l  

1 

-1  

0 

1 

2 

2 

1 

0 

g j  

0* 
1 

1 D 

0 

1 

2 

2 

1 

T A 8 L S 9.2 Example of radix-4 online addition. 

Note that during cycle 0 the result digit z0 - 1 is produced. Although 

this might  be interpreted as an overflow, the range of the result remains less 

than 1 since the next digit i s -1 .  See also Exercise 9.10. �9 

The cycle time corresponds to the delay of one digit radix-r signed-digit adder 

plus the loading of the register. 
For r = 2, the condition a > r /2  is not satisfied, so that in the corresponding 

signed-digit adder output digit z j  depends on input digits up to index j + 2. 
Consequently, Figure 9.10 illustrates how a digit-parallel radix-2 signed-digit 
adder (Chapter 2, Section 2.12.2) is converted into a radix-2 online adder with 
online delay ~ = 2. In this implementation, a signed-digit xi E {-1,  0, 1} is 
represented by a pair of binary variables (x +, x~) such that 

xi - - x  + - x  7 9.18 

The cycle time is 

tcy~ -- 2tFA + tpF 9.19 

and the operation time 

TOLADD_ 2 = (2 + n + 1) tcyc 9.20 

The cost is 2 FAs and 5 FFs. 



506 C ~:ii{ a{~.,...,: p ~:' ~: ~: ~ili~,. Digit-Serial Arithmetic 

EXAMPLE 9.  ̀ 3 

F I G U R E  9 .10  (a) A segment of radix-2 signed-digit parallel adder. (b) Radix-2 online adder. 

All latches cleared at start. 

We illustrate radix-2 online addit ion with operands 

m m 

x -- (.01011101) 
m m ~  

y - - ( .10101110)  

m 

The  result is z -- ( 1.10100101). The  signals in Table 9.3 correspond to Figure  

9.10(b) and signed bits are encoded using 9.18. 
Note  that  dur ing  cycle 0 the result digit z0 - 1 is produced.  Al though  

this migh t  be interpreted as an overflow, the range of the result remains less 

than 1 since the next digit is - 1 .  See also Exercise 9.10. �9 
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J 

2 

1 

0 

1 

2 

3 

4 

5 

6 

7 

8 

xj+3 Yj+3 

0 1 

1 0 

0 - 1  

- 1  0 

1 1 

1 - 1  

0 - 1  

- 1  0 

0 0 

0 0 

0 0 

x++3x j-_+3 

oo 

lO 

oo 

Ol 

lO 

lO 

oo 

Ol 

oo 

oo 

oo 

yf+3yf+3 

lO 

oo 

Ol 

oo 

lO 

Ol 

Ol 

oo 

oo 

oo 

oo 

h j+2 

1 

1 

0 

0 

1 

1 

0 

0 

0 

0 

0 

g j+3 

10 

10 

O1 

10 

O0 

11 

O1 

10 

O0 

O0 

O0 

gj+2 

00" 

10 

10 

O1 

10 

O0 

11 

O1 

10 

O0 

O0 

tj+lWj+2 

O1 

O0 

11 

11 

O0 

O1 

10 

11 

11 

O0 

O0 

zj++lZj-+l 

10 

01 

11 

10 

00 

11 

01 

11 

10 

00 

zj 

1 

- 1  

C 

1 

C 

C 

- 1  

C 

1 

*g latches initialized to 00. 

T A 8 L E 9.3 Example of radix-2 online addition. 

A Method for Developing Online Algorithms 

We now describe a method to develop online algorithms and implementations. 

This method is a generalization of the method presented in Chapter 5 for digit 

recurrence division; we assume that the reader is familiar with that material and 

will consult some of the notation and definitions there. The method consists of two 

parts. Part 1 defines the residual and the corresponding digit recurrence. Part 2 

determines the output-digit selection function. There are several possibilities in 
defining the selection function, the main ones being (1) selection using selection 

constants, similar to the quotient-digit selection derivation described in Chapter 5, 

and (2) selection by other methods such as rounding and truncation of the residual 

to produce the output digit. We discuss both selection techniques, leaving the 

choice open. 
In later sections we illustrate the method by the operations of multiplica- 

tion and division. Other operations, such as square root, sum of squares, and 

maximum, can be developed in the same manner. 
In terms of the components described in Section 9.1, Part 1 consists of the 

development of the recurrence on the residual (internal state) w[j]  such that 

w [ j  + 1] = G(w[j] ,  x[j] ,  Xj+l+6, y[j],  Yj+I+B, z[j], Zj+l) 9.21 
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f o r - ~  < j  < n - l w h e r e  

j+8 j+8 j 
x [ j ] -  ~ X i  r - i ,  y [ j ] -  y~y i  r-i,  z [ j ] -  ~ z i r  

i=1 i=1 i=1 

- i  9.22 

are the online forms of the operands and the result, respectively. Moreover, the 

bounds of the residual are determined. 
In Part 2 the result digit is obtained as 

zj+l = F(w[j] ,  x[j], Xj+I+8,  y[j], Yj+l+~, z[j])  9.23 

Part 1: Residual and Its Recurrence 

�9 Step 1. Describe the online operation by the bound on the error after j 
digits have been computed. For an operation f with operands x and y and 
result z, this bound has the form (for simplicity we consider thecase p - 1) 

[f(x[j] ,  y[j])  - z[j]] < r - j  9.24 

�9 Step 2. Transform expression (9.24) so that it can be used to develop a 
recurrence with only primitive operations, such as multiplication by r 
(shift), addition/subtraction, and multiplication by a single digit. The form 

of the resulting expression is 

B < G ( f ( x [ j ] ,  y [ j ] ) -  z[j])  < B 9.25 

where G represents the required transformation and B and B are the 

transformed bounds. 
For example, a division error expression 

Ix[j]/y[j]  - z[j]l  < r - j  

is transformed into 

I x [ j l -  z[ j] .  y[j l l  < Ir-Jy[j]J 9.26 

to avoid the use of division. Similarly, for square root the error expression 

Ix[j] 1/2 - z[j]l  < r - j  

is transformed into 

--2z[j]r - j  -+-r -2j < x[j] - z[j] 2 < 2z[j]r - j  +r -2j 9.27 
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Step 3. Define a scaled residual (called in the sequel just "residual") as 
follows: 5 

with the bound 

w[j] -- rJ (G( f (x[ j ] ,  y[ j ] )  - z [ j ] ) )  9.28 

c o -  rJB < w[j] < r J - B -  -~ 9.29 

and the initial condition w [ - 8 ]  - 0. The  values co and ~ are the actual 

bounds to be determined in Step 6. 

�9 Step 4. Determine a recurrence on w [ j  ] of the form 

w[j  + 1 ] - - r w [ j ]  + r J + l ( G ( f ( x [ j  + 1], y[j  + 1 ] ) - z [ j  + 1]) 

- G( f (x[ j ] ,  y[ j ] )  - z [ j ] ) ) )  9.30 

�9 Step 5. For purposes of selection of the result digit Zj+I, express the 

recurrence as 

w[j  + 1 ] -  rw[j] + H1 -~- H2(zj+l) 9.31 

so that/41 is independent ofz j+l .  This leads to the following decomposition: 

v[j] -- rw[j] + H1 9.32 

w[j  + 1] -- v[j] + H2(zj+l) 9.33 

Note that H1 depends on the online delay 8, the radix r, and the redundancy 

factor p. Moreover, to reduce the recurrence delay, redundant  adders are 

used, resulting in redundant  representations for v[j] and w[j]. 
�9 Step 6. Determine the bounds o f w [ j  + 1] in terms of H1 and H2. From 

(9.31) we obtain 6 

= r ~ + max( H1 ) +/-/2 (a) 9.34 

max(I-11) + H2(a ) 
= - 9 . 3 5  

r - - 1  

resulting in 

5. The scaling is done to have a bound that is not multiplied by r-J.  
6. For simplicity we consider the case in which the bound ofw[j] is independent ofj .  If this 
is not the case (for example, for square root), the derivation has to be modified accordingly 
(see Chapter 6). 
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Similarly, 

min(H1) + H2(-a ) 
co - -  - 9 . 3 6  

- -  r - 1 

Part 2a: Selection Function with Selection Constants 

The selection function produces the result digit 2:j+ 1 so that w[j  + 1] is bounded 

according to (9.35) and (9.36). In the method with selection constants it is described 

by the the selection constants 7 mk such that 

Zj+I - -  k if mk < ~ [ J ]  < mk+l 9.37 

where'b"[j ] is an estimate o f v [ j  ]. In the type of implementations considered here, 

this estimate is obtained by truncating the redundant  representation of v[j] to t 

fractional bits. 

To produce a correct selection function, the selection constants need to satisfy 
A A 

max( L k) < m k < rain( U k-1) 9.38 
A A 

where ILk, Uk] is the selection interval of the estimate~'[j] ,  which we determine 

now. The max and min operators relate to variables on which the selection interval 

depend, such as the divisor in division and the result in square root. 
A A 

�9 Step 7. Determine ILk, Uk], the limits of the selection intervals of'b"[j ]. 

We begin by obtaining [Lk, U k], the selection intervals on v [ j  ], and then 

restrict these intervals to take into account the effect of using the estimate 
"b"[j ]. 

From the relation between w[j  + 1] and v[j] (expression (9.33)) we 

have 

~ -  U k + H2(k) c o -  L k + H2(k) 9 . 3 9  

Substituting ~ and co from (9.35) and (9.36), we get the selection intervals 

for v[ j ] ,  

max(I l l )  4- H2(a ) 
U k - - - H2(k) 

r - 1 9 . 4 0  

min(/-/1) + H 2 ( - a  ) 
L k = - - H2(k) 

r - 1  

7. To simplify the description we consider the case in which there is only one selection 
constant for each k; if this is not possible, a staircase function has to be developed, as described 
in Section 5.4. 
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N o w  we restrict the intervals because of the use of  the estimate'b" [ j  ]. The  

estimate introduces an error such that 

e m i  n ~ v [ j ]  - ' b " [ j ]  < e m a  x 

producing the error-restricted selection interval [Lk ,  U k ] with 

U ;  - -  U k - -ema x L k - -  L k  -Jr-[emin I 

Specifically, as shown in Section 5.4, for a redundant  representation 

truncated to t fractional bits, the errors are as follows: 

9.41 

9.42 

For carry-save representation, emax - -  2 -t+l  -- u l p  and emin - -  O. 

- -  2 - t  u l p  and For signed-digit representation, e m a  x 

e min - -  - - (2  - t  --  u l p ) .  

Since the estimate is obtained by assimilating t fractional bits of  v i i i ,  the 

errors are multiples of 2 - t  . Consequently, the actual selection interval 

boundaries and the selection constants have a granularity of  2 -t .  Let U and 

L denote the actual (grid-restricted) selection intervals. As shown in Section 

5.4, 

U k - 1 -  LUk_ 1 + 2-tAt 
A 

L k - -  fL k], 
9.43 

w h e r e / x  It and Ix ]t indicate x values truncated to t fractional bits. The  

choice of  constants mk is illustrated in Figure 9.11. 

Lk Uk-1 

I ................................... l l i i l .......................... I I 

' I :  ............................... ' ' ' T_ ,'i 
T .................................... T 

Possible choices 2-t+ .~ 
form k [" "-1 

2 - t  

I I I I I 
I I I I I 

v[j] 

Lk U* k-1 Uk-1  

Lk 
(The ticks on the v[j] line represent the estimate ~[j]) 

F I G U R ~: 9.11 The choices of selection constant ink. 
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�9 Step 8. Determination of t and 8. To be able to determine ink, from (9.38) 

we need 
A A 

min(Uk_l) -- max(Lk) >__ 0 9.44 

This gives a relation between t and 8 that is used to choose suitable values. 

�9 Step 9. Determination of the selection constants mk using expression (9.38). 

Moreover, determine the range ofF'[ j ]  as 

[rco + min(H1) - Cmax] t ~ ~ [ j ]  ___ [ r~  + max(H1) + ]eminl] t 9.45 

Part 2b: Other Selection Methods 

In algorithms using a higher radix (r > 4), implementing a selection function 

based on selection constants becomes quickly impractical. In such a case there are 
other methods for selecting output digits in online algorithms. We present here 

a selection method based on rounding of the residual part v[j ]. 

Selection by Rounding Consider the residual expression (9.33) 

w[j + 1] = rw[j] + H1 + m 2 ( z j + l )  - -  v[j] + H2(zj+l) 9.46 

In the rounding method, the result digit is obtained as 

zj+l - [v[j] + ~] 9.47 

1 with Jv[j]J < r - ~ to avoid overredundant output digit. Replacing this selection 
in the recurrence, we get ([ 1]) 

w[j+l]--v[j]+H2 v[j]+~ 9.48 

This next residual has to satisfy the bounds for convergence. This limits the direct 

application of the approach to some operations, while for others some transfor- 

mations are required. If applicable, for a high radix this type of selection is far 

simpler to implement than a selection function using constants. Its implementa- 

tion depends on the representation of the output digit, and in the case of a two's 

complement conventional representation of the digits, it corresponds to a short 

CPA. 

For residuals in redundant form, the rounding is performed on an estimate 

~ ' [ j  ] defined in the expression (9.41). Since the selection by rounding is equivalent 
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:;~:: 

to the selection using selection constants 

i n k =  
2 k - 1 

we can use a similar procedure in determining the necessary precision of the 

estimate as presented in Step 8. 

Specifically, for an estimate of the residual in carry-save form of t  fractional 

bits, the estimate error is e m a  x - -  2 - t + l  - -  ulp. When ~ '[ j ]  - m k - 2 -t it must 

be possible to choose zj+l = k - 1. Consequently, to have a correct selection it is 

necessary that 

2 k - 1 A 
m k --  2 - t  + emax = -~- 2 - t  < U k _  1 9.49 

2 

Generic Form of Execution and Implementation 

We now describe a generic execution of an online algorithm and present the 

components of an implementation. 

The execution corresponds to n + 8 iterations of the recurrence, each corre- 

sponding to one clock cycle. The iterations (cycles) are labeled from - 8  to n - 1. 

One digit of each input is introduced during cycles - 8  ton - 1 - 8  and digits value 

0 thereafter. The result digits are 0 for cycles - 8  to - 1, and z 1 is produced in cycle 

0. Finally, the result digit zj is output in cycle j .  Consequently, one additional 

cycle is required to output zn. 

For an operation with two operands x and y and one output z, the 

execution in cycle j consists of the following actions: 

�9 Input X j + l + 8  a n d  Y j + l + 8 .  

�9 Update x[ j  + 1] = (x[ j ] ,  Xj+l+a) and y[ j  + 1] = (y[ j ] ,  yj+l+a) by 
appending the input digits. 

�9 Compute v[j] = r w[j] + HI. 
�9 Determine Zj+l using the selection function. 

�9 In some algorithms, update z[ j  + 1] = (z[ j ] ,  zj+~+a) by appending the 

result digits. 

�9 Compute the next residual w[j  + 1] = v[j] + H2(zj+l). 

In addition, result digit zj is output. 

Due to this similar structure of the algorithms, they are all implemented 

using the same basic components, such as the following: 
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1. Registers to store operands, results, and residual vectors 

2. Multiplication of vector by digit 

3. Append units to append a new digit to a vector 

4. Two-operand and multioperand redundant adders, such as signed digit 

adders, [3:2] carry-save adders, and their generalization to [4:2] and [5:2] 

adders 

5. Converters from redundant representations (i.e., signed-digit and carry- 

save) to conventional representations 

6. Carry-propagate adders of limited precision (3 to 6 bits) to produce 

estimates of the residual functions 

7. Digit-selection schemes to obtain output digits 

An online algorithm implementation is similar to implementation of the digit 

recurrence algorithms discussed in Chapter 5 and consists of a linear array of 

digit slices, as shown in Figure 9.12. The number of digit slices depends on the 

operation implemented. 

@. 3,. 4 Algorithms and Implementations 

We now develop algorithms for online multiplication and division and give ex- 
amples of these for radix 2. 

X j + l + 8  Y j + l + ~ 5  

1!' ,.,, i 

,, 
1 * 

i 

zj+] 

9 

| *  
! 

! 
i 

I ! 2 1 
! 

. . . , .  

r'i ** 
! 

Digit slice 
* Paths for appending input digits 
** Left-shifted bits of the residual 
*** The width of the MS slice depends 

on the selection function 

F I G U RE 9.12 A typical digit slice organization of an online arithmetic unit. 
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Mul t i p l i ca t i on  

Using the design method discussed in Section 9.3.2, we develop a radix-r online 
multiplication algorithm for n-digit  signed operands x and y, and product p in 

the range ( -  1, 1) represented with n signed digits from the set { - a ,  . . . ,  a }. Let 
the operands and the result at cycle j be 

j+8 j+8 j 

x [ j ] -  ~-~xi r-i,  y [ j ] -  ~ y i  r-i ,  p [ j ] -  ~ p i r  
i=1 i=1 i=1 

The error bound at cycle j is 

Ix[ j ] .  y[ j]  - P[j]I < r - J  

- i  9.50 

9.51 

The corresponding residual is defined as 

w[j]  - r J ( x [ j ]  �9 y [ j ]  - p [ j ] )  9.52 

with the bound ]w [j][ < co. 

The resulting recurrence is 

w [ j  + 1 ] -  r w [ j ]  + (x[ j]yj+l+a + y [ j  + 1]xj+l+a)r -a 

This is decomposed into 

--Pj+l 9.53 

v[j]  -- r w [ j ]  + (x[ j]yj+l+a + y [ j  + 1]Xj+l+a)r -a 

w [ j  + 1] -- v[j]  - Pj+I 

resulting in 

H1 -- (x[ j]yj+l+a + y [ j  + 1]xj+l+a)r -a 

and the bound (from 9.35) 

-- - - c o -  co -- p(1 -- 2r-~) 

H2 -- - P  j+l 

9.54 

9.55 

9.56 

The selection intervals are 

U k  ~ m 

2ar -a _ a 

r - - 1  
+ k  - p(1 - 2r-a)  + k  

Lk ~ m 
--2ar -a + a 

r - - 1  
+ k  -- - p ( 1  - 2r-a)  + k  

9.57 
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EXAMPLE 9 .3  

Radix p t 

Initial Number of 

Bits/Operand 

6 

4 

6 

9 

T ABLE 9.4 Examples of relations between r, p, t, and 8 based on (9.60). 

Using a carry-save representation for w [ j ]  and v [ j  ], the grid-restricted intervals 

a r e  

U'k = tp(1 - 2r-8) + k - 2-t ]t 9.58 

- r - p ( 1  - 2 r - 8 )  + kl, 

The expression to determine t and 8 is 8 

Lp(1 - 2r -8) + k - 1 - 2 - t / t  - I - p ( 1  - 2r -8) + k l t  > 0 9.59 

This results in 

tp ( 1 - 2r - 8 ) / t  > 2-1 ( 1 + 2 - t )  9.60 

Several examples of relations based on (9.60) between p, t, and 8 for radices 2, 4, 

and 8 are presented in Table 9.4. 

The  selection constants are determined using the selection interval (9.58). 

The  range of the estimate'b"[j ], using expression (9.45), is 

L - r p  + 2 r - 8 ( r p  - 1) --emaxJ t ~ ~ [ j ]  _< [rp - 2 r - ~ ( r p  - 1) + [emin[Jt 9.61 

which is simplified to 

L - p ( r  - 2r -8) - -  2 - t + l . ]  t <_ ~ [ j ]  < Lp(r - 2r-8)J t  9.62 

We now present a radix-2 online mult ipl icat ion a lgor i thm and its implemen-  

tation for the carry-save representat ion of  the residual. F r o m  Table 9.4, the 

online delay is 8 - 3 and t - 2. 

8. For multiplication the selection interval does not depend on another variable, so the min 
and max operators in the general description are not needed. 
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The selection constants i n k ' S  are obtained from 

A 

L k < m k < U k _  1 9.63 

where 

Uk -- [1 - 2 -2  + k - 2 -2J2  - -  k + 2-1  

"Lk - -  ['--1 + 2 -2 + k]2 - k - 3 x 2 -2 
9.64 

So Uk_ 1 - -  k-2-1,~k - k - 3  x 2-2, so thatmk - k - 2  -1 is acceptable. 
Therefore, the selection constants are 

_ _ 2 - 1  1 mo , m l - - 2 -  9.65 

The range of ~ [ j  ] is 

7 
- 2  < ~ [ j ]  < - 

4 

The corresponding selection function SELM(~[j]) is 

9.66 

1 A 7 1 i f~  < v [ j ] < ~  
1 -"- 1 9.67 Pj+I --  S E L M ( ~ [ j ] )  - -  0 i f - ~  < v [ j ]  < 

~- 3 - 1  if - 2  < v [ j ]  < - ~  

This selection function has a simple implementation. The assimilated 
estimate ~" is (v_i, vo, v 1, v2). Since the selection constants have one fractional 
bit, bit v2 of the estimate is not used. The product digit Pj+I is coded with 
two bits (pp, pn) as follows: 

Pj+I PP pn 

1 
0 

-1 

1 0 

0 0 

0 1 

Using this coding and the fact that the estimate bit v2 is not used, the 
selection function is described by Table 9.5. 
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3 
2 

1 
1 
2 

0 
1 - 3  

-1  
3 - 3  

- 2  

V - l V 0 . V l  

01.1 

01.0 

00.1 

00.0 

11.1 

11.0 

10.1 

10.0 

p j+l 

1 

1 

1 

0 

0 

- 1  

- 1  

- 1  

l A 8 L E 9.S Radix-2 multiplication selection function. 

The  corresponding switching expressions are 

! / 
p p  - -  V_l(V 0 + Vl) , p n  - -  b'_l(V ~ + Vl) 9.68 

The  algorithm is shown in Figure 9.13, and its implementation in Fig- 
ure 9.14(a). The latches L X  and L Y  are the output latches of the predeces- 
sor online units. The  carries C x and C y correspond to the signs of x j+4 and 
y j+4 ,  respectively. The  module V produces the estimate of v [ j ] .  The calcu- 
lation o f 2 w [ j  + 1] is illustrated in Figure 9.14(b). The  subtraction o f v [ j ]  - 
P j+ l  can be implemented by simply complementing the estimate bit v0 if 
P j+l :5~ 0 (Exercise 9.11). The  critical path consists of a S E L E C T O R  
(2-input MUX), a [4:2] adder, a 4-bit CPA, the SELM module, and an xoP, for 
complementing v0. 

In Table 9.6, we illustrate radix-2 online multiplication with operands 

x - ( .11011011)  

y - ( . 10111110)  

For simplicity we show v and w in nonredundant  form. 
The  computed product is p - (. 10101110). The  true double-precision 

product is p* - (.0110010110000010). The  absolute error with respect 

to the true product truncated to 8 bits is IP - PtrJ -- 2-8. Note that p[8] + 
w[812 -8 - p �9 �9 
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1. [Initialize] 

x[ -3]  = y[-3]  = w[-3]  = O 

for j -- - 3 ,  - 2 ,  - 1  

x [ j  + 1] <---CA(x[j],xj+4); y[ j  + 1] +--CA(y[j] ,  Yj+4) 

v[j] -- 2w[j]  + (x[j]yj+4 + y [ j  + 1]xj+4)2 -3 

w [ j  + 1] +--v[ j ]  

e n d  f o r  �9 

2. [Recurrence] 

f o r j  = O . . . n - 1  

x [ j  + 1] +--CA(x[j] ,xj+4);  y[ j  + 1] +--CA(y[j] ,  Yj+4) 

v[j] -- 2w[j]  + (x[j]yj+4 + y [ j  + 1]xj+4)2 -3 

Pj+l -- SELM(v[j] ) ;  

w [ j  -+- 1] +- v[j] - Pj+l 

Pout +-- Pj+l 

e n d  f o r  

where 

�9 The residual is in redundant form, represented by the pseudosum WS and 
stored-carry WC bit-vectors. For simplicity, we use w[j]  in the description. 

�9 n is the precision in bits. 
�9 The online delay 8 = 3; the estimate ~ ' [ j ]  is computed with t = 2. 
�9 SELM(~'[ j  ]) is the product-digit selection function. Since the selection 

1 the second fractional bit of the estimate is not used. constants are 4- ~, 
�9 CA is on-the-fly conversion/appending function producing the online 

operands in the conventional representation (discussed in Section 5.2.3). 
�9 Pout is the product digit register. 

F I G U R S 9.  l a  Radix-2 online multiplication algorithm. 

Online Divis ion 

Using the design method discussed in Section 9.3.2, we develop a radix-r online 
division algorithm for n-digit signed operands x and y, and quotient q in the 
range ( -  1, 1) represented with n signed digits from the set { - a ,  . . . ,  a }. Let the 
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(Shift-register for load control in right-append registers not shown) 
Predecessor 
online unit Predecessor online 

,, unit ,, 

i = CA-Reg X Yj+5 = CA-Reg Y 

. . . . . . . .  XJ +4 n~X[J] n~x[j]  . . . . . . . .  Yj+4 n ~y[j+l] n~y[ j+ l ]  
._1 Yj+4 #[ SELECTOR I Xj+4 "-I SELECTOR 

n 

It, 
[4:2] i: ADDER 

[4 v 4 
A 

I I 1 ~ ~_ __1_ _ twil r_ed shift left~ 3 P J + I I  I I 

V block produces estimate of v 

M block performs subtraction of Pj+l 

C x = 1 if Xj+ 4 < 0 

Cy = 1 if Yj+4 < 0 

(Register control signals not shown) (a) 

I VS_lVS vs 1 vs 2 vs 3 vs 4 . . . . .  

v[j] VC-l Vr Vr 12C'2 Vr Vr . . . .  

Estimate o fv [ j ]  v-1 vO " vl  v2 

2w[j + 1] I v~ Vl " V2 vS3 vS4 . . . .  

•C 3 VC 4 . . .  

v 0 -- voXORIpj+ll 
(b) 

F I G U R E  9 .14  (a) Implementation of radix-2 online multiplier. (b) Calculation o f 2 w [ j  + 1]. 
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J 

- 3  

2 

1 

0 

1 

2 

3 

4 

5 

6 

7 

x j+4 

1 

1 

0 

-1  

1 

0 

-1  

1 

0 

0 

0 

Y j+4 

1 

0 

1 

-1  

1 

1 

1 

0 

0 

0 

0 

x[ j  + 1] 

.1 

.11 

.110 

.1011 

.10111 

.101110 

.1011011 

.10110111 

.10110111 

.10110111 

.10110111 

y[j  + 1] 

.1 

.10 

.101 

.1001 

.10001 

.100011 

.1000111 

.10001110 

.10001110 

.10001110 

.I0001110 

v[j] 

00.0001 

00.00110 

00.011110 

00.1100011 

11.10000111 

11.001001010 

00.0100111101 

00.10110000010 

11.0110000010 

00.110000010 

11.10000010 

P j+l 

0 

0 

0 

1 

0 

-1  

0 

1 

1 

1 

0 

w[j  + 1] 

00.0001 

00.00110 

00.011110 

11.1100011 

11.10000111 

00.001001010 

00.0100111101 

11.10110000010 

00.0110000010 

11.110000010 

11.10000010 

l',~aI.E 9.6 Example of radix-2 online multiplication. 

operands and the result at cycle j be 

j+8 

x[j] = ~ xir 
i=1 

j+8 
-i , y[j] -- yir -i, 

i=1 

The error bound at cycle j is 

J 
q [ j ] - -  E q i r  

i = I  

- i  9.69 

Ix[j] - q [ j ] d [ j ] l  < d[j]r - j  9.70 

The residual is 

w[j] = rJ(x[j]  - q[j]d[j])  9.71 

with the bound Iw[j][ < oo < d[j]. 
The residual recurrence is 

w[j  + 1] = rw[j]  + Xj+l+sr 

which is decomposed as 

-8 _q[ j ]d j+l+sr -8  - d [ j  + 1]qj+l 9.72 

v[j] -- rw[j]  + xj+l+sr -8 - q[jldj+l+sr 

w[ j  + 1] = v [ j ] - d [ j  + 1]qj+l 

- 8  

9.73 
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In terms of the notation of Section 9.3.1, 

- 8  
g l  - -  x j + i + s r  -- q [ j ] d j + l + s r  

- 8  H2 = - d [ j  + 1]qj+l 9.74 

The bound o f w [ j ]  is 

2ar -8 - ad[ j  + 1] 
co = - = p(d[ j  + 1 ] -  2r -8) 9.75 

r - 1  

The selection intervals on v[j] are 

U k = p(d[ j  + 1 ] -  2r -~) + kd[ j  + 1] 9.76 

L k -- - p ( d [ j  + 1 ] -  2r -8) + kd[ j  + 1] 

Using a carry-save representation for w[j] and v[j  ], the grid-restricted intervals 

a r e  

Uk = [p (d [ j  + 1 ] -  2r -8) + kd[ j  + 1 ] -  2-ti t  
9.77 

L k = [ - p ( d [ j  + 1 ] -  2r -8) + kd[ j  + 1]It 

The expression to determine t and 8 is 

d[ j  + 1]min([p(d[j + 1 ] -  2r -8) + ( k -  1)d[j + 1 ] -  2-t i t )  

- d [ j  + 1]max( [ - p ( d [ j  + 1 ] -  2r -8) + kd[ j  4" 1]It) ~ 0 9.78 

1 the expression has a valid solution Using d [ j  + 1]max = 1 and d [ j  + 1]rain = 3' 
only for r = 2. We consider only this case here; for higher radices it is necessary 
to divide the range of d[ j  + 1] into intervals and develop a staircase selection 
function as was done in Section 5.4. 

For r = 2 (p = 1), we get 

[2 -1 - 2 -8+1 + 2-1(k - 1) - 2-t .]t  - [ - 1  + 2 -8+1 + k ] t  ~ o 9.79 

The worst case is for k - 1, resulting in 

L 2-1 _ 2-8+1.] t _ [2-8+1]t ~ 2 -t 9.80 

A solution to this is t = 3 and 8 -- 4. 

The selection constants are obtained using the selection intervals of (9.77). 
The range of ~ ' [ j ]  is 

L - r p ( 1 - 2 r - 8 )  - 2 a r - 8 - 2 - t + l . ]  t < ~ ' [ j ]  < [rp (1 -2r -~)  -2ar-8.] t 9.81 
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Since this is the same expression as for multiplication, it can be likewise simplified 
to 

L-p(r - 2r -81 - 2 - t + l ] t  ~ "b'[j] _< Lp(r - 2r-8).lt 9.82 

EXAMPLE 9 .4  We now present a radix-2 online division algorithm and its implementation 
for the carry-save representation of the residual. Using t -- 3, 8 - 4, and 
min/max values 9 ofd [j  + 1], we obtain 

m i n U 0 = U 0 [ d [ j + l ] - -  1 / 2 ] = 2  - 1 - 2  - 3 + 0 - 2  - 3 = 2  -2 
9.83 

max'L1 = ' L l [ d [ j  + 1 ] -  1 ] -  - 1  + 2 -3 + 1 - -2  -3 

resulting in m 1 = 2 -2 

m a n  U - 1 -  U - l [ d [ j  + 1 ] -  1 ] -  1 - 2  . 3 -  1 - 2  . 3 -  - 2  -2 

max'L0 -- 'L0[d[j  + 1 ] -  1/2] = - 2 - 1 +  2 - 3 -  - 3  • 2 -3 
9.84 

so that m0 = - 2  -2. 
The range of~[ j ]  is 

15 
- 2  < ~ ' [ j ]  < - -  9.85 

- -  8 

The corresponding quotient-selection function S E L D ( ~ [ j  ]) is 

1 A . 1 5  
1 i f ~  < v [ j ] <  T 

1 - ~  �9 1 9.86 qj+~ - -  S E L D ( ' d [ j ] )  - -  0 i f - ~  _< v[./] _ 
1 --1 i f - -2  <vA[j] < --2 

The assimilated estimate'b" is (V-l, v0, Vl, v2, v3). Since the selection con- 
stants have two fractional bits, bit v3 of the estimate is not used. The imple- 
mentation of the selection function is left as Exercise 9.18. In summary, the 
radix-2 algorithm is given in Figure 9.15. 

The corresponding implementation is shown in Figure 9.16. The 
latches LX and LD are the output latches of the predecessor online units. 
The carries ca and Cq are determined by the signs of the divisor d and digit 

A A 

9. Actually for r = 2, since p = 1, L1 and U_ 1 do not depend o n d [ j  + 1] so only d [ j  + 1] = 

! matters in the derivation of the selection constants. 
2 
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1. [Initialize] 

x[ -4 ]  = d [ -4 ]  = w [ - 4 ]  = q[0] = 0 

for j = - 4 , . . . ,  - 1  

d[j  + 1] <---CA(d[j], dj+5) 

v[j] -- 2w[j]  + x j + 5 2 - 4  

w[j  + 1] <--v[j]  

end for 

2. [Recurrence] 

f o r j  = 0 . . . n - 1  

d[ j  + 1] <--CA(d[j] ,dj+5) 
2-4 -4 v[j] -- 2w[j]  + xj+5 -q[ j]d j+52 

q j +1 -- SELD( v~'[ j ]); 

w [ j  + 1] + - - v [ j ] -  q j + l d [ j  + 1] 

q[j  + 1] <---CA(q[j],qj+l) 

Qout <--- q j+l 
end for 

where 

�9 The residual is in redundant form, represented by the pseudosum WS and 
stored-carry WC bit-vectors. For simplicity, we use w[j] in the description. 

�9 n is the precision in bits. 
�9 The online delay 8 = 4; the estimate~'[j] is computed witht = 3. 
�9 SELD(~[j]) is the quotient-digit selection function. Since the selection 

constants are +1/4, the third fractional bit of the estimate is not used. 
�9 CA is on-the-fly conversion/appending function producing the online 

operands in the conventional representation (discussed in Section 5.2.3). 
�9 Q out is the quotient digit register. 

F I G U R E 9. lS Radix-2 online division algorithm. 

dj+5, and the quotient q and digit q j+l, respectively. Block U combines the 
dividend digit xj +52-4 and the sign extension bits ofq [j  ]dj +52-4. This allows 
the use of a [3:2] adder in computing v[j]. The design details of module U 
are considered in Exercise 9.19. The critical path consists of a SELECTOR 



MSDF: Online Arithmetic 525 

X J+6 ~ ~ [  

Predecessor 
online unit 

SELD 1r 

qj+l 1 

[OOUt [ 

(Shift-register for load control in right-append registers not shown) 

qj+l =1 CA-Reg Q 

n~q[J] n~q[j] 

SELECTOR I 
qs n iu I I lws t 

All 6 bits wide - - - - t - t - t  "~ 
i 

, [3:21 i 

V 
4 I~ /, 

' ADDER i 

v[j] 

"5 
[3:21 

ADDER 

,r-- 

Predecessor online 
unit ,, 

dj§ n~d[j+l]n~d[j+l] 

qj+l "J "-I SELECTOR ] 

wc n 

(Register control signals not shown) 

C,l = 1 if (dj+ 5 > 0 and q > 0) 

or (dj+ 5 < 0 and q < 0) 

Cq = 1 i f  (qj+l > 0 and d > 0) 

or (qj+l < 0 and d < 0) 

-I  
, Wired left shift 

2w[j + 1] 

RegWS [I RegWC 

2w[j] 
WS WC 

F I G U R S 9.16 Block diagram of radix-2 online divider. 

(2-input MUX), module U, a [3:2] adder, estimate module V, selection module 
SELD, a SELECTOR, and a [3:2] adder. 

In comparison with conventional digit recurrence division using resid- 
uals in carry-save form, the online division is somewhat more complex and 
has a longer cycle time. For example, while the conventional division uses 
a [3:2] adder, 1 fractional bit estimate of the partial remainder, one 2-input 
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multiplexer, and 5 registers (1 for the nonredundant divisor, 2 for the redun- 
dant partial remainder, and 2 for the redundant quotient), the online algorithm 
uses two [3:2] adders, a 3-bit (fractional) estimate, 6 registers (2 for the redun- 
dant divisor, 2 for the redundant residual, and 2 for the redundant quotient), 
two 2-input multiplexers, two on-the-fly converters (using the divisor and the 
quotient registers), and two appending networks. The implementation of the 
selection function has similar complexity as that of multiplication. �9 

The Reduction of Digit Slices in Online Implementations 

The number of bit slices required in an implementation of an online algorithm 
is smaller than that required in serial-parallel implementation. As illustrated in 
Figure 9.17(a), n is the number of bits in the result, i b is the number of integer 
bits ofv[j] ,  andt the number of fractional bits in its estimate~"[j]. Let p < n be 
the number of fractional bit slices in the implementation. In the first p cycles the 
computation of the residual is exact. Beginning with step p + 1, an error in the 
residual due to "truncation" of the fractional bit slices p, . . . ,  n + ~ is introduced 

~5 Not implemented 

O00.OOO00000000OOOO000000 
ib  t n 

(a) 

P 
x x x x x x x x x x x  
x x x x x x x x x x x  
x x x x x x x x x x x  
x x x x x x x x x x x  

x x x x x x e  
x x x x x e e  

x x x x x e e  After left shift: 
x x x x e e e  

(b) 

F I G U R E  9 .17  Reduction of bit slices in implementation. 
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and propagated to the left by one position due to the term 2w[j] .  For residuals 
formed using a [4:2] adder, the error in cycle p + 1 (after left shift) affects bits 
in positions p - 2, p - 1, p (Figure 9.17(b)). After cycles p + 1, . . . ,  p + h are 
performed, the truncation error has affected all bit positions up to and including 
bit position p - 2h + 8 (in the last ~ cycles the input digits are 0 and the error 
propagation is caused by the left shift of the residual). To have a valid selection 
using an estimate of t fractional bits, 

p - 2h + 8 > t 9.87 

Since p + h = n + 8, we obtain 

[2n + 8 + t  1 
P - 3 9.88 

and the total number of bit slices is ib + p. 
For example, the number of bit slices for 32-bit radix-2 online multiplication 

is F2 32+3+2] 
2 + 3 = 2 + 23 = 25 9.89 

compared to 34 in an implementation without slice reduction. 

Multioperation and Composite Online Algorithms 

To reduce the overall online delay of a group of operations, it is often advantageous 
and feasible to combine several operations into a single multioperation online al- 
gorithm. As an example, t~ below we show an online algorithm for sum of squares 
x 2 +  y2 + z 2, which is used in 3-D normalization. The inputs are in the range [ �89 1) 

1 3) and itsonline delay 8ss -- 0when the output digit and the output in the range [ g, 
is overredundant. This is in contrast with the delay of(3 + 2 + 2 -- 7) of the corre- 
sponding network consisting of three online multipliers and two adders. This re- 
duction in delay is partially due to the overredundant output digit. The algorithm 
is given in Figure 9.18 and the corresponding implementation in Figure 9.19(a). 

As shown in Figure 9.19(b) the selection functions j +1 = csint(v [j ]) produces 
an output digit in the range from 0 to 8. If it can be used in this form in the next 
operation, which is the case in the 3-D normalization, no recoding to the digit set 
{ -  1, 0, 1} is necessary. 

10. Ercegovac and Lang (1999). 
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1. [Initialize] 

w [ 0 ]  = x [0] = y [0] = z [0 ]  = 0 

2. [Recurrence] 

f o r j  = 0 . . . n - 1  

v[j] -- 2w[j]  + (2x[j]  + Xd+12-J-1)xj+l + (2y[j]  + Yj+12-J-1)Yj+1 

+ (2z[j] + zj+12-J-1)Zj+l 

w [ j + 1] ~--csfract(v[j]) 

s j+l +- csint(v[j]) 

x [ j  + 1] ~--(x[j] ,  Xd+l); y[ j  + 1] ~--(y[j] ,  Yd+l); z[ j  + 1] ~ (z[j] ,  zj + l) 

Sour ~ S j + l 

end for 

where 
�9 n is the precision in bits. 
�9 csfract(v) and csint(v) correspond to the fractional and integer parts of v 

obtained in carry-save form (see Figure 9.19(b)). 
�9 Sour is the result-digit register. 

F ! G U R E 9.111 Radix-2 online sum-of-squares algorithm. 

For more complicated algorithms that cannot be implemented by a single 
online module, an interconnection of modules is required. A modular approach 
would be to use the standard online implementation of primitive operations as 
components. However, this might lead to suboptimal implementations with re- 
spect to area and online delay. An alternative is to develop an integrated approach 
and develop one composite algorithm. As an illustration we show in Figure 9.20 the 
use of the sum-of-squares with overredundant output digit in the set {0, . . . ,  8}, 
and a square root algorithm 11 developed for this input digit set to perform 

d = ~/(x 2 + y2 + z 2) 

with an overall online delay of 5. This is part of an online unit to compute the 
3-D normalization. A network of standard online modules would have an online 
delay of 11. 

11. Ercegovac and Lang (1999). 
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= Serial Xj+I 

Parallel IAPPEND~ 
x[j+l]~ 

w[j+ l] [ x[j] ] 

WC 

Yj+I 

IAPPENOI  
I !tJ!l 

APPEND~ 

, i 

IAPPENDI IAPPEND| [APPEND| I MULl ~'I MUL/ 

[5:2] ADDER 

 'AI 1 1 
'j+l i ] w[j+ 1] IS ut APPEND 

implements 
x[j + 11 = x[j] + Xj.l 2-j-1 

sj in {0 ..... 8} (a) 

MUL/APPEND 
implements 

2x[j  lxj+ 1 + x2j+l 2-J -1 

555 = 0 

X. X X X X X X X X X  I 

X. X X X X X X X X X  

X. X X X X X X X X X  

X. X X X X X X X X X  

X. X X X X  X X X X X  

I-/.,11 csSrac I ~ 
max(csint) = 8 

2w[j] 

(2x[j]xj+ 1 + x2j+12-J -1) 

(2 y[jl  Yj+ 1 + y2j+12-j-1 ) 

(2 z[j] zj+l + Z2j+I 2-j-l) 

Note: the fractional portion of the 5-2 CSA 
produces at most three carries 

(b) 

F I @ U e E 9.19 (a) Radix-2 online unit for computing sum of squares. (b) Carry-save operation: 
obtaining residual and output digit. 

Online Implementation of Recursive Algorithms 

An important characteristic of MSDF/online arithmetic is its capability to re- 
duce the latency between successive recurrence evaluations, independent of the 
precision of computation. These recursive algorithms are frequently used in 
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= Serial xj+5 

Parallel ]APPEND I+ 
x[j+l]~ t 

w[j+l] I 
x [ j ]  

"~ I . u - L  
we IAPPENDI 

CPA I 

SJ +6 

Is"u t] 

Y j+5 Z j+5 

I .u~, L I .u~, 1. APP'=ND F IAPP'=NOI 
1 , 

[5:21 ADDER I 

w[j+l] 

Operation: 

Sum of squares 

s j+5 

dj+l 

{o ..... 8} 

R[j+I] 

RS 

RC 

I dse' I I 
~ {-1,0, 1} 

On-the-fly 
converter 

APPEND K 
R[j] 

[3:2] ADDER 

I 1 
R[j + 11 

dj+l 

Square root 

u = - ( 2 d [ j l d j +  1 + d2j+l 2-j-l) 

L 

FlaUeE 9.20 Composite scheme for computing d = V/(x 2 + y2 + zZ). 

signal processing applications, such as recursive filtering, lz As an illustration 
of the potential benefits of online arithmetic in such applications, we consider a 
second-order IIR filter (Figure 9.21 (a)) characterized by the output expression 

y[k]  - al y [ k  - 1] + a2 y [ k  - 21 + b x [ k ]  9.90 

12. Oppenheim et al. (1999). 
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y[k] .._l "-I MUL 

Coefficients 

x or y '~ 

(a) 

M1 

ADD 

Y 
ADD 

~ a 1 

MUL I~. 
r 

~ a2 

MUL L 
r 

IM3 M4 

(Multiply) (Multiply-add) ([4:2] adder) ([4:2] adder) 

= y[k] 

y [ k - 1 ]  

y [ k - 2 ]  

M5 

(CPA) 

lY._ 

v CS form (b) 

CYCLE: 

Module: 
M1 

M2 

M3 

M4 

M5 

k k + l  k+2 k+3 k + 4  

bx[k] R a2y[k-  2] R 

(bx[k]R) 

+ bx[k] L 

aly[k-1] R 

(a2y[k- 2] R) + 

a2y[k-2] L 

(a ly[k 1]R) + 

alY[k-  1] L 

(bx[k]) + 

(a2 y[ k - 2]) 

bx[k + 1] R 

(bx[k] + 

a2Y[k-2])+ 

(aly[k-1]) 

k+5 

y[k] 

(c) 

FIGURE 9.21 Conventional implementation of second-order IIR filter: (a) Filter. (b) Five- 

module network. (c) Schedule. 
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Without attempting any optimizations, several filter implementation alternatives 
are analyzed, assuming (i) parallel-in/parallel-out interface, (iii) coefficients in 
parallel form, and (iii) fixed-point format with n bits. Alternatives 2 and 3 use 
digit-serial arithmetic internally. 

1. Conventional parallel arithmetic implementation may, for example, use 
a five-module network: Module M1 is a n • n /2  multiplier producing 
a carry-save product; module M2 is a multiply-add unit producing the 
2n-bit product in carry-save form; modules M3 and M4 are [4:2] adders; 
and module M5 is a carry-propagate adder (Figure 9.21 (b)). As indicated in 

the schedule (Figure 9.21(c)), the time to obtain y [k] is TcoNv -- 6tmodule. 

We assume that the longest critical path is in module M5 corresponding 
to a 2n-bit CPA with tmodule ~ 6tvA for n < 31, where tFA is the delay 
of a full-adder. Since the next computation can begin in cycle k + 4, the 
rate of filter computation using this implementation is RcoN-v ~ 

1/(4 • 6tvA). 

2. LSDF serial arithmetic implementation uses three serial multipliers and 
two serial adders. Since it takes n clocks to begin producing the most- 
significant half of the product, the time to produce y[k] is TLsDv ~ ntvA. 

The rate of generating outputs in this alternative is RLsDv ~ 1/ (n  • tvA). 

The input/output format conversions are not in the critical path. 

3. Online arithmetic implementation uses online multioperation module M 
shown in Figure 9.22(a). The module M consists of the following 
components: (i) one online multiplier (one operand in parallel form) with 
online delay of 2 and (ii) two online multiply-add modules computing 
v u + w ,  where v is in parallel form while u and w are in online form. This 
module has an online delay of 3. The cycle time of module M is tM ~ 3tvA. 

A filter consisting of a single M module has a rate of one n-bit output every 
n cycles. 

To produce a higher throughput we can use the fact that online 
algorithms operate in the MSDF mode, so that several successive 
computations can be overlapped. As indicated in the timing diagram of 
Figure 9.22(c), consecutive y outputs can be produced digit-serially Aiter = 

3 + 1 -- 4 cycles apart. Since tM ~ 3tva, the rate is RoL -- 1/( Aiter X tM) 

1/(12tvA), which, for n > 12, is better than rates achievable with 
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F I G U R E  9.22 Onl ine  implemen ta t ion  of  second-order  I IR  filter: (a) T h e  online mul t ioper -  

ation module .  (b) N e t w o r k  for h igher  th roughpu t .  (c) T i m i n g  d iagram.  

a p p r o a c h e s  1 a n d  2. M o r e o v e r ,  t h e  t h r o u g h p u t  in  t h e  o n l i n e  a p p r o a c h  is 

i n d e p e n d e n t  o f  t h e  w o r k i n g  p r e c i s i o n .  H o w e v e r ,  a c h i e v i n g  th i s  t h r o u g h p u t  

r e q u i r e s  [n /mi te r  q m u l t i o p e r a t i o n  o p e r a t o r s ,  as i l l u s t r a t e d  in  F i g u r e  9 .22(b) .  

T h e  i m p l e m e n t a t i o n  c o s t  w o u l d  be  c o m p a r a b l e  to  t h e  c o s t  o f  t h a t  m a n y  



534 c H APT E R 9 Digit-Serial Arithmetic 

conventional serial-parallel carry-save multipliers (without carry-propagate 
adders). The number of bit slices in online units is reduced as discussed on 
page 526. Moreover, the modules are interconnected serially. The parallel 
input is serialized and demultiplexed to the online modules. The serial 
outputs are converted to parallel form using on-the-fly conversion and 
multiplexed to obtain the filter output. 

This example indicates that significant speedups might be possible using the 
online alternative. 

9 . 4  Concluding Remarks 
Digit-serial arithmetic is attractive in implementations where the area and the 
interconnection width between the modules should be minimized while the in- 
creased latency is acceptable. It allows appropriate choice of radix, digit set, and 
precision to satisfy design needs. This approach is well-suited to the design of 
massively parallel implementations. Two modes of computation are considered: 
right-to-left (a conventional LSD first approach), and left-to-right (MSDF or 
online approach). These modes have different characteristics in terms of delays, 
cost, and applicability. The MSDF mode allows overlapping successive operations 
after a few cycles, which is important in implementing recursive algorithms. The 
discussion in this chapter focused on the basic concepts and algorithms: more 
advanced developments of digit-serial arithmetic and its applications are covered 
in the references at the end. 

9 . 5  
9 . 1  

Exercises 
Show a block diagram for performing 2D vector normalization, similar to the 
one in Figure 9.4, for LSDF arithmetic. Compare the total number of cycles to 
the online scheme discussed in the text. 

LSDF Addition/Subtraction 

9.2 Write a recurrence for radix-r LSDF addition. 
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9 . 3  

LSDF Multiplication 

A serial algorithm is described by the following expressions: 

x [ j ]  - x [ j  - 1] + 2Jx j  

y [ j ]  = y [ j  - 1] + 2J y j  

w [ j ]  - [(1/2)(w[j  - 1] + x [ j  - 1]yj + y [ j ] x j ) ]  

z j  = ( w [ j  - 1] + x [ j  - 1]yj + y [ j ] x j ) m o d  2 

z [ j  ] - z [ j  - 1] + 2  jzj  

Show x [j ], y [j  ], z [ j ]  for 0 < j < 6 for the following input sequence: 

j 0123456 

x [ j ] -  1011010 

y [ j ] -  1110011 

Is this an LSDF or MSDF algorithm ? 

9 , 4  Place latches in Figure 9.6 to have a pipelined implementation. 

9 . 5  For a serial-serial multiplier show a timing diagram with the contents of all 
registers for the 5 • 5 bit two's complement multiplication of x = 01011 by 
y = 10001. 

9 . 6  For each of the 3 x 3 serial-parallel LSDF multipliers shown in Figure 9.23: 

(a) Give a timing diagram (schedule). 
(b) Determine the number of cycles to produce the 6-bit product. 
(c) Determine the critical path in a cycle. 

9 . 7  Develop an LSDF algorithm for squaring of unsigned and two's complement 
n-bit integers. Design a bit slice and show the network for n = 8. 

MSDF Addition/Subtraction 

9 . 8  

9 . 9  

Perform the radix-4 online addition ofx - 0.2312. and y = 0.223i. 

Perform the radix-2 online addition of x = 0.10i i01 i0 and y = 0.1010110i. 
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F | G U R E a.aa Serial-parallel multipliers (Exercise 9.6). 
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9 . 1 0  Consider radix-2 online addition with operands satisfying x + y < 1. 

(a) Perform the addition algorithm to show that if z0 = 1, then the next 
nonzero result digit must have a value -1 .  

(b) Devise a modification to the online addition algorithm to produce z0 to 0 
and develop the corresponding design. 

9.11  

9 . 1 2  

9 . 1 3  

9 . 1 4  

9 . 1 5  

9 . 1 6  

9 . 1 7  

MSDF Multiplication 

Show that the subtraction ofv [j] - P j+l  can be implemented by complementing 
the estimate bit v 0 if pj +1 ::~ 0. 

Show the execution of the radix-2 online multiplication of 0.1 i 1 by 0.11 i. 

Develop an algorithm and a design to perform on-the-fly conversion and append- 
ing for radix-2 online multiplication. 

Design a radix-2 online multiplier using a signed-digit adder. A signed digit 
X i E {-1,  0, 1} is encoded a s x i  - "  X i l  - -  x i O ,  X i l ,  XiO E {0, 1}. Compare with the 
implementation in Figure 9.14. 

Develop a radix-4 online multiplication algorithm with digit selection by round- 
ing. Show the execution of the algorithm to multiply x = 0.2~.1 by y = 0.i21. 

Develop a radix-2 online algorithm for computings = x 2, x ~ ( -1 ,  1), n bits of 
precision. 

Derive an MSDF multiplication algorithm for radix 2, multiplicand x in parallel 
two's complement form, and online multiplier y and product p in signed-bit form. 
The residual is in carry-save form. Determine the online delay 8 and the number 
of fractional bits t of the estimate~'[j ]. Show a block diagram of implementation, 
and compare it with the online multiplication implementation shown in Figure 
9.14 with respect to the critical path and the modules used. 

9 . 1 8  

9 . 1 9  

MSDF Division 

Implement the selection function for radix-2 online division. 

Module U of Figure 9.16 is specified as follows: 
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9 . 2 0  

9 .21  

xj+5;dj+5 - 1  

1. 1 1 0 

2. 0 0 

3. - 1  0 

Output u 

0. 1 2 3 4 

0 0 0 0 0 

0 0 0 0 1 

0 0 0 0 1 

4. 0 1 1 1 1 1 1 1 

5. 0 0 0 0 0 0 0 

6. - 1  0 0 0 0 0 0 

7. - 1  1 1 1 1 1 1 0 

8. 0 1 1 1 1 1 1 

9. - 1  1 1 1 1 1 1 

I fq  < 0, rows 1 and 3, 4 and 6, 7 and 9 are swapped. The input X j +  5 and dj+5 
are coded as (xp, xn) and (dp, dn). xz and dz denote zero digit values, qs is the 
sign of the quotient. 

(a) Show that the output of module U is 

(b) 
(c) 

U i = 1, i = - - 1 ,  . . . , 3  i f xn  + x z ( d p  . ~ - d + d n  .qs)  = 1 

U 4 = 1 if ~ .  dz  + ~ ( d p  .qs + dn �9 ~-f-) + xz (dp  �9 ~ + dn .qs)  = 1 

Show that the given table and expressions are correct. 
Show a gate network implementing the module. Compare its delay with 
the delay of a 6-bit [4:2] adder. 

Perform radix-2 online division for x = 0.10110010 and d = 0.11011101. 

Derive an MSDF division algorithm for radix 2, dividend x in parallel two's 
complement form, and online divisor d and quotient q in signed-bit form. The 

residual is in carry-save form. Determine the online delay 3 and the number of 
fractional bits t of the estimate ~ '[ j  ]. Show a block diagram of implementation, 
and compare it with the online division implementation shown in Figure 9.16 
with respect to the critical path and the modules used. 
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9 . 2 2  

9 . 2 3  

9 . 2 4  

9 . 2 5  

9 . 2 6  

9 . 2 7  

MSDF Other Operations 

Develop a radix-2 multiply-add online algorithm using the method in Section 
9.3.2. 

Develop a radix-2 square root online algorithm using the method in Section 9.3.2. 

Develop an online algorithm for z = max(x, y) with a minimum online delay 
for the following cases: 

(a) Signed-digit inputs and output 
(b) Nonredundant magnitude inputs and output 
(c) Nonredundant two's complement inputs and output 

Compare the two algorithms with respect to online delay, cycle time, and cost. 

Number  of Slices 

In a manner similar to that of Figure 9.17, determine the bits affected by imple- 
menting p < n bit slices to update a residual using 

(a) [3:2] reduction 
(b) [5:2] reduction 
(c) [6:2] reduction 

MSDF Composite 

(a) 

(b) 
(c) 
(d) 

Develop a composite online algorithm to compute a b + cd .  

Show a design at the level of Figure 9.14. 
Identify the critical path. 
Compare online delay, clock cycle, and cost with respect to a scheme that 
uses two online multipliers and one online adder. 

M S D F  M u l t i m o d u l e  

Show a block diagram for the execution of the following operation using several 
online modules. Give a timing diagram of the operation, using the initial delays 
of Table 9.1. 

Z m 
4X2 + y2 

~/w 2 + v 2 
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Compare the execution time with the case in which each operation requires 
the operands to be provided in parallel form. Assume that the operands x, y, w, v 
are provided in parallel form and that the result is required in parallel form. Make 
any reasonable assumption on the execution time of the operations. 

9~ Further Readings 
Digit-serial arithmetic is the subject of several books and many articles (Denyer 
and Renshaw 1985; Smith and Denyer 1988; Hartley and Corbett 1990; Hartley 
and Parhi 1995). 

LSDF Arithmetic~General 

The least-significant digit first (LSDF) algorithms and implementations for ad- 
dition are often covered in standard texts on digital systems. LSDF multiplica- 
tion is discussed in Lyon (1976), Chen and Willoner (1979), Danielson (1984), 
Gnanasekaran (1985), Dadda (1989), and Ienne and Viredez (1994). Design issues 
in digit-serial signal processors are discussed in Irwin and Owens (1989, 1990). 
An architecture and implementation of digit-serial processor are presented in 
Owens et al. (1993). 

MSDF Arithmetic General 

A discussion of the MSDF approach and its application to the evaluation of 
polynomial and rational functions is presented in Ercegovac (1975, 1977) (see 
more details in Chapter 10). Variations of MSDF and LSDF bit-serial arithmetic 
are discussed in Sips (1984). An overview of online arithmetic is given in Ercegovac 
(1984), and a method for the design of online algorithms appears in Ercegovac and 
Lang (1988a). The design of the corresponding selection functions is discussed 
in Tu (1990). The properties of functions computable in online arithmetic are 
studied in Muller (1994). 

MSDF Algorithms 

Online division and multiplication algorithms are introduced in Trivedi and 
Ercegovac (1977), and variations and implementations are reported in Irwin 
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(1977), Trivedi and Rusnak (1978), Gorji-Sinaki (1981), Lin and Sips (1987), Tu 
and Ercegovac (1989), Guyot et al. (1989), Tu and Ercegovac (1991), and Tenca 
and Ercegovac (1999). Other algorithms and implementations appear in Owens 
(1980), Irwin and Owens (1987), and Bajard et al. (1994). Online square root is 
discussed in Ercegovac (1978), Oklobdzija and Ercegovac (1982), and Tu (1990). 
Online algorithms for evaluation of elementary functions are discussed in Kla 
et al. (1991). 

The use of high-radix online arithmetic for accurate computing is investi- 
gated in Lynch and Schulte (1995) and Daumas et al. (1997). 

VLSI implementations of online arithmetic algorithms are discussed in Irwin 
and Owens (1983) and Tullsen and Ercegovac (1986). 

MSDF Recursive Computations 

The use of online arithmetic in recursive computations and the development of 
algorithms and implementations are discussed in a number of places (Brackert 
1988; Knowles et al. 1989; Brackert et al. 1989; Ercegovac 1991; Ercegovac and 
Lang 1992; Fernando 1993; Fernando and Ercegovac 1994, 1997). A method for 
designing MSDF algorithms for recursive filters is discussed in McQuillan and 
McCanny (1995). 

MSDF Floating-Point 

Floating-point online arithmetic and its implementation are presented in 
Watanuki (1981), Lin and Sips (1987), Tu (1990), Tu and Ercegovac (1991), and 
Duprat et al. (1991). Error analysis of floating-point online arithmetic is discussed 
in Watanuki and Ercegovac (1983). 

MSDF Complex Number Arithmetic 

Online arithmetic algorithms and implementations for operations on complex 
numbers are presented in Nielsen (1997) and Mcllhenny (2002). 

MSDF Variable Precision 

Variable-precision algorithms and implementations using online arithmetic are 
reported in Tenca (1998) and Tenca and Ercegovac (1999). 
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MSDF FPGA-Based Algorithms and Implementations 

Implementations of online arithmetic algorithms in FPGAs are reported in 
Daumas et al. (1994), Tenca et al. (1999), Tisserand et al. (1999), and Tenca and 
Hussaini (2001). 

MSDF Various Applications 

Online arithmetic has been applied to CORDIC (Ercegovac and Lang 1990; 
Lin and Sips 1990; Osorio et al. 1995), 2D DCT (Bruguera and Lang 1995), 
signal processing (Galli and Tenca 2001), digital communications (Rajagopal and 
Cavallaro 2001), digital control of real-time systems (Dimmler 1999; Dimmler et 
al. 1999), and neural networks (Girau and Tisserand 1996). 

Composite online algorithms and implementations for various applications 
including various matrix computations such as triangularization, singular value 
decomposition, and 2-D and 3-D normalization are presented in Ercegovac and 
Lang (1987, 1988b), Tu (1990), Ercegovac and Tu (1991), Ercegovac and Lang 
(1999), and Huang and Ercegovac (2001). 
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Function Evaluation 

The evaluation of functions is an important part of many numerical compu- 
tations. The set of functions we consider includes logarithm, exponential, and 
various trigonometric functions. The computation of these functions can be per- 
formed in software, using the standard floating-point instructions. For this, there 
are libraries that are suitable for particular processors. On the other hand, these 
functions can be computed by hardware/firmware implementations. These im- 
plementations might be specific for one particular function or for a set of functions. 
Since the hardware/firmware implementations can customize the primitives used 
and different types of parallelism can be available, the algorithms suited for this 
type of implementation might be different than those used for evaluation by soft- 
ware. In this chapter we concentrate on hardware/firmware implementations. 

In general, these functions cannot be computed exactly with a finite number 
of arithmetic operations. Consequently, they have to be approximated. Moreover, 
the argument, coefficients, intermediate variables, and result are represented by 
finite-precision digit vectors. Therefore, the accuracy is determined by the error 
of the approximation and by the roundofferrors that occur during the evaluation 
of the approximation. 

The choice of a method and a particular implementation depends on the 
requirements, such as delay, throughput, area, and energy. Of particular sig- 
nificance are the number of bits of the argument and the result, as well as the 
accuracy required. In this respect, requirements vary widely, from low-precision 
fixed-point representations to double-precision or quad-precision floating-point 
representations. Later we give comments on the domain of applicability of each 
method. 

In particular for floating-point representations, as discussed in Chapter 8, the 
IEEE Standard specifies four rounding modes for the basic operations. No such 
requirement is specified for the functions because of the difficulty in obtaining cor- 
rectly rounded results; this difficulty is described as the Table Maker's Dilemma. 

549 
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However, as we comment later, for limited precision, such as single-precision 
representation, it is possible to have practical implementations that produce cor- 
rectly rounded results. Moreover, in several applications it is convenient to have 
other numerical properties, such as monotonicity. 

Usually, approximation methods are applicable only for a limited domain 
of the argument. Consequently, it is typical to include an initial step of domain 
reduction and a final step of reconstruction. 

The most-direct evaluation method is a table lookup; this traditional method 
has become more practical recently because of the possibility of building larger 
tables. As a consequence, it might be the most-effective method for precisions of 
up to, say, 12 bits. For larger precisions, the resulting table is too large for practical 
implementation so that other methods have to be used. 

Implementation of suitable approximation algorithms should utilize only 
basic operations, such as additions, multiplications, and table lookups. Because 
of this, the approximations we consider fall into two classes. The first class uses 
an approximating polynomial and can be used for any continuous function. We 
discuss variations of this method that reduce the degree of the polynomial by 
incorporating also table lookup. An interesting recent approach is to use only tables 
and adders. The second class consists in forming a recurrence that converges to the 
value of the function. 1 This recurrence depends on the function being evaluated; 
as a consequence, this approach is only useful for some functions. To have a simple 
implementation, the operations in the recurrence are limited to multiplication by 
the radix (shifts), multiplication by a radix-r digit, additions, and table lookups. 
Because of this, these are called shift-and-add algorithms, although for high radices 
a rectangular multiplier is also required. 

In some instances a rational approximation that consists of the quotient of 
two polynomials can be used. The curve-fitting ability of a rational approximation 
consisting of polynomials of degree M and N roughly corresponds to that of a 
polynomial of degree M + N. Moreover, the two polynomials can be evaluated 
in parallel, reducing the evaluation time. Rational approximations are preferable 
to polynomial approximations for functions with a pole, such as tan(x), or an 
asymptote, such as arctan(x). On the other hand, the drawback is the division 
required. 

1. Algorithms of this type have been considered in Chapter 7 for reciprocal, reciprocal 
square root, and square root. 
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t 0 . 1  

1 0 . 2  

Argument Range Reduction 
Approximation methods can usually be applied only for a limited range of the 
argument. Consequently, before applying the approximating algorithm it is nec- 
essary to perform a transformation that reduces the range of the argument. More- 
over, after obtaining the approximation another transformation produces the final 
value. The specific transformations depend on the function and on the approxi- 
mating method. 

Callingxr the reduced argument, the most-used reduction methods are either 

�9 additive, in which Xr = X -- k C . This type is used, for instance, for 
trigonometric functions, where C = yr/4. 

�9 multiplicative, in which Xr = X C k. This is used, for example, for the 
logarithm function. 

In the case of floating-point representations, the reduction is applied to the 
representation consisting of sign, exponent, and significand. For instance: e 

�9 For the logarithm (base 2) function, there is no need to perform explicit 
range reduction, since it is possible to approximate directly the significand 
and then add the exponent. A reduction step is performed only for zero 
argument exponent, to avoid leading zeros that result in a loss of accuracy. 
For the exponential (base 2) function with floating-point argument with 
exponent E and significand M, the reduction step results in 

Mr -- M x 2 E - [M x 2EJ Er = [M x 2EJ 10.1 

In general, the reduction step should not result in a loss of accuracy. This might 
require that Xr be represented with additional precision. 3 

Correct Rounding and Monotonicity 
The rounding modes for the basic floating-point operations are defined in Chap- 
ter 8. Moreover, methods for obtaining correctly rounded results are described for 
addition, multiplication, and division. In particular, the methods for division 4 are 

2. For additional details see Schulte and Swartzlander (1994). 
3. For details see Muller (1997) and Daumas et al. (1995). 
4. And other algebraic functions, such as square root and reciprocal square root. 
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based on the calculation of the remainder produced by the rounded approxima- 
tion. These methods are not applicable for nonalgebraic functions, such as those 
discussed in this chapter. For these functions, the following approaches have been 
used: 

�9 For implementations using table lookup only, the correctly rounded values 
can be stored. As indicated, these implementations are practical for 
low-precision cases. 

~ For implementations based on piecewise interpolations, the coefficients can 
be tuned so as to produce correctly rounded results. Since the tuning is done 
by exhaustively examining all argument values (or at least all values of the 
significand), this method is practical for medium-precision cases. 5 

�9 As discussed in Chapter 8, the cases that are problematic for rounding 
correspond to those in which the infinite-precision result has a large 
number of consecutive zeros or ones after the rounding bit. Consequently, 
if a bound p on the maximum number of zeros (or ones) is known, for 
correct rounding to bit n, the approximation should be computed with an 
error less than 2 -(n+l+e) . Although in general these bounds are not known, 
they have been obtained for some values of n by selective searches. 6 

When the result is not correctly rounded, it is convenient to preserve some prop- 
erties of the function, such as monotonicity. This preservation means that if 
f ( x  + ulp) > f ( x ) ,  then the approximation F should satisfy F (x + ulp) > 
F (x), and similarly if f ( x  + ulp) < f ( x ) .  For the basic elementary functions 
sin, tan, arctan, log2, and exp, monotonicity is preserved (in specific intervals) if 
the approximation has an additional accuracy of a few bits. 7 

1 0 , 3  Polynomial Approximations and Interpolations 
The approximation of a function by a polynomial has the advantages of being 
general, since any continuous function can be approximated in this way, and 
that the implementation consists of multiplications and additions. Because of 

5. For details see Schulte and Swartzlander (1994). 
6. For details see Muller (1997). 
7. For details see Ferguson and Brightman (1991). 
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1 0 , 3 , 1  

this, the implementation can accommodate a family of functions, where only the 
polynomial coefficients determine which function is being computed. 

Different types of polynomials are possible. The most appropriate depends 
on the domain of the function, the error objective, and the implementation re- 
quirements. With respect to the error there are methods to obtain the optimal 
polynomial to minimize the maximum absolute error (called minimax approxi- 
mation) or the average error (called least-squares approximation). 8 For hardware 
implementation usually the minimax case is considered, or an easily implemented 
(although not optimal) approximation is used and the required error is obtained 
by adapting the degree of the polynomial. The total error is obtained by the ap- 
proximation error plus the roundofferrors arising from the use of finite-precision 
arithmetic in the evaluation. 

For high accuracy and for a large argument domain, a high-degree polyno- 
mial is required. Two related alternatives are used to reduce the degree of the 
polynomial: 

1. Partition into subranges and perform piecewise interpolation. This requires 
table lookup in addition to the polynomial evaluation. 

2. Range reduction, polynomial approximation, and range recovery. This also 
requires table lookup and is suitable only for some functions, in which the 
recovery is simple. 

We consider these alternatives now. 

Polynomial Approximations 
The most direct polynomials that can be used to approximate a function are ob- 
tained from a truncated Taylor or Maclaurin series. Although, these polynomials 
are effective to approximate a function in one point, they do not produce the 
minimum error for approximation in a range. Consequently, they are used when 
the range is small (maybe as part of a piecewise interpolation or together with 
range reduction). 

The Taylor series of f ( x )  about x0 is given by 
oo 

f ( x )  = f(xo) + ~ f(i)(x~ (x -xo)  i 10.2 
it  

i = 1  

8. See, for example, Davis (1990). 
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where f(i) (x 0) is the i th derivative of f (x) evaluated at x 0- The Maclaurin series 

is the special case for x0 = 0. 
These series converge for an interval of values of x, which depends on the 

function. The absolute error (also called the Lagrange remainder) when the series 

is truncated at term k (that is, all terms for i > k are omitted) is 

f(k+l) (a) (x - x0)k+ 1 
10.3 

Ek(X) -- (k + 1)T 

where a is an unknown value such that x0 < a < x. 

EXAMPLE 10,1  1 with an absolute error Consider the evaluation of y - sin x for 0 <_ x < 

less than 2 -32. The Taylor series expansion about x - 0 is 

x 3 x 5 x 7 
sinx -- x - m + __ _ m + . . .  10.4 

3T 5T 7T 

Because of the alternating signs, a bound for the error when using a k- term 

approximation is 

x 2 k +  1 

I~k(X) I ~ 10.5 
(2 k + 1)t 

1 Consequently, This error is max imum for x = 3" 

2-(2k+1) 
< 2 -32 10.6 

(2 k + 1)! 

which is satisfied for k - 5. 
A better approximation is obtained if the expansion is about the middle 

point of the interval. However,  in such a case the approximation includes all 

powers of x, so it might  be more expensive to evaluate. �9 

For a polynomial of the same degree, a significantly smaller maximum error than 

that of using a truncated Taylor series is obtained by using Chebyshev polynomials 

of the first kind. For details, see the references at the end of the chapter. 

Another method to obtain a polynomial approximation is by interpolation. 

In this method, a polynomial of degree N is obtained by making its value coincide 

with the function at N + 1 points (breakpoints). The most direct way to obtain 
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the coefficients cj is to solve the set of N + 1 linear equations 

N 

j=0 
0 < i  < N  10.7 

where (Xi,  Yi) are the N + 1 breakpoints. The resulting polynomial is then 

N 
p N ( x )  = ~ c j x  j 

j=0 
10.8 

Instead of solving these equations, there are several direct methods to obtain the 
coefficients (see the references at the end of the chapter). 

I m p l e m e n t a t i o n  

The evaluation of the polynomial approximation computation requires the coeffi- 
cients, which can be hardwired or stored in memory, and multiplier/accumulator 
units. 

The scheduling of the operations depends on the characteristics and the 
number of multiplier/accumulator units. 

If one nonpipelined unit is available, a sequential algorithm is required. For 
this, it is convenient to factor the polynomial as follows (called Horner's rule): 

p N ( X )  - -  CO -~- -~'(C1 -]- ~'(C2 -~- X ( . . . X ( C N _  l -~- X C N )  . . . ) ) )  10.9 

Then the evaluation of the polynomial results in the following recurrence: 

R[i - 1 ] -  c i _  1 "+" x R[i], i -- N , . . . ,  1 10.10 

with the initial condition R[N] -- c 2v and the result p N(x ) = R[0]. The execution 
time corresponds to N multiply/adds. 

The presented approach is not the best when the multiplier/accumulator 
unit is pipelined or when several units are available, since in those cases a par- 
allel algorithm is required. For instance, for a polynomial of degree 7, we can 
write 

pT(x) = xa(x2(c7 x ~- c6) -]- c5x -{- c4) + x2(c3 x -[- c2) -~- (el x -~- co) 10.11 

This can be performed in three multiply/accumulate steps as shown in Figure 
10.1. An implementation is illustrated in Figure 10.2. It requires four multiplier/ 
accumulator units and one squarer. 
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Begin ) 

1 
(A=x*x) (B=c7x+c6) 

1 i 
(C=c5x+c4) (D=c3x+c2) (E=ClX+Co) 

I 

I 

(En ) 
F I G U R E 10.1 Concurrent execution graph for P 7 ( x ) .  

Step 3 .... 
Step 2 

Step l I 
kl ~ 0 

x ~ Il l 121 
Pl ~ 112 122 ~ 

P0 ~ 113 123 = 

/11 O1 02 

Ir E 

I ,, 
kl k2 

x ~ Ill 121 

P3 - - "  112 122 

P2 ~ 113 123 ~ 

M2 O1 02 
D G 

' - 112 122 ~ 

�9 ! 0 ~ 113 123 % 

' M 3  O1 02 

1 

x .= 111 121 
P5 ~ 112 122 -= 
P4 ~ 113 123 = 

M4 01 02 

Module: Computation steps and outputs produced: 
if k 1 = 1 then O1 = I11" 112 + I13 Step 1: A, B, C, D, E 
if k 2 = 1 then 0 2 = 121" 122 + 123 Step 2: F, G, H 

Step 3: PF(X) 
Modules M1 and M3 can be simplified 

F I G U R E  10.2 Implementation for parallel evaluation of P7(x). 

kl 1 ~ k2 

x = 111 121 ~ 
P7 = 112 122 -= 
'~ 113 123 

Ms 01 O2 

~x~ 
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Cycle 

Stage 1 
Stage 2 
Stage 3 

1 

A1 

2 

B1 
A2 

3 

C1 
B2 
A 

4 

D1 

C2 
B 

5 

E1 
D2 
C 

6 

F1 
E2 
D 

7 

G1 
F2 
E 

8 

H1 
G2 
F 

9 

P1 
H2 
G 

10 

P2 
H 

F I G U R E  10.3 Evaluation of P7(x) on a three-stage pipelined multiplier/accumulator. 

11 

P 

For a polynomial of degree N, the number of steps is [log 2 N + 1] and the 
number of multiplier/accumulator units is (N + 1)/2. 

The operations can also be scheduled on a pipelined multiplier/accumulator. 
For instance, a scheduling for a three-stage unit is shown in Figure 10.3. In this 
unit, Stages 1 and 2 perform partial product reductions, producing a redundant 
product, and Stage 3 performs the accumulation. 

If some of the polynomial coefficients are zero, a different decomposition 
might be preferable. For instance, if in p7(x) the ci are zero for i even, we can 
get 

p7(x) --C7 x7 +C5 x5 +C3 x3 "[- ClX --'X4(X2(C7 x) --]- C5X) +X(X2C3-{- el) 

10.12 

The accuracy of the result depends on the error of the approximation and the 
error introduced by the finite-precision coefficients, intermediate variables, and 
result. 

1 0 . 3 . 2  Piecewise  I n t e r p o l a t i o n  

An alternative to fitting a polynomial of degree N through N + 1 breakpoints is to 
have different polynomials (of lower degree) through subsets of the breakpoints. 
This is called piecewise interpolation. So, if the breakpoints are sufficiently close, 
it might be accurate enough to do a linear interpolation, fitting a straight line 
between adjacent points. The polynomial for the linear interpolation between 
breakpoints i and i + 1, illustrated in Figure 10.4, is 

Yi+l--Yi 
P(i)(x) -- Yi + (x - Xi) 10.13 

1 X i + l  _ Xi 

Consequently, for each breakpoint two values are required, namely, Yi and 

( Y i + l - Y i ) / ( X i + l - X i ) .  
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EXAMPLE 10 .2  

f ( x )  

p~(x)  
. . . .  

v 

xi x xi+l 

F I G U RE lo .4  Linear piecewise interpolation. 

1 Consider an approximation of f ( x )  - -  x 1/3 in the domain ~ < x < 1 by 

piecewise interpolation with linear interpolation. As an illustration we only 
1 consider four intervals, namely, Xi - g + (1/8)i  with i = 0, 1, 2, 3. The  

following table contains the required constants: 

Yi ( Y i + l - Y i ) / ( X i + l - X i )  

0 0.7937 

1 0.8550 

2 0.9086 

3 0.9564 

0.4904 

0.4288 

0.3824 

0.3488 

For instance, for x -- 0.788 we obtain i = 2 and 

p(x)  = 0.9086 + 0.3824(0.788 - 0.75) = 0.9231 

Implementation 

If the Xi are equally spaced and are multiples of 2-k, for an n-bit argument x we 
can write 

x - -  X i  + Xr 2-k 10.14 

with Xr integer. That  is, Xi is obtained as x truncated at fractional bit k. Moreover, 

the rest ofx corresponds to (x - Xi). Consequently, for an x ofn bits, f of which 
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n n- fx ik l l  x / TABLE 

f - k  x - X  i 

Yi nl  /i 

D i n2 
/ 

Di = (Yi+ 1 - Yi)2 k 

n 

/" "~ Pl(X) "" f ( x )  

k, nl and n2 are determined by desired accuracy of the result 

F ! a U R E 10.5 A generic implementation of linear interpolation. 

are fractional, X i  has n - f + k bits and x - X i  has f - k bits. The corresponding 
implementation consists of 

�9 a module (table) that stores the function values Yi. The input to this module 

has n - f + k bits (or one less ifx is normalized so that its most-significant 

bit is always 1). Moreover, it could store the values (Yi+l - Yi)/2-k, or this 

difference can be computed. 

�9 a multiply-add unit. The multiplier has f - k bits. 

The value k and the width of the table and of the multiplicand depend on the 

accuracy required. 

A generic implementation is shown in Figure 10.5. 

Error 

The error is composed of the error of the interpolation and of the error due to the 
roundoff of the intermediate values that are formed during the evaluation. The 
first component depends on the particular function as well as on the number and 
position of the breakpoints. For equally spaced breakpoints, their number deter- 
mines the number of inputs to the module storing the values (the size of the table). 

To reduce the error it is possible to use higher-degree polynomials and/or 
more breakpoints. Although this requires more constants because of the reduced 

error, for the same accuracy it requires smaller tables than the linear interpolation. 

However, it requires more multiplication-adds. Special attention has been given 

recently to hardware implementations of second-order (quadratic) interpolation. 9 

An implementation of a quadratic interpolation is illustrated in Figure 10.6. 

9. For details see Cao et al. (2001). 
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1 0 , 3 , 3  

..] TABLE 
"-I (y/' Yi+I) Y/+I 

I TABLE 
"- B 

-I 

I -- NEI 
[ s 

ai = Yi+l- Yi 

NET 
A 

and 
C 

ai 

-I 

r 

ai+ sibi'- I MUL r- 

 IADD 
-I 

P2(x) 

bi = Yi+l- 2ym + Yi 

Ci = (Yi+l + Yi-bi)12 

Ym function value at 
subinterval's midpoint 

e2(x) = si(a i + s i bi) + c i 

F I G U R S 10.0 Implementation of a quadratic interpolator. Adapted from Cao et al. (2001). 

Reduction, Approximation, and Reconstruction 

This method is a variation of  the piecewise interpolation method and also uses 

table lookup in addition to the polynomial evaluation. Since the approximation 

by a polynomial is more accurate for smaller domains, this method reduces first 

the domain, ]~ then performs the approximation, and finally reconstructs the 

approximation of the function. It consists of  a series of  N breakpoints Xi and a 

table storing approximations of  f ( X i ) .  To compute f ( x )  the method consists of  

the following three steps: 

1. Reduction: Select the breakpoint  Xi closest to x and apply the reduction 

transformation producing r such that 

r - R(x, Xi) 

The  function R is chosen so as to simplify the remaining steps. 

10. This is a second-level reduction, which is applied in addition to the initial range reduction, 
discussed before. 
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2. Approximation: Calculate an approximation to g (r) by using a polynomial 
p(r). 

3. Reconstruction: The value f ( x )  is obtained from g(r) and Yi "~ f ( X i )  by 
the function 

f ( x )  -- S(g(r), Yi) 

The location of the breakpoints is selected so that the reconstruction function is 
simple. Consequently, the location of these points is different for each function. 
Also the method might not be applicable to functions for which the reconstruction 
is complicated. 

| X A M P L |  + 0 , 3  Compute In(x) on [1, 2]. 

1. Reduction: Find the breakpoint Xi = 1 + i/64, i = 0, 1, . . . ,  64 such 
that Ix - Xi I < 1/128. Obtain 

r = 2(x - Xi) / (x  + Xi), Iri < 1/128 

2. Approximation: Approximate ln(x /Xi)  by a polynomial p(r).  Since 

( ~ i )  ( 1 - 2-1r ) In = In 
1 + 2 - 1 r  

the polynomial is of the form 

p(r) - r  +par3 + p2r 5 + . . .  + pNr2U+l 

3. Reconstruction: Reconstruct ln(x) using the following relations 

In(x) - In(X/) + ln(x /Xi )  

In(X/) + p(r) 

~ Yi + p ( r )  

where Yi ~ ln(Xi), i = 0, 1, . . . ,  64 are stored in a table. 

As in the piecewise interpolation method the error depends mainly on the number 
ofbreakpoints and on the degree of the polynomial, ll 

ll.For additional examples and error analysis see Tang (1991). 
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n,j 
REDUCTION 

r = R(x, X i) 1 
| 

APPROXIMATION 

RECONSTRUCTION 

f ( x )  = S (g ( r ) ,  Yi) 

TABLE 

Yi - f (Xi )  

F I G U R E  10.7 Block diagram of reduction, approximation, and reconstruction. 

Implementation 
As for piecewise approximation the implementation consists of a table and a 
polynomial evaluator. However, since the domain is first reduced to a common 
subdomain, only one polynomial is required. On the other hand, additional mod- 
ules are required for the reduction and reconstruction, and these depend on 
the function being computed. Moreover, as indicated above, the locations of the 
breakpoints also depend on the function, and this influences the bits of the argu- 
ment used to access the table. Figure 10.7 illustrates implementation of reduction, 

approximation, and reconstruction. 

1 0 , 4  Bipartite and Multipartite Table Method 
This method uses table lookup and additions and therefore reduces the size of 
required table(s), with respect to the table-only method. Moreover, it does not 

require the multipliers used in the polynomial methods. 
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A bipartite formula to approximate f ( x )  is obtained as follows. Split the 
n-bit argument x into three parts 12 as 

X - -  X l "-]- X2  2 - k  + X3 2-2k 10.15 

w h e r e k - n / 3 a n d 0 < x i  < 1 - 2  -k. 
The Taylor series expansion of f (x) at x 1 -~ x 2 2-k  is 

f(x) = f ( x l  + x22-k) + x32-2kf(1)(x1 + x22-k) + E 1 10.16 

where 

1 
E1 -- -~x22-4k f (2) (Or) 

and o~ E [x 1 + x22 -k, x ]. 

The derivative f(1)(x 1 + x22 -k) is approximated by f(1)(xl) , resulting in 

f ( x )  -- f ( x l  + x22 -k) + x32-2k f(1)(xl) + E1 + E2 

where E2 -- x2x32-3kf(2)(~) and ~ E [Xl, Xl + x22-k]. 

Therefore, the bipartite formula is 

f ( x )  ~ Fo(xl, x2) -]- Fl(Xl, x3) 

with an error E ~ ~-3k F(2) 
"" J max" 

10.17 

10.18 

10.19 

1 0 , 4 . 1  Implementation 
F0 and F1 are precomputed and stored in tables TO and T1. As illustrated in 
Figure 10.8, for an input x the corresponding values are obtained from the tables 
and added to produce the approximation of f ( x ) .  

The TO table stores a value of the function on the domain segments defined 
by (Xl, x2), while table T1 stores the "offset" values defined by (Xl, x3) to be 
added to the segment values. This is illustrated in Figure 10.9. To minimize the 
error, the values in table TO are at the middle points of the segment. 

12. In general, the split need not be into equal parts. 
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Xl x2 x3 

t ' k  k 

i'l i 
Table TO Table T1 

Fo(Xl, x2)l I El(X1, x3) 

. . . . .  L _ _ ,  
I I 

' Adder  ' I I 
I I 

Approximation of f(x) 

F I G U R E 1 0 . 8  Bipartite method. 

segment offsets: FI(X 1, x3) 

�9 -I - I  . . . . .  - - -  

"I"- ~ ~ ~ -  , i 

" l ' -  - - - J - - ~ l ~  I I I 
T - - - -  ' _ , J  ' ' ' 
"1" . . . . . . .  7~  I I I 
/ . / I  i I I 

T . . . .  77 ' ,  : : ', 
~ "  = ~  : I I I I I I 

I g ~  I I I I 
I / I I I I 
" l "  --  ~ I I I I 
/ /  ' ' I ' 
/ ~  ' ' ' I 
I t  I I I I 

- I ~  I I I I 
I I I I . ~  

F I G U R E 1 0 . 9  Segment and offset values. 
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Xl ] x2 ~i'"iXm 
'k ~k 

k = n/m 

1 0 ~ 1 7 6  

Table TO Table T1 ooo Table T(m-1) 

f0(Xl , X2) ~ ] fl(Xl ' X3) 
. . . . . .  __U- 1___ 
i i 
i , Multioperand adder ', 
! i 

Approximation off(x) 

I fm_l(Xl Xm) 

F I G U R E 10.10 Multipartite method of function approximation. 

Comparison 
For an argument  ofn bits, an approximation using a single table requires 2 n words, 

while a bipartite method requires two tables of 22n/3 words each- -a  significant 

saving. For example, for n = 16, a bipartite method uses two tables of 21] words 

compared to a direct method using one table of 216 words. Note that since the offset 

is small (many leading zeros), the width of the second table is also small. Moreover, 

the output of the two tables corresponds to a carry-save representation of the sum, 

so that no carry-propagate adder is required if this carry-save representation can 

be used in the operations that follow. 

Multipartite Table Approach 
The bipartite table approach can be generalized by subdividing x into m parts 

(Xl, x2, . . . ,  Xm) and having one offset for each pair (Xl, xp), p -- 2, . . . ,  m. As 

shown in Figure 10.10, this results in a reduction in the total number  of table bits, 

but requires more additions. 13 

13.For additional details see Stine and Schulte (1999) and Muller (1999). 
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1 0 . 5  Rational Approximation 
Any continuous elementary function can be approximated by a polynomial of 

degree L, PL(x), or by a rational function 

PM(X) 
RM,N(X) = 10.20 

ON(X) 
As mentioned before, in many instances rational approximations are more accu- 

rate than the polynomial approximations using the same number of coefficients. 

Moreover, rational functions have a higher degree of parallelism in execution. A 

disadvantage is the need for a divider. 

The coefficients of a rational approximation RM,N(X) for a function f (x)  
are determined so as to minimize the maximum relative error 

[RM, N(X) -- f(x)  ] 10.21 
max[a,/,] f ( x ) 

over an interval [a, b ]. Such an approximation is unique. The coefficients can be 

obtained using methods discussed in the literature. 14 

EXAMPLE 10.4  The following rational function 15 approximates tan(Zx)  in the interval x 

[0, 1] with an absolute error less than 10 -8 (not including roundoff  errors): 

tan ,~ x R1,2(x 2) -- x 
4 

Pl(x 2) pl x2 -i- po 
Q2(x 2) q2 x4 -+- qlx 2 + q 0  

10.22 

The coefficients of the P and Q polynomials are 

Pl ----0.125288887278448 • 102 

P 0 -  0.211849369664121 X 103 

q2 -- 1.0 • 101 

ql - --0.714145309347748 x 10 2 

q0 -- 0.269735013121412 x 103 

10.23 

14. For example, consult Hart et al. (1978). 
15. From Hart et al. (1978), pages 119 and 216, TAN 4142. 
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In comparison, a polynomial approximation of tan( 4 x) in the same in- 
terval with a similar absolute error 16 is 

(4) tan  x ~ x P6 (  x - -  x ( c 6x  12 .+. C5X 10 .~_ C4X 8 _~_C3X6 _~_ C2X4 _~. ClX2 +CO) 

10.24 
where the coefficients are 

c6 = 0.4443199695 • 10 -3 

c5 = 0.951307678 • 10 -4 

C4 = 0.2931842304 • 10 -2 

c3 = 0.97543639755 • 10 -2 10.25 

c2 = 0.398891627332 x 10 -1 

c 1 = O. 1614868943266 

co = 0.7853982781345 

The computational graphs of these two approximations are illustrated in 
Figure 10.11. The rational approximation requires four multiplications, two 
multiply-adds, one addition, and one division. If implemented with three 
multiply-add units, an adder, and a divider, the critical path corresponds, 
roughly, to multiplication, multiply-add, addition, and division operation. 
On the other hand, the polynomial approximation requires six multiply-adds 
and four multiplications. Implemented with four multiply-add units, it has 
a critical path of two multiplications and three multiply-adds. The choice of 
the method depends on the number and relative delays of functional units as 
well as on the design objectives. �9 

10~5ol M S D F  P o l y n o m i a l / R a t i o n a l  F u n c t i o n  E v a l u a t o r  

We now discuss an approach for evaluation of polynomial and rational func- 
tions suitable for hardware implementation. The approach is also of interest 
since it eliminates the use of explicit division in evaluation of certain rational 
functions. The approach uses most-significant-digit-first (MSDF) serial arith- 
metic, discussed in Chapter 9. 

16. See Hart et al. (1978), pages 119 and 215, TAN 4225. 
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(a=x*x)(~-~,x)(~-~oX) 
1 I ' 

~= "A) (E=B*A+ C) (F=qlx2+qo) 

xPI(X2I 
] Q2(x 2 ) 

( H= EIG ) 4 multiplications 
2 multiply-adds 
1 addition 
1 division 

tan((~4)x) 

(a) 

(a:x,x) 

~= "A) (C=c5A+c4) (D=caA+c2) (E=clA+Co) 

( F = B * ~  (G=c6B+ ~ (H=DB+E) 
I ~ 1 ~  I 

P6 (x2) 

( ~-,x ) 
xP6 (x ) 

tan((~4)x) 

(b) 

4 multiplications 
6 multiply-adds 

F ! 6 U R E 10.11 Computational graphs for computing tan( 4x)" (a) Rational approximation. 

(b) Polynomial approximation. 
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To introduce the method we illustrate a correspondence between a solution 
to a system of linear equations and a rational function. Consider the system 

yl  - -  po + x " ye 

ye = Pl  - q l  �9 y l  -Jr- x �9 Y3 

Y3 = P2 -- q2 �9 Yl + x �9 Y4 

Y4 = --q3 " Yl 

Solving for y l, we obtain 

10.26 

p2 x2 + p l x  -+" PO 10.27 
Y l ' -  2 

q3 x3 + q2x  + q l x  + 1 

or, Yl = R2,3 (x ) .  That is, a rational function R can be evaluated by solving a 

system of linear equations similar to system (10.26). 
Clearly, solving the system (10.26) by a direct method such as the Gaussian 

elimination, would not be attractive. Instead, we solve the system iteratively 
using MSDF serial arithmetic. The coefficients p's, q's and the argument x 
are in parallel form while y~s are produced and used digit-by-digit in MSDF 

manner. Each Yk of system (10.26) is evaluated on a separate module that uses 
digit • digit-vector multiplication, addition, and output digit selection to perform 
MSDF multiply-add operation. To obtain one digit of each Yk per iteration step, 
the coefficients and the argument x are bounded as discussed later. The solution 
is in the ( -1 ,  1) range, i.e., the MS digit of each Yk is 0, to allow initialization 
of the iterative process. In step j the network of modules produces the j + 1-st 
d i g i t d k j + l  of each Yk using d i g i t s d k j  produced in the previous step. Into steps, 
the result ofm radix-r digits is obtained. In other words, the iterative method 
used is linearly convergent. Note that division required by the rational function 
is not explicitly performed. As discussed shortly, the iterative method used is a 
generalization of a scalar digit-recurrence division to a vector by matrix division. 
The network for solving system (10.26) is shown in Figure 10.12. The result 
in digit-parallel form can be obtained during the computation using on-the-fly 

conversion. 
We now give a general formulation of the MSDF method for evaluating 

polynomials and rational functions. 17 As mentioned above, the corresponding 

17. Details of the method are in Ercegovac (1977). 
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x PO x Pl ql x P2 q2 x 0 q3 

dlj 

Oen'ntvh:-;I ~ ~ P a r a l l e l < S e r i a l  

g2,3(x ) 

FIGURE 10.12 MSDF network for evaluation of rational function R2,3(x). 

implementations have a delay linearly proportional to the number of digits in the 

result. The approach is (1) to transform a polynomial or a rational function into 

a system of linear equations, and (2) to solve the system using digit-recurrence 

division generalized to matrices and vectors in which the coefficient matrix corre- 

sponds to the divisor and the right-hand side vector to the dividend. The quotient 

is the solution vector. The elements of the solution vector are, as expected, obtained 

starting with the most-significant digits. Like in scalar division, redundancy in 

the quotient and residual representation is used to reduce the delay and simplify 
the selection of result digits. 

In the following discussion boldface letters denote matrices and vectors. 
First, map a function f(x) (rational function or a polynomial) 

f(x) =:> L : A . y = b  10.28 

such that y 1 -- f (x). 

For example, a rational function R2,3(x), discussed above (10.26) is mapped 
to the matrix/vector form as follows: 

1 - x  0 0 Yl P0 

ql 1 - x  0 Y2 _ Pl 

q2 0 1 - x  Y3 P2 

q3 0 0 1 y4 0 

10.29 
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Solving the system produces y such that 

Yl = R 3 , 2 ( x )  - -  
p2 x2 + plx + po 

q3 x3 "Jr q2 x2 -+-qlx "+" 1 
10.30 

Similarly, a polynomial P3(x) is mapped to the following system 

1 - x  0 0 yl P0 

0 1 - x  0 y2 __ Pl 

0 0 1 - x  y3 P2 

0 0 0 1 y4 P3 

10.31 

such that yl "- P3(x) = p3 x3 + p2 x2 + plx + Po 
Then, as mentioned above, the system L is solved by a digit recurrence 

division algorithm applied to a divisor that is a matrix (A) and a dividend (b) 

that is a vector. The solution vector y is computed most-significant digit first, 

producing m significant digits in m steps. 

b 
y - - m  

A 
10.32 

In general, for a solution to exist, the matrix A must be nonsingular. Moreover, for a 

digit recurrence method to be applicable, the matrix must be diagonally dominant. 

That  is, for each row, the sum of absolute values of off-diagonal coefficients must 

be smaller that the diagonal element. Since the matrices considered here have 1 s 

on the diagonal, a necessary condition for convergence is 

Z ] a i , j [  < 1 10.33 

For radix r and the quotient-digit selection by rounding, the condition (10.33) is 
more restricted and requires prescalingNas in the high-radix division with selec- 
tion by rounding. 18 For simplicity we consider here only radix 2. The algorithm 

for radix 2 is summarized in Figure 10.13. 

In the algorithm we use the following notation: 

�9 Matrices and vectors of elements are in boldface: the coefficient matrix A of 

order N; the solution vector y - (y l, . . . ,  YN); the right-hand side vector 

b - - ( b l ,  . . . , bN) .  

18. Ercegovac (1975, 1977). 
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where 

1. [Initialize] 

w[0]  = b; d[0] = 0; 

2. [Recurrence] 

f o r j  = 0 . . . m - 1  

v[j] = 2(w[j ] - A d  0 ]); 

d o + 1] +--SEL(~j]) ;  

w[j + 1] +--v[j]; 

Yl[j + 1] ~--CONVERT(yl[j],SEL(v~j])) 

end for 

3. [Result] 

yl[m] ~ f ( x )  

Each residual is in redundant form, represented by the pseudosum WS and 
stored-carry WC bit-vectors. For simplicity, we use wk[j] in the description. 
m is the precision in bits. 
SEL is the digit selection function 

dkj = SEL( vk[ j l) -- 0 

- 1  

where vk[ j ] is the estimate of vk[ j ] - 2(w k [J ] - d kj - q i d 1 j + x d ( k + 1)j ) 
truncated to one fractional bit. 

A 

if vk[j] > 0.5 

if -0 .5  < vk[j] < 0 

if wk[j ] < - 1 

F I G U R E  10.13 Radix-2 MSDF algorithm for evaluating polynomial and rational functions. 

The residual vector at step j :  

w[j] = (wl[j] ,  . . . ,  wN[j])  

The result digit-vector at step j :  

d [ j ] - - ( d l j , . . . , d N j )  

where digit dkj  E { -  1, 0, 1 } is the j th digit of 
m 

Yk -- ~ dkj  2- j  
j= l  

10.34 

10.35 
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EXAMPLE 10.5  

Note that the multiplications in the term A • d[j ] are implemented as digit-vector 

by digit multipliers. 
The convergence of the algorithm requires the following conditions to be 

satisfied: 

lyil ~ 1 
3 

max Ibi I < - 10.36 
i - - 4  ( ) 1 

max ~ l a i j l  < 
j =fii - -  -~ 

The mapping onto a linear system L in the case of rational functions requires 

that q0 = 1. This may require recalculation of the coefficients by dividing P and 

Q byq0. 

We present an implementa t ion  for evaluation of the rational function R3,4(x) 
as an approximat ion  to s inh(x) .  19 

To satisfy the bounds (10.36) and to havea  1,1 = 1, the original coefficients 

are divided by q0. Moreover, we restrict the a rgumen t  x to [0, 1] and divide 
3 all normal ized  coefficients of  P by 2 to make  them < ~. This  scaling requires 

one addit ional  iteration. 

We illustrate the a lgor i thm for m = 12. The  normal ized  coefficients, 

rounded  to 12 bits, are shown in hexadecimal: 

P3 = 0.0d8 

P2 = 0.000 

Pl = 0.800 

P0 = 0.000 

q4 = 0.007 10.37 

q3 = 0.000 

q2 = -O.Ofa  

ql = 0.000 

q o = 1.000 

19. The coefficients are obtained from rational function approximation of sinh(x) in the 
interval x E [0, 1] with a relative error less than 10-13; see Hart et al. (1978), pages 104 and 
182, SINH 2002. 
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x 0 X Pl O x Oq2 

I [oi,,I Ii~ I 
On-the-fly 
Converter ~ Parallel 

R3,g(X ) 

xP30 

Module 4 

0 q4 

Module 5 

< Serial 

F ! G O R S IO. 14 Implementation of rational function evaluator for R3,4(x). (The initial values 

correspond to the rational approximation for sinh(x).) 

As shown in Figure 10.14, there are five modules performing the follow- 
ing residual recurrences: 

w l [ j  + 1] = 2 ( w l [ j ] - d l j  + x  .d2 j )  

w2[j  + 1] = 2(w2[j] - d 2 j  - q l  . d l j  + x  .d3 j )  

w3[j + 1] = 2 ( w 3 [ j ] - d 3 j  - q 2  . d l j  + x .d4 j )  10.38 

w4[j  + 1] = 2(w4[j] - d4j - q3 " d lj + x �9 d5j)  

w 5 [ j  --]- 1] = 2 ( w 5 [ j ' ]  --  d 5 j  - q 4 "  d l j )  

The digits d kj are selected using the selection function defined in Figure 
10.13. The initial residuals are 

(w 1[0], w 2[0], w 3[0], w 4[0], w 5[0]) - (0, p 1, 0, p 3, 0) 

A parallel form of the result can be obtained using on-the-fly conversion. 
The evaluation of R3,4(x) for x -- 0.000110100001 with 12-bit preci- 

sion, showing nonredundant  next residual v 1 (for simplicity), is illustrated in 
Table 10.1. Other residuals are not shown. �9 

Implementation 

An implementation consists of one module per row of the system L" the number 
of rows (the order of the system) N -- max(degree(P), degree(Q)) + 1. In a 
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5 

6 

7 

8 

9 

10 

11 

12 

v lU]  

0.000000000000 

0.001101000010 

0.011010000100 

0.110100001000 

-0.010111110000 

-0.101111100000 

0.100001000000 

-0.111110000000 

0.000100000000 

0.001000000000 

0.011101000010 

0.111010000100 

-0.011000111010 

d lj+] 

0 

0 

0 

1 

0 

- 1  

1 

1 

0 

0 

0 

1 

0 

d 2j+1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

- 1  

1 

d 3j+l 

0 

0 

0 

0 

0 

1 

- 1  

0 

0 

1 

- 1  

1 

0 

d 4j+ 1 

- 1  

1 

1 

1 

0 

d 5j+ 1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

- 1  

y l [ j  + 1]* 

0.000000000000 

0.000000000000 

0.000000000000 

0.001000000000 

0.001000000000 

0.000110000000 

0.000111000000 

0.000110100000 

0.000110100000 

0.000110100000 

0.000110100100 

0.000110100010 

0.000110100010 

T A a L S 10.1 Evaluation of sinh( 0.10197) using rational approximation and radix-2 general- 

ized division algorithm. The error ] sinh(x ) - y  1[ 13 ]) I < 2-lZ. y 1[ 13 ] is computed to compensate 

for the initial scaling of p coefficients by 2. 

radix-2 implementation for a rational function, a module, shown in Figure 10.15, 

has a [4:2] adder, four registers, two multiplexers with complementers, and a 

digit selection. The  modules for row 1 and row N are simpler, using a [3:2] 

adder, three registers, and one multiplexer. The  modules are initialized in a 

bit-parallel manner. Dur ing the evaluation steps, only single digits are passed 

between the modules. The  result produced serially by Module 1 is converted into 

a conventional bit-parallel form using an on-the-fly converter. In the case of a 

polynomial evaluation, all modules but the last one use [3:2] adders. The  module 

corresponding to the last row simply shifts out serially the coefficient p N-1. 

The  delay for a rational function evaluation implementation is 

T - -  ( l s e  l Jr tMUX + t[4:2] -b tR~o)m 10.39 

Comparison with a conventional implementation for evaluating a rational func- 

tion consisting of multiply-add modules and a divider is left as Exercise 10.11. 
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Argument x 1 

Reg x 

I Complement 

d(k+l)j ~l SELECTOR[  dlj 

Itialized with 1 
coefficient qk-1 

I Reg q 

.J "-I SELECTOR 

I 
Complement 

ADDER 

ms bits vk[j] l l Initialized with 
. coefficient Pk-1 

dkj+l 

I 11 
wk[jl 

~ - -  Parallel ~ Serial 

SEL block produces estimate and 
performs selection 

M block performs subtraction of dkj 
(register control signals not shown) 

F I G U R E  10.15 Implementation of MSDF module used in evaluation of rational functions. 

IO.6 Linear Convergence Method 
In this method a sequence of approximations is constructed that converge to the 

function. To control the sequence, an auxiliary sequence is used, which converges 

either to one or to zero. In the first case, the method is called multiplicative 
normalization, 2~ and in the second additive normalization. 

20. Note that the term "normalization" is used with a different meaning in Chapter 8. 



Linear Convergence Method 577 

10+6.1 

In Chapter 7, muhiplicative normalization has been used for reciprocal and 
for square root. In that case, the main primitive operation is multiplication and the 
convergence is quadratic. Here we consider algorithms with linear convergence. 
This replaces full multiplications by multiplication by one digit and also allows 
the computation of some functions, such as logarithm, because the recurrences 
include functions that are difficult to compute, but can be stored in tables of 
reasonable size for the case of linear convergence. 

In these linear convergence algorithms the primitives are multiplication by 
powers of the radix (shifts), multiplication by a radix-r digit, and additions. 
Because of this, this class of algorithms is called shift-and-add, although for high 
radices rectangular multipliers are also needed. 

Multiplicative Normalization 

This approach has been used for several functions, such as reciprocal, division, 
square root, reciprocal square root, and logarithm. In all cases, there is a sequence 
that converges toward one, and this controls the convergence of another sequence 
toward the result. Because of this, we first consider the convergence of the first 
sequence and then apply this to the logarithm function. 

Multiplicative Convergence toward One 

The iterative algorithm consists of determining a sequence P [j] such that the 
sequence x [j] converges to one, where 

x[j  + 1] = x[j]P[j] 10.40 

with x [0] = x. For linear convergence we make 

P [ j ]  = (1 + Sj r--J) 10.41 

where r is the radix of the algorithm and sj is a radix-r digit. Note that the 
multiplicative normalization produces a continued product representation of the 
reciprocal of x, that is, 

1 I ~  I~ (  - ~ P[j] = 1 -~- S i r -i) 10.42 
x j =0 j =0 

That is, this normalization can be used to produce an approximation of the 
reciprocal function. 
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Selection Function and Residual 

The specific selection function depends on the radix, the digit set, and the rep- 

resentation of x [j ]. The design of a selection function follows the same method 

as discussed for division and square root (Chapters 5 and 6). With respect to the 

radix, since the selection function now depends only on one variable (instead of 

on w[j]  and d as in division), higher radices, such as radix 16, are practical. In 

addition, because of the convergence toward one, selection by rounding is possible 
and might be appropriate for high radices. 21 

As for digit recurrence division, we can have restoring and nonrestoring 

algorithms (with nonredundant digit set). Also possible is to use a redundant digit 

set. Moreover, in this latter case, it is possible to use a nonredundant adder (CPA) 

or a redundant adder (CSA or signed-digit adder). Since the use of a redundant 

digit set and a redundant adder results in a faster iteration, we concentrate on 

that case. 

To simplify the selection, we define a (scaled) residual 

w [ j ]  = r  J ( 1  - x [ j ] )  10.43 

and since x [j + 1 ] = ( 1 + s jr - j )  x [j ], we obtain the recurrence 

w[j  + 1] = r ( w [ j ] - x [ j ] s j )  = r ( w [ j ] - s j  + s j w [ j ] r  - j )  10.44 

with initial condition 

w [ 0 ]  = 1 - x 10.45 

The digit sj is selected so that the residual is bounded. Calling B[j]  the upper 
bound in iteration j ,  and using a signed-digit set - a  ~ sj ~ a ,  from the 
recurrence we get 

B[j  + 1] = r(B[j]  - a + B[j]ar - j )  10.46 

The solution to this recurrence is complicated. Assuming that B[j  + 1] = B[j]  

(which is not the case), we get 

rp 
B[j]  -- 10.47 

1 + pr-J+l 

21. See Chapter 9. 
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If this bound is used, we get w[j  + 1] = B[j], which makes the algorithm 
converge since w[j  + 1] < B[j + 1]. 

Similarly, for the lower bound (assuming the bound is independent of j )  we 
get 

rp 
B [ j ]  = - 1 0 . 4 8  

1 - p r - J  +1 

However, in this case using this bound the algorithm would not converge since 
we get [w[j + 111 > [B[j + 1]. A solution is to use 

rp 
B[j] = - 

1 - pr -(j  +2) 

The selection interval ofw[j ]  is then 22 

U k  
B~" + 1] + r  k 

r(1 + k r - J )  

p + k ( 1  + pr -J )  

(1 + pr -J ) (1  + k r - J )  

10.49 

10.50 

- P  + k( 1 - pr-(j+3)) 

Lk = ( 1 - pr -(J +3) ) ( 1 + k r -J ) 

For the case of carry-save representation of the residual and an estimate cor- 
responding to the assimilation up to fractional bit t, the selection function is 
described by the selection constants ink, such that 

max( L k) < m k ~ min( U k_ 1) 1 0 . 5 1  

where 
A A 

Lk = [Lk ~t U k - 1  - -  L U k - 1  - -  2 - t i t  10.52 

1 1] .  E x A M P t t  1 0 . 6  We describe a radix-2 multiplicative normalization algorithm for x ~ [3, 
The recurrence becomes 

w[ j  + 1 1 -  2 ( w [ j ] - s j  + w [ j l s j 2  - j )  10.53 

The selection intervals (p -- 1, j > 1) become 

1 + (1 + 2 - j )  - 1  + (1 - 2 -(j+3)) 
- -  > 1.11 L1 = < -0 .04  

U1 - (1 + 2-J)(1 + 2-J)  - (1 + 2-(j+3))(1 + 2-J)  

22. See Chapter 5 for definitions and detailed method. 
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1 - 1  
u 0 -  > 0 . 6 6  L 0 =  < - 1  

1 + 2-J - 1 - 2-(J +3) - 

1 - (1 + 2-J)  - 1  - (1 - 2 -(j+3)) 
U_I = > - 0 . 6 7  L - 1  = < - - 4 . 1  

(1 + 2-J)(1 -- 2-J)  -- (1 -- 2-(J+3))(1 -- 2-J)  -- 

For j = 0, the selection intervals are defined as for j > 1 except that 

L-1 and U-1 are not defined. Since s 0 =fi - 1 ,  this presents no problem. 
I f t  - 2 we get 

A A 

min(U0) -- L l . l l -  0 . 2 5 J 2 -  0.75 max(L1) = r - 0 . 0 4 1 2 -  0 

A A 

m i n ( U _ l ) -  l - 0 . 6 7 -  0 . 2 5 1 2 - - 1  max(L0) = r - 1 ] z - - - 1  

The  corresponding selection constants are 

m 1 m 0 ,  m 0 = - -  1 1 0 . 5 4  

This selection function produces s 0 = 1, which is a valid choice for the range 

o f l / x .  �9 

An implementation of multiplicative normalization for radix 2 is illustrated in 
Figure 10.16. Note the variable shifter required for this algorithm. 

] MUX 

i Reg WS 
,, Reg WC 

_1 SH,FTER I...J 
-I r 
E I 

[4:21 I 

w[j + 1] 

F I G U R E 10. lS An implementat ion of multiplicative normalization. 
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Selection by Rounding for (Very) High Radices 

Convergence to 1 permits selection by rounding and therefore a high-radix al- 
gorithm. However, in the first iterations selection by rounding is not possible, so 
that an initial approximation of 1/x by other means is required. This can be done 
by table lookup or by a linear approximation (see Section 7.1.3). 

In selection by rounding, the digit is obtained by rounding the carry-save 
residual (truncated to fractional bit t). Calling this truncated residual G[j  ], we 
get 

The next residual is then 

Since 

L lj s s -   U]+j 

( L 1j ) w [ j + l ] - - r  w [ j ] -  ~ [ j ] + ~  +sjw[j]r  -j  

1 ( L < w [ j ] -  G[j]  
2 -  

1 + < ~ + 2  -t 

the worst case is the upper bound. Since for selection by rounding 

10.55 

we get 

10.56 

10.57 

1 
w[j] < a + - 10.58 

2 

(1 ta 1)  _ j )  w [ j + l ] < r  ~ + 2 - t + a  + ~  r 

Making a = (r - 1) for simplicity, there is convergence if 

10.59 

(r -- 1) 2) 1 
2 -t < ~ ( 1  -- 2/r -- 1/r = + E 10.61 

2r 
resulting in t > 2. 

Consequently, there is convergence for j > 3. The sj digits for j -- 1 and 
j -- 2 can be obtained from an approximation of the reciprocal of x using only 
its most-significant bits. 

In such a case, for j > 3, 

(r - 1) - j+ l~  
2 -t < ~ ( 1  -- 2r-J+2 _ r j 10.60 

2r 
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Actually, instead of obtaining an approximation corresponding to the first 

two digits, the algorithm converges if the approximation has h fractional bits 

with log2(r) < h < 2 log2(r) (that is, more than one radix-r digit but less than 

two). This reduces the requirement on the precision of the approximation and 

simplifies the calculation of the initial residual using a rectangular multiplier, as 

discussed now. 
The algorithm is then as follows: 23 

1. Obtain an initial approximation of the reciprocal with h fractional bits. 
Call this approximation A and 

P [ - 1 ] - -  A 10.62 

2. Obtain the initial values as follows: 

w [0] = 2 h ( 1 - P [ -  1Ix) requires an h + 1 by n rectangular multiplication 

y[0] - P [ - I ]  
10.63 

3. Begin iteration 

End iteration 

w[j  + 1 ] - r ( w [ j ] - s j  +sjw[j]2-hr -~) 

P[j] = ( 1 + s j2-hr - j )  

y~" + 1] = yb']P~'] 

10.64 

EXAMPLE 10.7 We now give a numerical example. For simplicity, we use a nonredundant  
representation of the residual (which makes t = 0) and the relatively low 
radix 16. We give the result of the execution in radix-16 representation. 

Consider the calculation of the reciprocal ofx -- (O.A3B6)16 '~ 0.639510. 

1. Initial approximation of reciprocal with h = 6 fractional bits: 

A = 1.1001002 -- 1.9016 = 1.562510 

23. The algorithm computes the values P [j ] as well as the approximation to the reciprocal 
y [j ]. For the application in function evaluation the sequence P [.1.] is used. 
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. 

, 

In i t ia l  values:  

I te ra t ions :  

so - - 0  

P [ O ] -  1 

P [ - I ] -  1.90 

w[0] --  26(1 -- O.ffcc 60) - -  O.Oce 8 

y[O] = 1.90 

w[1] = 16(0 .0ce  8) = O.ce 8 

y[1] = 1.90 

s 1 = 1  

P[1]  = (1 + 2 -1~ ) = 1.004 

w[2] = 16(0 .ce  8 - 1 + O.ce 8 x 2 -10) - -  - 3 . 1 4 c 6  

y [2] = 1.90(1.004) = 1.9064 

s 2 = - - 3  

P[2]  --  (1 - 3 x 2 -14) --  O.fff4 

y[3] = 1.9064 x O.fff4 = 1.90513b5 

1/x ~ ( 1.9050100) 16 

Input Domain 

T h e  reciprocal  of  x is represen ted  by the p roduc t  of  the P [j ]. Consequen t ly  for 

a digit  set s j  E { - - a ,  . . . ,  a }, 

1 1 
< x < 10 .65  m ( - - i  ~ ~ m 

Hi=0  1 + a r ) Hi=0(1 - a r - i )  

For  instance, for r --  2 (e l iminat ing  the factor for i - 0 in the r ight  product )  

the d o m a i n  is 0.21 < x < 3.45, and f o r r  - 4 a n d a  = 2 the d o m a i n  is 

0.19 < x < 2.38. 
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Logarithm 

We want to compute y -- In(x). Since the multiplicative normalization produces 

we get 

m m 

- "~ H P[j]--  I - I  (1 +sj  2-j) X j =0 j =0 

10.66 

m m 

In(x) ~ - ~ In P [ j ]  -- - s In (1 +s j2 -j) 10.67 
j =0 i =0 

Consequently, the s i obtained from the multiplicative normalization are used to 

obtain In( 1 + s j 2 - j )  from a table and these values are then added. So, in addition 

to the recurrence for multiplicative normalization, we have the recurrence 

y[/" + 1] - y [ j ] -  ln (P[ j ] )  10.68 

The result is y [m + 1] ~ y [0] + In(x). 

Error 

The absolute error 24 is 

E - - l n ( x )  - y [ m  + 1] 10.69 

However, 

( ) t x m  ) Pb'] In(x) = In x -  In H P[J] - ~-~ln(P[J]) 
1-I P b ]  i=0 i=0 

= ln(x[m + 1]) + y[m + 1] 10.70 

resulting in 

E -- ln(x [m + 1]) 10.71 

Since the power series expansion of In(z) is 

( z -  1) 2 
In(z) - - ( z  - 1) - 

2 
+ . . .  ( 0 < z < 2 )  10.72 

24. This error is produced by the convergent algorithm. In a particular implementation, the 
contributions due to finite-precision representations have to be included. 
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making z = x [m + 1], the error is bounded by 

IEI _%< Ix[m + 1 ] -  11 + 
(x[m + 1 ] -  1) 2 

10.73 

From this expression we see that a more accurate approximation than (10.68) is 
obtained as 

In(x) ~ y [ m + l ] + x [ m + l ] - I  10.74 

The resulting error is bounded by 

(x[m + l]-- l) 2 
IEI _< 10.75 

2 

For instance, if the approximation of 1/x has an error bound of 2 -n , then the basic 

algorithm would also have an error of 2 -n , whereas the modified approximation 
would have an error bound of 2 -2n-1. However, this reduced error might result 

in an increased computation cost since x [m + 1] has to be computed, while for 
the basic algorithm only w[j] is required. 

Since the power series expansion used is valid for 0 < x [m + 1] < 2, the 
1 analysis is valid for x > 3" 

Algorithm for ln (x)  

We summarize in Figure 10.17 the radix-2 algorithm for computing In(x) with 

multiplicative normalization, using the approximation In(x) ~ y[m + 1] with 
an absolute error of 2 -m . 

The evaluation of ln(0.631) with 12-bit precision showing nonredundant 
residuals (for simplicity) is illustrated in Table 10.2. 

Implementation 

As shown in Figure 10.18, the overall implementation requires two variable 
shifters, one [4:2] adder, one [3:2] adder, one CPA, the selection function module, 
two multiplexers, a module with a table for generating Lj constants, and four 
registers. 

The delay is 

TLN = [max((max(tsel, tshift) + t4-2),  (tsel + t~able + tcsa)) + tReo]m + tcea 

10.76 
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, 

[Initialize] 

y[0] = 0; w[0] = 1 - x  

[Recurrence] 

f o r j  = 0 . . . m  

s j = SEL( w [j ]) ; 

w[j  + 1] +-- 2 ( w b ] - s j  +s jw[ j ]2 -J )  

Yb + 1] ~ y [ j ] -  L~ 

end for 

[Result] 

y[m 4- 1] ~, ln(x) 

where 

�9 The residual is in redundant  form, represented by the pseudosum WS and 

stored-carry WC bit-vectors. For simplicity, we use w[j ]  in the description. 

�9 m is the precision in bits. 

�9 SEL is the continued-product digit selection function defined by / A 
1 if w [ j ] > 0  

s j =SEL(w[ j ] )  = 0 i f - l _ < w [ j ] _ < 0 . 2 5  

-1  i f w [ j ] < - 0 . 7 5  

where w [j ] is an estimate of the residual w [j ] with t = 2 fractional bits. 
�9 The constants Lj  are defined as 

Lj -" 

In( 1 + 2-J) 

In(1 - 2-J) 

0 

s j2-J  

i f s j  = l a n d j  < m / 2  

i f s j  = - l a n d j  < m / 2  

i f s j  = 0 a n d j  < m / 2  

i f j  > m / 2  

and the constants Lj  -- In( 1 4- 2-J) are stored in a table. 

F I G U R E  10 .17  Radix-2 algorithm for ln(x),x E [1/2, 1). 
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J 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

w [ j ]  sj 

0.010111100111 1 

-0.100001100010 0 

-1.000011000101 - 1  

0.011011011001 1 

-1.000010011000 - 1  

0.000011100100 1 

-1.111000101010 - 1  

-1.101101100011 - 1  

-1.011001011000 - 1  

-0.110010000100 0 

-1.100100000111 - 1  

-1.001000000010 - 1  

-0.001111111111 0 

-0.011111111110 

Lj 

0.101100010111 

0.000000000000 

-0.010010011010 

0 . 0 0 0 1 1 1 1 0 0 0 1 0  

- 0 . 0 0 0 1 0 0 0 0 1 0 0 0  

0 . 0 0 0 0 0 1 1 1 1 1 1 0  

- O. 0 0 0 0 0 1 0 0 0 0 0 0  

-0.000000100000 

- 0 . 0 0 0 0 0 0 0 1 0 0 0 0  

0.000000000000 

-0.000000000100 

-0.000000000010 

0.000000000000 

Y[ j ]  

0.000000000000 

--0.101100010111 

--0.101100010111 

--0.011001111101 

--0.100001011111 

--0.011101010110 

--0.011111010101 

--0.011110010100 

--0.011101110100 

--0.011101100100 

--0.011101100100 

--0.011101100000 

--0.011101011110 

--0.011101011110 

TABLE 10.2 Evaluation of 1n(0.631) using radix-2 multiplicative normalization. The error 
] 1n(0.631) -y[13])l < 0.0001 < 2 -12. 

where m is the number  of  iterations. The  table L contains m / 2  • 2 constants. 

The  access to the table can be removed from the critical path (see Exercise 10.18). 

I O , 6 , 2  Exponential by Additive Normalization 

The function y -- e x can be computed by an additive normalization. To do this 

we obtain a sequence of  {bj } so that 

m 

x - ~ ln(bj)  --+ 0 (normalizes to 0) 10.77 
j = l  

Then  
m 

x I-I  e ,~ bj 10.78 
j = l  

Al though the method allows unrestricted values for b j ,  to have an implementat ion 

with only additions and multiplications with a one-digit multiplier, the bj are 
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I MUXl 

I Reg WS I 
Reg WC 

I w[j+l] 

,1 
I  eoYS I Reg YC y[j]l L_~ 

y[j+ 1 ] 

ln(x) 

sj j 

'TABLE ' 
! i 
, L , 
I I 

F I G U R E 10. Is Implementation of radix-2 algorithm for computing In(x). 

restricted to be of the form 

bj -- 1 + s jr - j  

with s j a radix-r digit. This also permits the use of a table lookup for ln(bj) .  

As in other digit recurrence algorithms, a residual is defined as 

w [ j ] - - r J ( x - - ~ l n ( l + s j r - J ) )  
i=1 

resulting in the recurrence 

10.79 

w[ j  + 1 ] - r ( w [ j ] - r  j ln(1 + s j r - J ) )  10.80 

The exponential is obtained by the recurrence 

y[ j  + 1 ] -  y[j](1 + s  j r  - j )  10.81 

where y [0] - 1. 
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Selection Function 

The selection function is determined in the same manner  as for logarithm. For 

sj E { - a ,  . . . ,  a }, the convergence bound is 

o ~  o ~  

rJ E l n ( 1 - - a r  -i) < w[j] < r j E l n ( l + a r  -i) 10.82 
i=j+l i=j+l 

We give next a selection function for radix 2 and leave the derivation as an exercise 

(see Exercise 10.20): 

1 if ~ ' ~ ] > 0 . 5  

S j = S E L ( ~ ] )  -- 0 if - 0 . 5  < w[ j ]  < 0.25 10.83 

-1  if w [ j ] < - 0 . 7 5  

where w[ j ]  is an estimate of the residual w[j] (in carry-save form) with t - 2 

fractional bits. 

Algorithm for  e x 

Figure 10.19 summarizes the radix-2 algorithm for computing e x using additive 

normalization. Let the input argument  bex ~ ( - In(2), ln(2)).25 Since L0 > U-I  

for j -- 0, an additional transformation is applied to allow the use of the same 

selection function in all steps. This initial transformation makes y [0] - e-~ and 

w[0] - x + 2 -1. Since the residual is in carry-save form, no addition is needed 

to initialize w[0]. 

E X A M P L E  10.8 T h e  evaluation o f e x p ( - 0 . 4 3 7 )  with  12-bit precision, showing n o n r e d u n d a n t  

residuals (for simplicity), is i l lustrated in Table 10.3. �9 

25. This range is obtained from an argument Xin by using the transformation 

eXin __ e Xin(log2e)(loge 2 )  . _ _  e( I+  f )  In(2) 

where I is an integer and -1 < f < 1. Therefore, 

eXin - - e l l n ( 2 ) e f l n ( 2 )  _ _  2Ie  x 

where x = f In(2) ~ ( -  In(2), In(2)). 
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. 

[Initialize] 

y [0] = e-~ w [0] -- x + 0.5 

[Recurrence] 

for j - - 0 . . . m  

s j -- SEL(w[j]); 

w [ / +  1] <-- 2 ( w b ' ] -  Lj2i )  

Yb" + 1] <--- y[/'] + yb']sj2-J 

end for 

. [Result] 

y[m + 1] ~ e x 

where 

The residual is in redundant form, represented by the pseudosum WS and 
stored-carry WC bit-vectors. For simplicity, we use w[j]  in the description. 
m is the precision in bits. 
SEL is the continued-sum digit selection function defined by 

A 

expression (10.83). w[j]  is the estimate of the residual truncated to two 
fractional bits. 
The constants Lj are defined as 

In( 1 + 2-J) 

Lj -- In(1 - 2-J) 
0 

s j2 - j  

where constants Lj = In(1 4- 2-J) are stored in a table. 

i f s j  = l a n d j  < m / 2  
i f s j  = - l a n d j  < m / 2  

i f s j  = 0 a n d j  < m / 2  
if j > m / 2  

F I G U R E  1 0 . 1 9  Radix-2 algorithm for eX,x ~ ( -  ln(2), ln(2)). 

Implementation 

As shown in Figure 10.20, the overall implementation is similar to that of 
In(x): it uses two variable shifters, one [4:2] adder, one [3:2] adder, and one CPA, 
the selection function module, one multiplexer, a module for generating the Lj 
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J 

0 
1 

2 
3 
4 
5 
6 
7 
8 
9 

10 

11 

12 

13 

w[j] 

0.000100000010 
0.001000000100 

0.010000001000 

0.100000010000 

-0.111000001100 

0.010011111110 

0.100111111111 

-0.101111000110 

0.100001110100 

-0.111100011000 

0.000111010000 

0.001110100000 

0.011101000000 

0.111010000001 

sj 

n 

1 

1 

1 

1 

Lj 

0.000000000000 
0.000000000000 

0.000000000000 

0.000111100010 

-0.000100001000 

0.000000000000 

-0.000000111111 

-0.000000100000 

0.000000010000 

- 0.000000001000 

0.000000000000 

0.000000000000 

0.000000000000 

Y[j] 

0.100110110100 
0.100110110100 

0.100110110100 

0.100110110100 

0.101011101011 

0.101000111100 

0.101000111100 

0.101001100101 

0.101001010000 

0.101001011010 

0.101001010101 

0.101001010101 

0.101001010101 

0.101001010101 

T A B L E  10.3 Evaluation of exp(-0.437) using radix-2 additive normalization. The error 
I exp(-0.437) - y[13])l < 2 -13. 

I MUX I 

Reg WC 

5 

I 

' TABLE ! I 

i Lj2 J+l 

[3:21 I 

I w[j+ll 

Table  L* stores shif ted constants .  

I Reg YS 
Reg YC 

y[J] 
I 

_l I. 

.__1 

y[j + II 1 

exp(x) 

F I G U R E 10 .20  Implementation of radix-2 algorithm for computing exp(x). 
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constants, and four registers. The  table stores shifted constants Lj2 j+l. I f  the 

table is to be shared with implementa t ion  for In(x),  a left shifter is used. 

The  delay is 

Tpxe -- [max((max(tsel, tsh~) + t4-2), (tsel + ttable + tcsA)) + tREG]m + tCeA 

10.84 

where  m is the number  of  iterations. The  table L contains m / 2  • 2 constants. 

Error 

The  error  in the approximat ion 

m 

eX ~ H bi -- y[m + 1] 
i=1 

where  

Since 26 

we have that 

Eexp-  le x - y [ m  + 1 ] l -  y[m + 1]]e x[m+l] 

m 

x[m + 1 ] - - x  -- ~ l n ( b / )  
i=1 

le x[m+l]- 11 < Ix[m + 1]le Ix[m+l]l 

Eexl, < Ix[m + 1]]elX[m+llly[m -+ 1] 

The  linear additive normal izat ion guarantees that 

m 

[x[m + 1]1 - - I x  - ~ l n ( b i ) l  < r 
i=1 

10.85 

10.86 

10.87 

10.88 

10.89 

26.Note thate xlm+ll - 1 = x[m + 1] + x[m + 112/2 + . . . .  
x[m + 1](1 + x[m + 1]/2 + x[m + 112/6 + . . . )  < x[m + 1]e x[m+il. 
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Consequently, e Ix[m+l]l < e r-" < 1 + r --m "JI- r -2m.  Therefore, 

Eexp " - l e  x - y [ m  + 1]l < r - m ( 1  + r  -m + r  -2m)y[m + 1] ~ r - m y [ m  -+- 1] 

10.90 

Since y [m + 1] is a close approximation to e x, we have 

e x 2 
y[m + 1] < < 

1 - -  r - m  - -  1 - -  r - - m  

for x < ln(2). Therefore, 

10.91 

y[m + 1] < 2(1 + r -m) 

and 

Eexp < 2r --m _~ 0 (r --2m) 10.92 

t 0 ~  T r i g o n o m e t r i c  a n d  Inve r se  T r i g o n o m e t r i c  F u n c t i o n s  

Implementation of these functions using the linear convergence technique is 
commonly based on the CORDIC method described in Chapter 11. 

10o7 Concluding Remarks 
In this chapter we presented several methods for evaluation of functions that are 
suitable for implementation in hardware. These include general polynomial and 
rational function approximations, and linear convergence methods based on shift- 
and-add algorithms applicable to particular functions. The methods discussed 
require lookup tables of varying sizes, some of the standard components such as 
adders, multipliers, and dividers, and special components such as variable shifters 
and digit-by-vector multipliers. In general there is a tradeoffbetween complexity 
of tables and of computation involved. As the VLSI technology progresses, the use 
of increasingly larger tables is becoming feasible and attractive. We also discussed 
general issues such as argument range transformations and rounding. Hardware- 
oriented evaluation of functions is also covered in other chapters (reciprocal in 
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Chapter 5 and square root in Chapter 6). As mentioned above, trigonometric and 

inverse trigonometric functions are discussed in Chapter 11. 

1 0 . 8  

10.1 

10 .2  

10 .3  

Exercises 
Argument Range Reduction 
Apply the reduction described in expression (10.1) to the floating-point argu- 
ment x = 1.5325 • 2 22. Describe the reconstruction required after obtaining an 

approximation Ofyr - -  e X r "  

Rounding 
Develop a table for a correctly rounded to nearest y = sin(x) for 6-bit x and y 

and 0 < x < rr/4. 

Polynomial Approximation and Interpolations 
Using a Taylor series expansion, show an implementation of an approximation 
of the function sin x for - r r  < x < Jr with operand and result of 16 bits in two's 

complement representation and an absolute error of less than one ulp. Determine 
the width of each variable and the latency and throughput. Show the execution 

for the computation of sin( 1.25). 
Consider the following three cases: 

(a) Use one nonpipelined multiplier-accumulator and store the coefficients 

of the polynomial in a table. The access to the table plus a multiply- 

accumulate takes four cycles. 

(b) Use one pipelined multiplier-accumulator with four stages and store the 

coefficients in a table. The access to the table takes one cycle and each stage 

of the multiplier accumulator corresponds to one cycle. Show the 

scheduling of the operations. 

(c) Use as many multiplier accumulators as required for minimum latency. 
Pipeline these modules for increased throughput. The coefficients are 

hardwired. Determine the width of each multiplier accumulator. 
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10 .4  

10 .5  

10 .6  

10 .7  

10 .8  

10 .9  

1 0 . 1 0  

Determine an interpolating polynomial of degree 4 for the function tan(x) for 
0 < x < yr/4. Obtain an approximation of tan(0.5) with 16 bits and compare 
with that produced by a Taylor series expansion of the same degree. 

Piecewise Interpolation 
1 Show an implementation of a piecewise interpolation of x 1/3 for ~ < x < 1, 

16-bit input and output. Use four intervals and linear interpolation. 
Determine the degree of the polynomial based on Taylor series required for 

the same error. 

Obtain a formula for a polynomial for quadratic piecewise interpolation. Show an 
implementation and compare with the implementation for linear interpolation. 

Reduction, Approximation, and Reconstruction 

Show an implementation for the computation of log(x) according to the proce- 
dure described in Example 10.3. 

Bipartite Table Method 

Develop the tables required for the computation of an approximation of 1/x for 
! < x < 1 with 9-bit precision using the bipartite table method. Use the tables 2 - 
to compute an approximation of the reciprocal of 0.100110010. 

For the approximation of a function using an operand of 16 bits, compare the 
implementation using piecewise interpolation with that of using the bipartite 
table method. Consider the modules required, the latency, and the possibility of 
pipelining. 

MSDF Polynomial and Rational Function Evaluation 

Evaluate the following polynomial using the algorithm in Figure 10.13: 

P2(x) -- -0.39x 2 + O.15x + 0.18 

for x -- 0.23 and m = 8. 
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10.11 

10 .12  

10 .13  

Show an implementation and compare it with a corresponding conventional 
parallel polynomial evaluation with respect to cost and delay. 

Compare the cost and delay of a rational evaluation MSDF scheme and a conven- 
tional scheme using multiply-add and a radix-4 divider. Compare delays assuming 
similar costs. 

Modify the algorithm in Figure 10.13 to accept the argument x MSDF serially. 

Show that the solution of the following linear system satisfies yi - "  x5--i, i = 
1, . . . ,  4: 

1 - x  0 0 yl 0 

0 1 - x  0 y2 0 

0 0 1 - x  y3 0 

0 0 0 1 y4 x 

1 0 . 1 4  

10 .15  

1 0 . 1 6  

10.17 

10 .18  

Determine the cost and delay for m = 24 and radix 2. Compare this scheme 
for generating integer powers ofx with a corresponding conventional implemen- 
tation with respect to cost and delay. 

Convergence Methods 

Compute an approximation of the reciprocal of x = (0.10101111) 2 using the 
radix-2 multiplicative normalization algorithm (with carry-save adder). 

Develop a radix-4 multiplicative normalization algorithm for reciprocal. 

Compute an approximation of the reciprocal of x = (0.AF636456)16 using a 
radix-16 multiplicative normalization algorithm with selection by rounding and 
carry-save adder. For j < 2 compute a suitable initial approximation. 

Compute a 12-bit approximation ofy = ln(0.625) usingthe radix-2 multiplicative 
normalization algorithm. Use the table of In( 1 + 2 - j )  given in the Appendix. 

Consider reducing the delay of the implementation of the radix-2 algorithm for 
computing In(x). For this, design a network for generating the constants Lj such 
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1 0 . 1 9  

1 0 . 2 0  

10 .21  

1 0 . 2 2  

1 0 . 2 3  

1 0 . 2 4  

1 0 . 2 5  

that the access to the table is not in the critical path. Compare the delay with the 
implementation described in the text. 

An algorithm to compute 

y -- log2(x ) -- ~ Y j  2 j  

j=0 

is as follows: 

w [ n ]  = x 

w [n - j - 1] - -  w [n - j ]2 -yk-d 2k-J 

Y k - J  -- 1 if w [n - j ] > 22~-j 

Show that the algorithm is correct. Determine k for x integer. Compute y = 
log2(0.625 ) with n = 8 bits precision. 

Compare the implementation of this algorithm with that of linear multi- 
plicative normalization. 

Derive the selection function for exponential additive normalization algorithm 
in radix 2 defined by expression (10.83). 

Calculate y - e ~  with 12 fractional bits using a radix-2 algorithm (with carry- 

save adder). Determine the error of the resulting approximation. 

General exponentiation can be described as y = x v - -  ( e l n ( x ) )  v m e ~ In(x). Show 
an implementation using normalization. Compute y -- 0.75125 with 12 bits. 

Describe an implementation ofy -- x v with v positive integer using the operations 
of squaring and multiplication. 

Show an algorithm for the computation of reciprocal square root and square root 
by linear multiplicative normalization. 

Compare the computation of In(x) and of e x by Taylor series expansion and 

by normalization methods. Give expressions for the delay and list the modules 
required. Give some reasonable conclusions. 
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10o9 Further Readings 
Books and Surveys 

The theoretical foundations and algorithms for evaluation of mathematical func- 
tions suitable for hardware design are covered in a comprehensive manner 
in Muller (1997). Approximation theory useful in deriving algorithms is dis- 
cussed in standard books on numerical methods such as Dahlquist and Bjorck 
(1974) and Mathews (1992). Cheney (1966) and Davis (1990) are classics on 
the function approximation theory. Early work on approximations for soft- 
ware implementation is found in Hart et al. (1978). Practical polynomial and 
rational approximations are surveyed in Cody (1970) and Cody and Waite 
(1980). 

Argument Reduction 

A comprehensive discussion of several methods for reducing argument range is 
presented in Muller (1997) (Chapter 9). Specifc reduction methods are described in 
Tang (1991), Daumas et al. (1994), Schulte and Swartzlander (1994), and Ferguson 
(1995). 

Correct Rounding and Monotonicity 

Problems and approaches to correct rounding are considered in Schulte and 
Swartzlander (1993, 1994), Muller (1997), and Lef&re et al. (1998). A tech- 
nique for obtaining approximations with monotonicity property for some tran- 
scendental functions is introduced in Ferguson and Brightman (1991). How 
to get some transcendentals correctly rounded in double-precision is shown 
in Lef~vre et al. (1998). An analysis of worst cases for correct rounding in 
double precision for elementary functions is described in Lefevre and Muller 
(2001). 

Hardware Polynomial Evaluators 

Pipelined combinational networks for polynomial evaluation are developed in 
Tung and Avizienis (1970). Ercegovac (1977) describes an MSDF scheme for 
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polynomial evaluation. A pipelined scheme for evaluating elementary functions 
with Chebyshev polynomials is presented in Hwang et al. (1987). Duprat and 
Muller (1988) and Corbaz et al. (1991) propose hardware polynomial evalua- 
tors. An online polynomial evaluation scheme is discussed in Merrheim et al. 
(1993). Schemes for parallel and MSDF evaluation suitable for FPGA imple- 
mentation are presented in Ercegovac et al. (1995). Ercegovac and Muller (1998) 
propose a MSDF scheme for polynomial evaluation at regularly spaced points. 
Burleson (1990) proposes a scheme for polynomial evaluation using distributed 
arithmetic. 

Lookup Tables and Interpolation 

An overview of table-based function evaluation methods is presented in Muller 
(1998). Methods using small table lookups followed by polynomial/rational ap- 
proximation evaluation suitable for general-purpose systems are presented in 
Tang (1989, 1990, 1991, 1992). Approaches based on interpolating polynomials 
using table lookups and multipliers have been frequently considered with the 
aim of reducing sizes of tables and multipliers. Noetzel (1989) presents the de- 
sign of an interpolating memory for evaluation of function approximations with 
Lagrange interpolating polynomials. An error analysis is also given. This ap- 
proach is followed later by Lewis (1994) among others. Jain and Lin (1995, 1997) 
describe an interpolation technique based on matched interpolating polynomials 
for double-precision computation of reciprocals, square root, sine, and arctangent 
functions. Das Sarma and W. Matula (1997) discuss the use of interpolation in 
reciprocal tables. Das Sarma and Matula (1994) present an analysis of accuracy 
in ROM tables for reciprocals. Cao et al. (2001) describe a design for evaluation 
of functions in single precision using interpolation with second-order polynomi- 
als and optimized tables. A VLSI implementation of second-order polynomial 
interpolation with unequal subintervals for sine/cosine evaluation is presented 
in Paliouras et al. (2000). Farmwald (1981) describes a design for evaluation of 
functions based on the Taylor series implemented with large tables and fast 
multipliers. Wong and Goto (1994) present a technique based on the evalu- 
ation of the Taylor series using a difference method. It is implemented with 
adders and large tables. Lef&re and Muller (1999) describe a table-based method 
for evaluating the exponential function in double precision. A table lookup 
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method for 100-bit precision is described in Daumas et al. (2000). A method for 
evaluating functions using tables and small multipliers is described in Ercegovac 
et al. (2000). 

Bipartite and Multipartite Table Methods 

Introduced in Das Sarma and Matula (1995), the bipartite tables and their vari- 
ations have been reported on frequently. Symmetric bipartite tables are dis- 
cussed in Schulte and Stine (1997a, 1997b, 1999) and Stine and Schulte (1999). 
Muller (1999) discusses a generalization to multipartite tables. De Dinechin and 
Tisserand (2001) present a unified approach to the previously reported bipartite 
and multipartite tables leading to smaller tables. Hassler and Takagi (1995) present 
a function evaluation using table lookup and addition similar to the bipartite 
method. 

Rational Function Evaluation 

Koren and Zinaty (1990) develop a coprocessor implementation for evaluating 
rational approximations in extended double-precision format. An MSDF ap- 
proach to rational function evaluation without explicit division is introduced in 
Ercegovac (1975, 1977). 

Linear Convergence Method 

Specker (1965) and Linhardt and Miller (1969) discuss multiplicative and ad- 
ditive algorithms of the shift-and-add type for computing logarithm, exponen- 
tial, and trigonometric functions. A systematic study of radix-2 shift-and-add 
algorithms with {-1, 0, 1} digit set and nonredundant residuals is presented 
in DeLugish (1970). A radix-16 extension of DeLugish's approach with digit 
selection using rounding is reported in Ercegovac (1973). The use of higher 
radix 2k and predictive techniques in the multiplicative normalization has been 
considered by Baker (1973, 1975). Further developments of this type of algo- 
rithms are discussed in Zurawski (1980) and Rodrigues et al. (1981). The com- 
putation of log and exp are related to the CORDIC algorithm, which is also 



Bibliography 601 

of the shift-and-add type, described in the next chapter; see references there, 
especially for very-high-radix algorithms and implementations. Chen (1972) 
provides another approach to function evaluation resulting in shift-and-add 
algorithms. 

Complex Function Hardware Evaluation 

Bajard et al. (1994) discuss a shift-and-add method for function evaluation in the 
complex domain. 

Function Evaluation in Processors 

Agarwal et al. (1986) discuss scalar and vector elementary functions for the IBM 
System 370. Markstein (1990) describes computation of elementary functions on 
the IBM RISC system/6000 processor. Rauchwerger and Farmwald (1990) discuss 
evaluation of polynomials on a multiple floating-point coprocessor architecture. 
Transcendental function evaluation for Intel IA-64 is described in Harrison et al. 
(1999) and Story and Tang (1999), and for AMD K5 processor in Lynch et al. 
(1995). 
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c00,opToo. 1 1 CORDIC Algorithm 
and Implementations 

In this chapter we consider the CORDIC algorithm and its implementation. 1 

This algorithm permits the realization of rotations, the calculation of trigono- 

metric functions, such as sin and cosine, of the inverse trigonometric function 
tan -1 ( a / b ) ,  and of x/a ~ + b 2. Moreover, it has been extended to hyperbolic func- 

tions and multiplication and division. In addition, minor modifications allow the 

calculation of other functions such as square root, exponential, and logarithm. 

The algorithm is attractive because of its generality, as well as its efficiency for 

some calculations, such as rotations. It has been used for applications in signal and 

image processing, in robotics, and in 3D graphics. Application-specific versions 

are being used for linear transforms, digital filters, and solution of linear systems. 

The algorithm is based on the rotation of a vector on the planer As shown 

in Figure 11.1, the vector (terminating in point) Xin, Yin is rotated by the angle 0, 

producing the vector (terminating in) xR, yR. This rotation is described by the 

expressions 

XR ~" Min cOS(]~ -ql- O) • Xin COSO -- Yin SinO 

YR = Min sin(/3 + 0) = Xin sin 0 + Yin COSO 
11.1 

where Min is the modulus of the vector and/3 is the initial angle. This rotation 
can be expressed in matrix form as 

ExR] [cos0 
Y R sin 0 

sin0]Ixin ] ROT  )[Xin 1 
COS0 Yin Yin 

11.2 

1. This corresponds to the class of linear convergence algorithms discussed in Chapter 10. 
2. It has been extended to more dimensions, but here we will restrict ourselves to the 
two-dimensional case. Moreover, this description is for circular coordinates; the extension to 
hyperbolic and linear coordinates is discussed in Section 11.5 

609 
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y 

\ \  (xR, Y R) /~ \ \ \ \ \  

F I G U R E 11.1 Vector rotation. 

(Xin, Yin) 

X 

This is called aperfect rotation (or just rotation) because the modulus of the vector 

is preserved. Its direct implementation requires the evaluation of cos 0 and sin 0, 

four multiplications, and two additions. 

The  CORDIC algorithm performs rotations by a sequence of (micro) rota- 

tions by elementary angles. For this, define the sequence of elementary rotation 

angles t~j and decompose the angle 0 as a sum of elementary angles 3 

oo 

0 --"  E O ~ j  11.3 
j=O 

Consequently, 
o o  

ROT(O) = H ROT(aj ) 
j=O 

and ROT(o~j) is described by the following equations: 4 

11.4 

XR[j + 11 = xR[j]cos(aj) -- yR[j]sin(aj) 

YR[j + 1] -- xR[j] sin(otj) + yR[j]cos(aj) 
11.5 

3. Now we consider the theoretical case in which the number of microrotations is infinite and 
later determine the error introduced in the function by performing a finite number. 
4. We use the subscript R so as not to confuse with the x[j], y[j] of the CORDIC 
microrotation introduced later. 
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This microrotation is still complex to implement since it requires multiplications. 
The multiplications are avoided by the following: 

1. Decomposing the rotation into a scaling operation and a rotation-extension 
(also called a similarity) by factoring the term cos(cej). The result is 

xR[j + 1] = COS(aj)(xR[j] - YR[j] tan(cej)) 
11.6 

YR[j + 1] = cos(aj)(yR[j] + xR[j]tan(aj)) 

2. Choosing as elementary angles the sequence 5 

a j  - -  tan-l(o' j(2-J)) - -  o ' j  tan-l(2 - j )  11.7 

with crj E {-1, 1}. 
With this choice the rotation-extension becomes 

x[j  + 1 ] -  x [ j ] -  crj2-Jy[j] 
11.8 

y[j + 1] -- y[j] + %2-~x[j]  

which is implemented using only additions and shifts. 
This rotation-extension scales the modulus M[j]  so that 

1 
M[j + 1 ] -  K [ j l M [ j ] -  ~ M [ j ] -  (1 + a22-2j)1/2M[j] 

COS ~ j  

= ( 1 + 2 -2j) 1/2M[j] 11.9 

The CORDIC algorithm consists in applying a sequence of rotation- 
extensions. The total scaling factor is then 

oo 

K -  H (1 + 2-2J) 1/2 ,~, 1.6468 11.10 
j=0 

Note that, because c~j E {-1, 1}, the scaling factor is constant, independent of 
the angle being rotated. 

Moreover, to decompose the angle 0 or to accumulate it, depending on the 
operation mode as discussed later, the following third recurrence is used: 

z[j + 1] -- z[j] - -  o l j  - -  z[j] - -  o ' j  tan-l(2 - j )  11.11 

5. This results in a radix-2 algorithm; the higher-radix case is considered in Section 11.5. 
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X[j] 
l 

I SHIFTER ~-- 

1 
X[j+I] 

Add/sub module includes 
conditional complementer 

Y[j] Z[j] 

I SHIFER ~ 

Y[j+I] 

I TABLE ~-- 

I 

Z[j + II 

rsign(Z[j + 11) in rotation 

cJj+] = "~Lsign(Y[j + 11) in vectoring 

F ! G U R E 11 .= Implementation of one iteration. 

T h e  resulting iteration, called a C O R D I C  microrotat ion,  6 is 

x[j  + 1] -- x [ j ]  - ajZ-Jy[j] 

y[j + 1] -- y[j] + aj2-Jx[j]  

z[j + 1] -- z[ j ]  - a j  t an - I (2  - j )  

11.12 

An implementa t ion  of  one iteration is as shown in Figure  11.2. It consists of  

shifters and adders and a table to contain the angles t a n - ] ( 2 - J ) .  The  signals 

sign(Y) andsign(Z) are used to de termine  the value o f a j ,  as discussed below. 

1 I ,  I Rotation and Vectoring Modes 
The  C O R D I C  algori thm is used in two modes: rotation and vectoring. We con- 

sider these modes now. 

1 1 , 1 , 1  Rotation Mode 

In this mode,  an initial v e c t o r  (Xin , yin) is rotated by an angle ft. As shown in 

Figure  11.3, to do this, the angle is decomposed into the primitive angles (using 

the recurrence z) and the vector is rotated by these angles. To decompose the 

6. Although this is a rotation-extension, to simplify the discussion it is called a microrotation. 
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(Xl, Yl) 

Y / x x ~  (X3" Y~) 

�9 (xf, yf) 

Primitive angles 

\\(Xin, Yin) 

I* X 

F I 6 U R E 11.3 Rotating a vector using microrotations. 

angle, the initial value of z is made equal to fl, and crj (the direction of rotation) 
is selected so that the final angle is zero. That  is, 

z[0] = 0 

1 i f z [ j ] > 0  
- - 11.13 

O'j --1 if z[j]  < 0 

Then,  this value of crj is used in the microrotation to produce x [j + 1], y [j + 1], 
and z[j + 1]. The initial condition is 

(X[0],  y [ 0 ] ) =  (Xin , Yin) 11.14 

The final values are 7 

Xf = K(xin cos 0 - -  Yin sin fl) 

y f  = K(xin sin fl + Yin COS 0) 11.15 

z f = O  

To obtain a perfect rotation it is necessary to compensate for the scaling factor K.  
The methods for performing this compensation are discussed in Section 11.3. 

7. We use the subscript f for the final values of the rotation-extension to contrast with the 
subscript R for the rotation. 
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EXAMPLE 11.1  

J 

0 
1 

2 
3 
4 
5 
6 
7 
8 
9 

10 

11 

12 

13 

z[j] % x[j] y[j] 

1.1693 

0.3839 

-0.0796 

0.1653 

0.0409 

-0.0214 

0.0097 

-0.0058 

0.0019 

-0.0019 

0.0000 

-0.0009 

-0.0004 

- 1  

- 1  

- 1  

-1  

-1  

-1  

1.0 

O.875 

0.3125 

0.7031 

0.5175 

0.4193 

0.4694 

0.4445 

O.457O 

0.4508 

O.4539 

0.4524 

0.4531 

0.4535 

0.125 

1.125 

1.1562 

1.4843 

1.5722 

1.6046 

1.5915 

1.5988 

1.5953 

1.5971 

1.5962 

1.5967 

1.5965 

1.5963 

r A B L E 11.1 Example of vector rotation. 

Table 11.1 illustrates rotat ion of  a v e c t o r  ( X i n  - -  1, Yin = 0.125) by an angle 

of  67 ~ using n -- 12 microrotat ions.  T h e  expected coordinates of  the rotated 

vector are xR - 0.2756, yR = 0.9693. 
After  pe r fo rming  compensat ion of  the scaling factor K -- 1.64676, the 

coordinates are x[13]/K -- 0.2753 and y[13]/K = 0.9693, with errors 

smaller than 2 -]2. �9 

As a special case, to compute cos ~9 and sin ~9 the initial conditions are x [0] = 

1/K and y [0] = 0. More in general, ifa and b are constants, a cos ~9 - b sin ~9 and 

a sin ~9 + b cos ~9 are computed by setting the initial conditions to x [0] = a/K and 

y[0] = b/K. 

1 t . 1 . 2  V e c t o r i n g  M o d e  

In this mode, the initial vector (Xin, Yi,,) is rotated until the y component is zero. 

Moreover, the corresponding rotation angle is accumulated in z. To accomplish 
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this rotation, for an initial vector in the first quadrant, the direction of rotation is 

selected as 

1 i f  y [ j ] < O  

ty j - -  - 1  i f y [ j ] > 0  
11.16 

For the initial values (x[0], y[0]) - -  (3 f in  , Yin) and z[0] - -  2;in , the final values are 

x f  = K(xi2n + yi2n) 1/2 

yf = 0 11.17 

z f = Z i n + t a n - l (  yi--~n ) x i  n 

The compensation of the scale factor is again discussed in Section 11.3. 

EXA.PLE 11.2 Table 11.2 illustrates the vectoring mode. A v e c t o r  ( X i n  - -  0.75, Yin --  0.43) 

is rotated clockwise to force the y component  to zero. We perform n - 12 

J 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

11 

12 

13 

y[j] ~. x[j] z[j] 

0.43 

-0.32 

0.27 

-0.065 

0.1109 

0.0224 

-0.0219 

0.0002 

-0.0108 

-0.0053 

-0.0025 

-0.0011 

-0.0004 

-1  

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

0.75 

1.18 

1.34 

1.4075 

1.4156 

1.4225 

1.4232 

1.4236 

1.4236 

1.4236 

1.4236 

1.4236 

1.4236 

1.4236 

0.0 

0.7853 

0.3217 

0.5667 

0.4423 

0.5047 

0.5360 

0.5204 

0.5282 

0.5243 

0.5223 

0.5213 

0.5208 

0.5206 

T A B  L E 11.2 Example of vectoring. 
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microrotations. The  expected coordinates of the rotated vector are 

x -- 0.0 XR = in -~- Yin2 = 0.8645, YR 

and the rotated angle 

z f = tan- l  ( O'43 ~ \ 0 - - ~ , /  -- 0.5205 

The  accumulated angle z[13] = 0.5206. After performing compensation of 
the scaling factor K -- 1.64676, we obtain x[13] /K  -- 0.864. The  errors are 
smaller than 2 -12. �9 

1t  ,2 Convergence, Precision, and Range 
In this section we check the convergence of the algorithm, determine the precision 
obtained with n iterations, and the range of the rotation angle. We first consider 

the rotation mode. 

1 1 , 2 , . t  C o n v e r g e n c e  

The condition of convergence of the algorithm is that the residual angle to rotate 
after iteration j is not greater than the maximum angle than can be rotated in 
the remaining iterations. That  is, 

o ~  

Izlj]l _< ~ tan-l(2 -i) 11.18 
i=j  

From this expression we obtain the maximum value of the rotation angle, namely, 

o o  

Omax - z[O]max -- ~ tan-l(2 - j )  ~ 1.7433 (99.88 ~ 11.19 
j=0 

For this angle all crj = 1 and all z[j] > O. 
Now consider an angle 101 < 0max. In this case, as shown in Figure 11.4, 

there is an iteration i for which z[i] is negative. The maximum negative z[i] 
occurs when z[i - 1] - 0. Since the rotation angle in the iteration to produce z[i ] 
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T 
Y 

~ - " " " ~  x 

F ! G U R E 11.4 Convergence condition: the maximum negative case. 

is tan-l(2 -~i-1~) we obtain 

[z[i]] < tan -1 (2 -(i-1)) 11.20 

Consequently, the convergence condition requires that 
oo 

tan -1 (2-(i-1)) < y ~  tan-l(2 - j )  

j=i 
11.21 

which is equivalent to 
OO 

tan-l(2 -i) < ~ tan-l(2 - j )  
j = i + l  

11.22 

Since this condition is satisfied for all i, the algorithm converges. 8 In conclusion, 
the CORDIC algorithm converges as long as the rotation angle is not larger than 

Omax �9 

Since the maximum angle for convergence is somewhat larger than 7r/2, it 
might be necessary to do a preprocessing (argument range reduction) to achieve 
a larger angle. For instance, to achieve a range of [-yr,  Jr], when the magnitude 
of the angle is larger than 7r/2, an initial rotation by rr/2 is performed, which 
consists in an interchange ofx and y and a sign change. 

8. This is an instance of the more general condition, which states that an algorithm converges 
if the bases satisfy 2c~j+l > otj. 
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11 .2o2  Range and Error for n Iterations and Truncation 

Up to now we have considered the theoretical case in which the sequence of 

iterations is infinite. In practice, of course, the sequence is finite. Moreover, all 

variables are represented by a finite number of bits. This affects the range and 

produces an error in the result. 

As shown in (11.20), the residual angle after n iterations z[n ] is bounded by 

]z[n][ < tan -1 (2 -(n-l)) 11.23 

Moreover, 

2 -n < tan -1 (2 - (n - I ) )  < 2- (n- l )  11.24 

This means that the angle after n iterations has an error bound of 2 -(n-l) . 

With respect to the maximum angle for convergence, the expression for n 

iterations is 

n - 1  

{gmax(n) -- ~ t a n - l ( 2  - j )  + 2 -n+l  

j=O 

11.25 

where 2 -n+l is the maximum residual angle. Note that the maximum angle does 

not change significantly with the number of iterations, after a reasonable number 
of iterations. 

For the vectoring mode we have tan-l(Yin/Xin) < Omax, and the conclu- 
sions about the maximum angle, precision, and range remain the same as in the 
rotation mode. 

Truncation errors 

The error bound of expression (11.24) assumes variables of infinite precision. 

The representation with a finite number of bits requires roundoff (usually 

truncation) and introduces additional errors. These errors are of two 

(interrelated) types: 

�9 Accumulation of the roundoff errors. 

�9 Error in the determination of o's. This produces a rotation in the wrong 

direction. 
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11 =3 

Error analysis have been performed to bound the total error. 9 This analysis is 

used to determine the number of bits required to obtain a desired precision. 

Compensation of Scaling Factor 
If a perfect rotation is required (in rotation mode) or if the modulus is required 
(in vectoring mode), it is necessary to compensate for the scaling factor K. The 
following compensation methods have been proposed: 

�9 The most direct method is to multiply by 1/K. Moreover, since K is a 
constant, the multiplication can be simplified by taking advantage of the 
zeros in the representation of 1/K. Recoding can be used to increase the 
number of zeros. This method requires additional hardware to perform the 
multiplication. 

�9 Another method of compensation is to approximate 1 /K by a product of 
factors of the form ( 1 4- 2 -i). For an acceptable approximation error, the 
number of factors is between n/3 and n/4. This product can be 
implemented by a sequence of scaling iterations of the form 

Xs - -  x -4- x(2 -i) 

Consequently, these iterations can use the same hardware as the CORDIC 
iterations. 
A related method (which can be combined with scaling iterations) is to use 
repetitions of CORDIC iterations, that is, to perform more than one 
CORDIC iteration for some index values. This can be done without 
changing the convergence condition (of course, in each iteration, the value 
of cr has to be determined so that the algorithm converges). This is correct 
since the condition 

]z[i + 1]] _< tan-l(2 -i) 

applies also for the case with repetitions. 
Since the repetitions also produce a scaling of the modulus, they can be 
used together with the scaling iterations to compensate for the original 

9. For details see Hu (1992) and Antelo, Bruguera, et al. (1997). 



620 c H APT E R 11 CORDIC Algorithm and Implementations 

Scaling iterations ( 1 ) ( + 2 ) ( - 5 ) ( + 1 0 ) ( + 1 6 ) ( + 1 9 ) ( + 2 2 )  
, ,  

Scalings 

+ repetitions 

(--2)(+16)(+17) 

1,3,5,6 

TABLE 11.3 Scale-factor compensation for n = 24. 

scaling factor. The problem consists then in finding the minimum number 

of scaling iterations plus repetitions so that the scale factor is compensated. 
For instance, for n = 24, Table 11.3 shows a set of scaling iterations and of 
scaling plus repetitions. 
Although for the n = 24 case there is no difference in the number of 
iterations among both methods, in some cases (for instance, in the use of 
redundant adders as described later) repetitions are necessary for 
convergence. In such cases there is some flexibility in the position of these 
repetitions. Consequently, they can be used also as part of the compensation 
of the scaling factor. 

The scale-factor compensation introduces additional errors because of the ap- 
proximate method used and because of the truncations. These errors have to be 
included in the total error. 

Implementations 
The implementation can be word-serial or pipelined. We describe these alterna- 
tives now. 

] ] . 4 . ]  Word-Serial Implementation 

In the word-serial implementation the hardware for one iteration is reused. Con- 
sequently, this implementation is a sequential system in which each microrotation 
corresponds to one clock cycle. This implementation is shown in Figure 11.5. Note 
the variable shifters required for the multiplication by 2 - j  in iteration j .  The crit- 
ical path delay is the sum of the delays of the shifter, the conditional complementer 
(for the subtraction), the adder, and the register. 

The same hardware is also used for the scale-factor compensation, for the 
case in which the compensation is done by scaling iterations and the repetition 
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x[o] 1 

i s  . . . .  . . . . . . . .  i- 

ADD, UB I 
X[j+I]~ 

xtj]l 
6 

j I 
SH, II MU• I 

i MUX I:, I 
. . . .  , . -  . . . . .  ~ 
I ADD/SUB I-- 

~ Y[j+I] 

IY[j] 

sign(Y[j]) 
Add/sub module includes conditional complementer 

z[o] 

% 

1 l 
I Z[j+l] 

REG Z 

I Z[j] 

~ sign(Z[j]) 
I MUX I 

~ ~J= { sign(Z[j])in rotation 

sign(Y[jl) in vectoring 

F ! 6 u R E 11 .s Word-serial implementation. 

of CORDIC iterations. Note the MUX required to implement the scaling 
iterations. 

1 1 . 4 . 2  Pipelined Implementation 
In the pipelined implementation the iterations are unfolded so that each microro- 
tation uses its own hardware (Figure 11.6). From the point of view of latency this 
has the advantage that the shift amount in each iteration is constant, so that the 
corresponding shifters are implemented just by the suitable wiring. Consequently, 
the delay of one iteration is now only the sum of the delays of the conditional 
complementer and the adder. 

Additional hardware is required in this case for the scale-factor compen- 
sation. 

Moreover, because the iterations are unfolded, this allows the execution of 
several CORDIC operations in a pipelined fashion, resulting in a high throughput. 
In this case, the delay of the latches should be included in the latency. 
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IJ 0 

I~ 1 

x [ 0 ]  
l 

=[ A D D / S U B  

X[1] 

i ! , Wired shift , 
i i , (1) , 
t 

. . . . .  i . . . . .  ! 

A D D / S U B  

X[21 

Co 

(~1 

Y[O] 

1 
~1 A D D / S U B  

Y[1] 

z[o] 
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MUX T Z [ 1 ]  

7 sign(61~ lsign(Z) 

1 Ol 
! , Wired shift ', 
i i 
, ( 1 )  , 
t 

. . . . .  - . . . . .  ~~1 

A D D / S U B  (3"1 ~ A D D / S U B  

Y[2] -.~ _1 I_. -[.. MUX Z [ 2 ]  
sign(61 ~ Isign(z)T 

(~2 e o �9 

(5 

X[j] ! 

n , Wired shift : 
' (j)  ' I I 

t . . . . .  l . . . . .  | 

= ADD/SUB L 

x[j+l]~ 

Y[j] z[j] 

! 

, Wired shift : 

i u) ', . . . .  ! 

sign(y~)l M X i;ign(Z). T 

uj"+l �9 �9 �9 

Add/sub module includes 
conditional complementer 

sign(Z[j]) in rotation 

oj= { sign(Y[j]) in vectoring 

F I 6 U R E 11 .s Pipelined implementation. 
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1 1 . 5  

11~5.1 

y 

/ 

xR' YR) 

~ /  ,' 

n) ~ X 

FIGURE 11.7 Rotation in hyperbolic coordinate system. 

Extension to Hyperbolic and Linear Coordinates 
The algorithm described in the previous sections is for circular coordinates. We 

now consider its extension to hyperbolic coordinates and linear coordinates. 

Hyperbolic Coordinates 

Similarly as for circular coordinates, as shown in Figure 11.7, an hyperbolic 

rotation by angle 0 is described by 

[xR]_ [cosh0 sinho]Fxin ] 11.26 
YR sinh 0 cosh 0 k Y in 

Notice the change in sign in the upper-right element with respect to the circular 

case. Consequently, the corresponding CORDIC microrotation is 

x[ j  + 1] = x[ j ]  + a j2 -Jy[ j ]  

y[ j  + 1] = y[ j ]  + ~yj2-Jx[j "] 11.27 

z[j  + 1] -- z[j]  -- o'j t anh- l (2  - j )  

The scaling factor in iteration j is 10 

Kh [j ] = ( 1 -- 2 -2j) 1/2 11.28 

10. We use the subscript h to differentiate with the factor K for circular coordinates. 
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Since tanh -1 2 o - c~ (and Kh [0] -- 0), for hyperbolic coordinates it is necessary 

to begin from iteration j = 1. 
Moreover, in this hyperbolic case, a complication is that the algorithm does 

not converge with the sequence of angles tanh-l(2 - j )  since 

oo 

Z tanh- 1 ( 2 - j  ) < tanh-1 ( 2-i ) 11.29 
j = i + l  

A solution is to repeat some iterations. Since 

oo oo 

~ tanh-l(2-i~ < tanh-~(2-J~ < ~ tanh-~(2-i/+ ~anh -~ (2-~J+~'t 
i = j + l  i = j + l  

11.30 

repeating iterations 4, 13, 40, . . . ,  k, 3k + 1, . . .  results in a convergent algorithm. 

Including these repetitions, we get 

Kh ~ 0.82816 

Omax = 1.11817 

For these coordinates we can also have the rotation and vectoring modes, with 

the same expressions for the calculation of crj as in the circular coordinate case. 

The final values are, for rotation mode, 

X f = Kh (gin cosh 0 + yi, sinh 0) 

y f  -- Kh (xi,, sinh 0 + Yin cosh 0) 11.31 

z f = O  

and for vectoring mode, 

x~ = K~ (x,2o - YiZn) 1/2 
yf  -- 0 11.32 

z z+ tank (Y )xi 
Similar considerations as those given for the circular mode with respect to errors 

and to scale-factor compensation apply also to the hyperbolic case. Moreover, the 

implementations of Figures 11.5 and 11.6 can be adapted, either to include both 

types of coordinates or just for the hyperbolic case. 
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Y 

I 

I 

I 

(X R, YR ) 

(Xin, Yin ) 

X 

F I G U R E 1 1 . 8  Rotation in linear coordinate system. 

1 1 . 5 . 2  Linear Coordinates 

The rotation for linear coordinates is shown in Figure 11.8. That is, 

X R  ~ Xi  n 

Y R --- Yin "+" XinZin 

11.33 

Consequently, the elementary angles are of the form 2 -i, and the corresponding 
microrotation is 

x[j  + 1] -- x[j] 

y[j + 1] = y[j] + c r j 2 - J x [ j ]  

z[j + 1 ] -  z [ j ] -  aj(2 - j )  

The scaling factor is 1. 
For the vectoring mode the final values are 

11.34 

X f  m Xi  n 

Z f - -  Z in "~- y i-'2-n 
Xin 

11.35 

From the expressions we see that this linear mode can be used to perform multiply- 
add and divide-add. 
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1 1 . 5 . 3  Unified Description 

From the previous development it is possible to describe the algorithm in the 

three coordinate systems in a unified manner  by defining the parameter m so that 

�9 m = 1 for circular coordinates 

�9 m = - 1  for hyperbolic coordinates 

�9 m -- 0 for linear coordinates 

In that case, the unified microrotation is ll 

x [ j  + 11 = x [ i ] - m c r j 2 - J y [ j ]  

yD + 1] - y[j] + aj2-Jx[j] 

z [ j ] - c r j  t an- l (2  - j )  if m -- 1 

z [ j + l ] - -  z [ j ] - c r j t a n h - ] ( 2  - j )  if m - - - 1  

z[/'] - a j ( 2 - J )  if m - -  0 

and the scaling factor is 

Kin[j] -- ( 1 + m2 -2j) 1/2 

Table 11.4 summarizes the two modes in the three coordinate systems. 

11.36 

11.37 

1 1 . 5 . 4  

1 1 . 6  

Other  Funct ions  

The  functions shown in Table 11.4 are obtained directly from the application 

of the C O R D I C  algorithm. Additional functions can be obtained with suitable 

initial values; some of these functions are shown in Table 11.5. 

Redundant Addition and High Radix 
We now describe two of the many modifications that have been proposed for 

the C O R D I C  algorithm and its implementation. The  main objective of these 

modifications is to reduce the latency and/or to increase the throughput.  The  

modifications considered here are applicable to a unified implementation for 

rotation and vectoring. Modifications that are applicable only to one mode are 

discussed in the next section. 

11. The z recurrence is also written as z[j + 1] = z[/] - cyjm -1/2 tan-l(ml/22-J). 
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Coordinates 

Rotation mode 

~ = s i ~ z [ j ] )  

Vectoring mode 

%. = - sign( y [j ]) 

Circular (m = 1) 
c~j = tan-1 ( 2-J ) 

Initial j = 0 

j = 0 , 1 , 2 , . . . , n -  1 

K1 ~ 1.64676 

Omax ~ 1.74329 

Linear (m = O) 
O/j = 2  - j  

Initial j = 0 

j = 0 , 1 , 2 , . . . , n - 1  

K 0 = I  
Omax = 2 -- 2 -n 

Hyperbolic (m = - 1) 
0gj --  tanh-l(2 - j )  

Initial j = 1 

j -- 1, 2, 3, 4, 4, 5, . . . ,  13, 

1 3 , . . . , n  
K-1 ~ 0.82816 

Omax ~ 1.11817 

X f -- Kl(xi  cos(z/)  -- Yi s in(z / ) )  

y f = Kl(xi  sin(z/)  + Yi cos(z/) )  

z f = O  

Xf  = X i 
Y f = Yi + xizi 
z f = O  

x f  = Kl (x  2 + y2) 1/2 

y f = O  

z f  = z i + t a n - l ( Y - ~ i  ) 

Xf  ~ X i 
y f = O  
Zf  =Zi  -~-~  

X f -- K - l ( x i  cosh(z i )  + yi s inh(z i ) )  

y f -- K- l (Xi  s inh(z i )  + yi cosh(z i ) )  

z f = O  

yi 

xi 

x f = K-I (x~ - y~)1/2 

y f = O  

z f - - z i + t a n h - l ( Y ~ i  ) 

Note:sign(a) = 1 ifa > 0, sign(a) = -1  ifa < O. x i ,  yi,zi are the initial values. 

] 1 . 6 . 1  

T A B L E  11.4 Unified CORDIC.  

Although these modifications are applicable to both modes and all coordi- 

nates, the details given here are limited to the circular case. 

Redundant Representation 

As can be seen from the description and evaluation of its implementation, the 

main delay in the critical path of the CORDIC iteration is that of the adder, even 

when a fast adder is used. An evident way of reducing this delay is to use one of 

the redundant  adders (see Chapter 2). This results in a redundant  representation 

of the variables. 
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Initial values Functions 

m Mode x in Y in Z in XR YR or  ZR 

1 

- 1  

- 1  

1 

- 1  

- 1  

- 1  

- 1  

rotation 

rotation 

rotation 

vectoring 

vectoring 

vectoring 

vectoring 

vectoring 

1 0 0 

1 0 0 

a a 0 

1 a zr/2 

a 1 0 

a + l  a - 1  0 
1 1 0 

a + ~  a 4 
a + b  a - b  0 

cos 0 YR = sin 0 

cosh 0 YR = sinh 0 

ae ~ YR = ae ~ 
Via 2 + 1 ZR - -co t - l (a )  

Via 2 _ 1 z R = coth-1 (a) 

2x/a- zR = 0.5 ln(a ) 
x /~  ZR -" ln ( la  ) 

2~a-b ZR = 0.5 In (~-) 

Note: The final values x R and y R are obtained after compensation of the scale factor. 

T,o, B L E 11.5 Some additional functions. 

The main problem with this approach is the need to detect the sign to obtain 

a j .  This sign detection might be done by converting to a conventional represen- 

tation, but this would defeat the purpose of using a redundant adder. It might 

also be done by a sign detection module; however, the sign depends on all the 
bits so that the sign detection delay is intrinsically of the same order as the con- 
version. The solution to this, used in other digit recurrences such as division (see 

Chapter 5), is to obtain r from an estimate of the sign. However, to assure con- 
vergence some modification is required for the case in which the estimate is not 

correct. 

One possibility is to use a redundant digit set for Orj. In particular, use the 
value 0 in addition to 4-1. This is the solution adopted for division. However, for 

CORDIC it has the disadvantage that the introduction of 0 makes the scaling 

factor variable, dependent on the angle. Two approaches have been proposed to 

handle this situation: 

Calculate the variable scaling factor and perform the corresponding 

compensation. This can be done by evaluating the scaling factor using a 

recurrence (and the compensation by a division), or by calculating the 

logarithm of the scaling factor and then using an exponential function for 
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the compensation (see Chapter 10 for the algorithms to compute logarithm 
and exponential). Note that for the required precision, only the first half of 
the a s affect the scaling factor. 
Modify the recurrence to keep a constant scaling factor. The corresponding 
iteration has been called a double rotation. 

Another possibility is to maintain the digit set 4-1 to have a constant scale fac- 
tor. The possibility of an incorrect estimate producing a nonconvergent algorithm 
can be handled by the following proposals: 

�9 Introduce additional CORDIC iterations (called correcting iterations) to 
correct any possible error. To maintain the constant scaling factor it is 
necessary to include these iterations at fixed points, irrespective of whether 
an error occurred. 

�9 Use two CORDIC modules, called the plus and the minus module. 
Whenever an estimate is inconclusive, initiate the operation in both 
modules and determine later which of the two is correct. 

We now discuss at a hight level the double-rotation and the correcting- 
iterations approaches. 

Double-Rotation Approach 

In this approach the set of values of aj is {-1 ,  0, 1 }. To maintain the constant 
scale factor the corresponding rotations are performed by a double rotation, as 
follows: 

�9 a j  - 1. Both rotations are by angle tan-l(2-(J+l)) .  
�9 aj = 0. The two rotations are by the angles tan-l(2 -~j+l)) and 

-- tan-l(2-(J+l)) .  

�9 aj -- --1. Both rotations are by the angle - t an - l (2 - ( J+ l ) ) .  

Consequently, the scaling factor is constant and has value 

n 

K -- H ( 1  + 2 -2j) 
j=l 

The elementary angles for this algorithm a r e  0/j ~ 2 tan-l(2 -(j+l)) (instead of 
the tan- l (2-J )  of the conventional CORDIC). The algorithm converges for these 
elementary angles because 20~j+l >__ CCj. 
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The double rotation is incorporated into a single iteration, resulting in the 

following recurrences: 

x[ j  + 1] -- x [ j ] - - q j 2 - J y [ j ] -  pj2-2j-2x[j] 
y[j  + 1] - y[j]  + qj2-Jx[j] - pj2-2j-2y[j] 11.38 

z[j + 1] -- z [ j ] -  qj(2 tan -1 (2-(J+l))) 

The two control variables (qj, pj) take values (1, 1) for o'j = 1; (0, - 1 )  for 
o'j = 0; and ( -1 ,  1) for o'j = - 1 .  The value of aj is determined essentially from 

an estimate of the sign of the corresponding variable (z[j] for rotation and y[ j] 
for vectoring); since the variable converges to 0, the estimate of the sign uses the 

bits j - 1, j ,  and j + 1 of the carry-save representation ofz[j] .  
As indicated, the algorithm uses a redundant representation and produces 

a constant scaling factor. However, the recurrence is more complicated than the 

conventional CORDIC because of the three terms required to produce x [.I' + 1] 

and y[ j  + 1]. 

Correcting-Iterations Approach 

In this approach the values ofo'j are kept as 4-1, which results in a constant scale 

factor. However, because of the redundant representation, it is not possible to 
determine accurately the sign of the corresponding variable. Consequently, an 

estimate of the sign is obtained by examining a limited number of digits. In case 
the sign estimation is incorrect, the rotation is in the incorrect direction so that the 
algorithm might not converge. To assure convergence, some additional iterations 
(called repetitions because they correspond to repeating the rotation with the same 
elementary angle) are introduced at predetermined intervals. 

The interval between these iterations depends on the maximum error com- 
mitted when the estimation is incorrect, and this is influenced by the number of 
digits used to estimate the sign. Consequently, there is a trade-off between the 

complexity of the sign detection and the number of repetitions. It can be shown 

that when m digits are used for the estimation, the distance between repetitions 

is about m iterations for the rotation mode and m - 2 iterations for the vectoring 
mode. 12 

Since the scale factor of the required precision is affected only by the first 
half of the o"s, for the second half it is possible to use the redundant digit set 

12. For details see Takagi et al. (1991) and Lee and Lang (1992). 
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{--1, 0, 1}, in which case no repetitions are needed in these iterations. Moreover, 

beginning in n /4  the scale factor can be approximated by linear terms of the form 
1 + 2 -2j- l ,  consequently, a constant scale factor is obtained when using the digit 

set {-1 ,  0, 1} if a scaling iteration is performed when crj = 0 (this is performed 

with the same hardware of the CORDIC iteration). 13 

In summary, in this approach the iteration is as in the conventional CORDIC, 

but additional iterations are required to compensate the errors produced by using 

an estimate of the sign in the f irstn/2 or n /4  iterations. As indicated before, these 

correcting iterations can be combined with other CORDIC repetitions and with 

scaling iterations to compensate the constant scaling factor. 

1 ] o 6 o 2  Higher Radix 
To reduce the number of iterations, it is possible to extend the algorithm to a 

higher radix. The corresponding recurrence is 

x [ j  + 1] - x[ j ]  - crjr - jy[ j]  
y[j  + 1] - y[ j]  + ~yjr-Jx[j "] 11.39 

z[j  + 1] -- z [ j ] -  tan-l(crjr - j)  

and the value of crj is a signed radix-r digit (nonredundant or redundant). Note 

that the crj is now part of the argument of the elementary angle; this is in contrast 

to the radix-2 case, in which the c~j has values 4-1, so that it just determines the 

direction of rotation. 
A selection function determines the value of o'j, this function is obtained 

using a method similar to that of division (see Chapter 5). Because, as in di- 
vision, the complexity of the selection function increases with the radix, direct 
implementations are practical for radix 4.14 

In the high-radix algorithm the scale factor is 

K -- I - I  (1 + 0"2r-2J) 1/2 11.40 

Consequently, this scale factor is variable: it is necessary to compute it and then to 

compensate. A method to do this is to compute the logarithm of the scale factor 

13. In a pipelined implementation an additional wired shift of 2j + 1 positions is required. 
14.For details see Antelo, Villalba, et al. (1997) and Villalba et al. (1998b). 
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and then to compensate by multiplying by the exponential of this logarithm. This 
multiplication can be done with a recurrence similar to CORDIC, as described 

in Chapter 10. 
As stated before, the scale factor is affected only by the first half bits. Con- 

sequently, a constant scale factor can be achieved if the first half is done radix-2 

and the rest high radix. Of course, this increases the number of iterations with 

respect to the case in which the whole algorithm is high radix. 
The iteration can be performed using nonredundant or redundant adders. 

As in division, the use of a redundant adder complicates somewhat the selection 

function. 

1 1 . 6 . 3  Example: 24-Bit Unit 

We now describe the implementation of a 24-bit unit for circular coordinates, 

using the enhancements described in this section. Specifically: 

1. The iteration is performed using redundant adders. To be specific, we 

select a signed-digit (radix-2) adder. 

2. The scale factor is constant. This is achieved by the following: 

�9 Iterations 0 to 6 use a o'j with values 4-1. The selection function uses 
the four most-significant signed digits of the corresponding variable to 
estimate the sign. This requires two correcting iterations for 
convergence; the position of these iterations is determined so that they 
also contribute to the scale-factor compensation (see below). 

�9 Iterations 7 to 12 use a o'j with values - 1 ,  0, 1. To maintain the 
constant scaling factor, scaling by ( 1 + 2 -(2j+l)) is required when 
orj = 0. The selection function is the same as for the first case, except 

that aj  -- 0 is selected when the value of the four digits is 0. 

�9 Iterations 13 to 18 are radix 4. To simplify the implementation, crj is in 

the set {-2,  - 1 ,  0, 1, 2}. The selection function is especially simple for 

the rotation mode, since in these iterations tan-i(2 - j )  can be 

approximated by 2 - j .  

3. The scale-factor compensation is by repetitions and scalings. The 
repetitions are chosen so as to include those required for convergence and 

to minimize the total number of iterations. 
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11 o7 Application-Specific Variations 
In the previous sections we have considered a CORDIC unit applicable to all the 
coordinates and operation modes. In some applications this is not required, so 

that particular optimizations are possible. Moreover, in some cases a vectoring 
operation is followed by a rotation, so that the rotation angle does not have to be 
computed explicitly in conventional representation. We briefly summarize some 
of these cases now. More details are given in the references at the end of the 

chapter. 

+++7++ Only Rotation 

If only the rotation mode is required, then the following optimizations have been 

considered: 

Obtaining the crj Values Directly from the Angle 

Especially when using redundant adders in a pipelined implementation, the crit- 

ical path is affected by the delay of the selection of crj. In rotation mode, these crs 

depend on the value of the angle to rotate. In fact, the set of crs is just a different 
representation of the angle. Because of this, there have been attempts to obtain 
the as  directly from the conventional representation of the angle. This is direct 
for small angles because in this case the tan -1 <9 can be approximated by ~9. More 

precisely, from the Taylor expansion we get 

3 
X 

t a n -  1 x ----  x - -  - -  - I -  �9 �9 �9 

3 

Consequently, for a precision ofn bits and x < 2 -n/3 we have that 

tan-l(2 -i) ~ 2 -i 

This indicates that after the iteration with j = In/3] the as  can be obtained 
directly from z[[n/3]]. For the initial n/3 as  the standard z iteration can be 
performed. Alternatively, the following approaches have been proposed: 

�9 Obtain the a s from a table, using as address some most-significant bits of 

z[0]. 
�9 Obtain the a s directly as the most-significant bits of z[0]. Since an error is 

produced, include correcting iterations. 
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t l o 7 o 2  

1t o8 

Rotation by Predefined Angles 

Some applications, such as the computation of transforms (Fourier, cosine, etc.), 
are performed by a sequence of rotations of predefined angles. In such cases, the 
representation of the angles by as  can be predetermined and the sequences of 

cx s stored. Therefore, it is not necessary to perform the z iteration, resulting in a 
reduction of the delay and the area. 

However, in this case, since the rotation angles are known, the sine and cosine 

can be stored and the rotation implemented by multipliers and adders. 

Vectoring Followed by Rotation 

In some applications, such as normalization, matrix triangularization, and SVD, 
it is necessary first to compute an angle and then perform rotations by that angle. 

In such cases, the angle can be computed by a vectoring (plus some other opera- 

tions, such as additions) and then the angle is used for the rotation. Consequently, 
the following improvements can be used: 

�9 The angle can be kept in its representation by the cr s and used in this form 
for the rotation. In this way, the z recurrences are avoided, both in the 
vectoring and in the rotation. 

�9 The rotation can be initiated as soon as the first o" is produced. That is, the 

vectoring and the rotation can be overlapped, so that the overall delay is 
essentially equal to that of the rotation. 

Concluding Remarks 
The CORDIC algorithm is part of the class of shift-and-add linear convergence 
algorithms discussed in Chapter 10. In circular coordinates it can be used directly 
to compute several trigonometric functions, such as cosine, sine, and arctan. How- 

ever, its greatest potential is to compute directly functions of several variables, 

such as the rotation of a vector by a specified angle (three variables), the modulus 

of a vector, and arctan(y/x) (two variables each). This can compete favorably 
with other multioperation algorithms for these functions. 

The algorithm has been extended to hyperbolic and linear coordinates so that 

the corresponding unified implementation is very versatile. Moreover, because 

of its very regular nature, it can be pipelined for high-throughput applications. 
This is particularly true when using low-latency redundant adders. 
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Although the basic algorithm is radix 2, it has been extended to higher 
radices. The most-direct extension is to radix 4, which results in half the number 
of iterations as for radix 2. However, in the high-radix cases, the scaling factor 
is not constant, so additional hardware is required to compute the scaling factor. 
Consequently, an alternative approach is to perform the first iterations radix 2 
and the last iterations radix 4, since the scaling factor is affected only by the first 
iterations. 

Very-high-radix implementations have been proposed using selection by 
rounding (see the references at the end of the chapter). These implementa- 
tions reduce the number of iterations, but require rectangular multipliers, larger 
tables, and some special initial iterations. 

Many other variations have been proposed, mainly to reduce the delay 
and versatility of the implementations. Moreover, the implementations have 
been adapted and combined with other modules for specific applications (see 
Section 11.10). 

The basic CORDIC algorithm and implementations are for fixed-point rep- 
resentations. As for other algorithms, this limits the dynamic range of the operands 
and result, requiring range reductions and adjustments to reduce loss of preci- 
sion. To overcome these limitations, algorithms with floating-point representa- 
tions have been proposed. If the operations, mainly additions, are performed in 
floating point, the implementation is inefficient; however, it is possible to perform 
the operations in fixed point and to add preprocessing and postprocessing steps 
to convert from and to floating point. Additional complications occur if the angle 
is represented in floating point (see the references at the end of the chapter). 

t l  o9 

11,1 

Exercises  

Circular CORDIC" Rotation and Vectoring 

Compute sin(30 ~ and cos(30 ~ to a precision of seven bits using the CORDIC 
algorithm. 

(a) 
(b) 

(c) 

Utilize a datapath width of 7 fractional bits. Determine the error. 
Utilize a datapath width of 10 fractional bits and truncate the final result 
to 7 fractional bits. Compare the error with that of part (a). 
Determine an angle for which the error difference between part (a) and 
part (b) is large. 
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1 1 . 2  

1 1 . 3  

1 1 . 4  

1 1 . 5  

1 1 . 6  

11.7 

Perform the rotation of the vector  (X in  , Y i n )  - -  (1, 1) by an angle 0 - 2zr/3 
using the CORDIC algorithm. Perform a range reduction before the CORDIC 
algorithm. Perform the scale-factor compensation by multiplication. 

(a) Utilize a datapath width of 7 fractional bits. Determine the error. 
(b) Utilize a datapath width of 10 fractional bits and truncate the final result 

to 7 fractional bits. Compare the error with that of part (a). 
(c) Determine an angle for which the error difference between part (a) and 

part (b) is large. 

Compute tan-l(2.13/3.25) and the modulus of the vector (3.25, 2.13), using the 
CORDIC algorithm. Perform the scale-factor compensation by multiplication. 

(a) Utilize a datapath width of 7 fractional bits. Determine the error. 
(b) Utilize a datapath width of 10 fractional bits and truncate the final result 

to 7 fractional bits. Compare the error with that of part (a). 
(c) Determine a vector for which the error difference between part (a) and 

part (b) is large. 

Convergence, Precision, Range 
Consider an algorithm that produces a variable A as a sum of the form 

o o  

A - -  y~SiOl i 
i=0 

where the o~ i are the basis elements and $i E (0, 1}. Show that a recurrent 
algorithm that producessi in iteration i converges if2c~i+l > cri. 

Determine whether the same condition is valid for si E {-- 1, 1 }. 
Apply this condition to the CORDIC algorithm. 

Show the convergence of the CORDIC algorithm for vectoring mode. 

Perform the rotation of (X in  , Y i n )  = (1.0, 1.0) by an angle of 2 radians using 
the CORDIC algorithm directly, without argument range reduction. Does the 
algorithm converge? 

Compensation of Scaling Factor 

Compute the value of 1/K obtained by performing the scalings and the repetitions 
and scaling iterations indicated by Table 11.3. 
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11 .8  

11 .9  

1 1 . 1 0  

11.11 

11 .12  

1 1 . 1 3  

1 1 . 1 4  

1 1 . 1 5  

1 1 . 1 6  

Implementations 

The CORDIC recurrences for x and y require the use of two shifters. Redefine 
the recurrences in the vectoring mode so that only one shifter (possibly differ- 
ent from the original one) is used. What are the implications of the modified 
recurrences on the implementation? Why is this alternative not reasonable for 

rotation? 

Determine the value of i, for j > i, such that [tan-l(2 - j )  - 2-Jl < 2 -n 
(consider the Taylor series expansion). Indicate how this can be used to simplify 
the implementation of the CORDIC algorithm. 

Other Functions 

Show that the functions described in Table 11.5 are obtained as indicated. Deter- 
mine the range of the argument for convergence. 

Compute 0.5e 0"76 using the CORDIC algorithm with a datapath width of eight 

fractional bits. Perform six iterations and initialize so that no scale-factor com- 
pensation is required. 

Compute ln(0.17) using the CORDIC algorithm with a datapath of eight frac- 
tional bits. Perform six iterations. 

Compute tan(0.7) using two passes through a unified CORDIC unit. Use a 
datapath of eight bits and perform six iterations in each pass. 

Is it possible to use a radix-4 CORDIC module, without need of scale-factor 
compensation? 

Redundant Addition 

Show that to compute a variable scaling factor with an error of 2 -n it is only 
necessary to consider the crs for j < n/2. 

Using the CORDIC implementation with redundant adder (signed digit) perform 
the computation of sin(rr/4) with 8-bit precision. Use a selection function with 
an estimate of the sign with two digits and introduce the required repetitions. 

Compute the resulting scaling factor and compensate using a multiplication. 

Repeat the previous exercise for vectoring of the v e c t o r  (Xin , Yin) = (1 ,  1). 
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1 1 . 1 7  

Radix 4 

Compute sin(Jr/4) with a radix-4 CORDIC algorithm using an implementation 
with carry-save adders and the following selection function: 

5 14 2 if g < ~ [ 0 ] < - g  
3 4 1 if g < ~ [ 0 ] <  

4 2 o'0-- 0 i f - g  < ~ [ 0 ] <  g 
7 5 -1  i f - g  <G[0]_< 8 

_.1~ _< G[0] _< - ~ 2 if 1 

and for j > 0, 

21 2 if !~ < ~[ j l  < F 
4 11 1 if g < ~ [ j ] < - g -  

4 3 crj-- 0 i f - g  < ~ [ j ] <  
5 -1  if - ~  < ~[ j ]  < - g  

- 2  if - ~  < G [ j ]  < _  __ 138 

where w[j] = 2Jz[j] and ~[ j ]  is the carry-save w[j] truncated to 3 fractional 
bits. 

Perform three iterations and determine the error. Determine the (variable) 
scaling factor and perform the compensation by multiplication. 

11 ='tO Further Readings 
G e n e r a l  

The CORDIC algorithm was first presented (for circular coordinates) in Voider 
(1959) (see also Voider 2000) and extended to hyperbolic and linear coordinates 
in Walther (1971) (see also Walther 2000), where there is also a discussion of the 
conditions for convergence and of the variety of functions that can be performed. 
Extensions to hyperbolic and linear coordinates are also described in Linhardt 
and Miller (1969). Delosme (1989) presents a theory and further extensions. 
Schmid (1974) discusses decimal CORDIC algorithms and implementations. 
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Scale-Factor Calculation and Compensation 

The different techniques for the compensation of the constant scale factor are 
discussed in Haviland and Tuszinsky (1980), Delosme (1986), Timmermann et al. 
(1991a), and Villalba et al. (1998a). 

Range Extension 

Range extension of CORDIC algorithms is discussed in Hu et al. (1991) and Hahn 
et al. (1994). 

cr Prediction in Rotation Mode 

To reduce the critical path in rotation mode, several authors have proposed meth- 
ods to obtain the values of the rotation directions directly from the rotation 
angle. Since this is not exact, especially for the first iterations, different correction 
techniques are included (Baker 1976; Naseem 1984; Naseem and Fisher 1985; 
Timmermann et al. 1992; Hu and Naganathan 1993; Antelo et al. 1995; Wang 
et al. 1997; Kwak et al. 2000). 

Redundant Representation 

In the last decade several proposals have dealt with the reduction of the latency 
by the use of redundant addition. Ercegovac and Lang (1990) propose to use the 
digit set { 1, 0, - 1  }, resulting in a variable scaling factor; the computation of this 
scaling factor as well as the compensation are done online. Two variations for 
constant scaling factor are proposed for rotation in Takagi et al. (1991) and for 
vectoring in Lee and Lang (1992). Redundant CORDIC is the subject of Lee 
(1990). A branching algorithm is presented in Duprat and Muller (1993) and 
extended in Phatak (1998a, 1998b), and the differential CORDIC algorithm in 
Dawid and Meyr (1996). CORDIC with carry-save representation is considered 
in Kunemund et al. (1990). 

Online Algorithms 

Online arithmetic (see Chapter 9) has been applied to the CORDIC algorithm. In 
Ercegovac and Lang (1987) it has been used for the computation of cosine/sine, 
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and in Lin and Sips (1990) to perform the general CORDIC algorithm. In 
Ercegovac and Lang (1990) the calculation of the variable scale factor and its 
compensation is performed with online modules. An online large radix CORDIC 
rotator is presented in Osorio et al. (1995). 

High-Radix Algorithms 

A combined radix-2 and radix-4 implementation, with the first half of the iter- 
ations in radix 2 and the second half in radix 4, is used in Lee and Lang (1992); 
this reduces the number of iterations but results in a constant scaling factor. This 
method has been generalized to the unified CORDIC in Antelo et al. (1996). 
Completely radix-4 algorithms are described in Antelo, Bruguera, et al. (1997) 
and Villalba et al. (1998b). Radix 2k algorithms for some elementary functions 
are proposed in Baker (1975). Recent work on higher-radix CORDIC includes 

Antelo et al. (2000a, 2000b) and Lewis (1999). 

Error Analysis 

Error analysis of the CORDIC algorithm when implemented with finite-width 
datapaths is presented in Hu (1992b) and Hu and Bass (1993). In Antelo, Bruguera, 
et al. (1997), error in the argument is included and approaches are proposed to 
reduce the overall error. Bekooij et al. (2000) deal with numerical accuracy of Fast 
Fourier Transforms with CORDIC. The quantization effects are studied in Hu 
(1992c). Numerical accuracy and hardware trade-offs are discussed in Kota and 
Cavallaro (1993). 

Multidimensional CORDIC 

Multidimensional CORDIC has been presented in Delosme (1989). It is also in- 
vestigated in Hsiao (1993). Its use is suggested for zeroing out several components 
of a vector (multidimensional vectoring) and applying the corresponding as  to 
rotate other vectors. Alternative multidimensional algorithms are presented in 
Delosme and Hsiao (1990), and Hsiao and Delosme (1995), and its application to 
complex SVD in Hsiao et al. (2000). The use of the 3D CORDIC as part of an 
algorithm for 3D rotation of rigid bodies is presented in Lang and Antelo (2001). 
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Floating-Point CORDIC 
Floating-point applications in which the vector is in floating-point representa- 
tion, but the CORDIC algorithm is in fixed-point representation, with prepro- 
cessing and postprocessing stages, are discussed in Ercegovac and Lang (1990), 
de Lange and Deprettere (1991), and Timmermann et al. (1994). This is extended 
in Hekstra and Deprettere (1993) to the case in which the angle is also in floating- 
point representation. A floating-point vectoring is discussed in der Kolk et al. 
(2000). Cavallaro and Luk (1988a, 1988b) present floating-point CORDIC for 
matrix computations. Floating-point CORDIC implementations are described 
in Ahmed (1982), Metafas and Goutis (1995), and Hekstra (1998). 

Extensions 

The CORDIC algorithm has been modified so that other functions can be per- 
formed. In particular for cos -1 and sin -i ,  see Mazenc et al. (1993), Krieger and 
Hosticka (1996), and Lang and Antelo (2000). This latter has been generalized 
to perform vectoring with an arbitrary target in Lang and Antelo (1998). An 
extension to perform CORDIC for interval arithmetic is presented in Hormigo 
et al. (1999). 

Applications and Implementations 

Applications and implementations of CORDIC have been frequently described 
in the literature. We present here some of that work. CORDIC applications 
fall roughly into signal processing, graphics, and robotics areas. Common to all 
are the needs for fast and efficient evaluation of transcendental functions, ma- 
trix computations, and operations on vectors and angles. Implementations are 
typically application-specific, although there are several general CORDIC pro- 
cessors, such as Haviland and Tuszinsky (1980), K6nig and B6hme (1990), and 
Deprettere et al. (1990). Signal processing applications and implementations of 
CORDIC are surveyed in Hu (1992a), which provides an extensive bibliography 
up to 1992. Cavallaro and Luk (1988a, 1988b), Hu et al. (1993), and Hemkumar 
and Cavallaro (1994) present a CORDIC approach to matrix computations. 
Zou and Kornerup (1995) and Bruguera et al. (1996) deal with various trans- 
forms. There are numerous discussions of various implementations of CORDIC 
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algorithms for digital signal processing applications (Despain 1974; Ahmed et al. 
1982; Deprettere et al. 1984; Wald and Despain 1984; Sung et al. 1986; 
Timmermann et al. 1991b; Hekstra 2000). The literature contains many presenta- 
tions of various aspects of the design and implementation of CORDIC processors 
(Ahmed 1982; Cavallaro 1988; Harber 1989; Hu 1989; Wang 1998; Hekstra 1998; 
Kwak 2000). A bit-serial floating-point CORDIC processor is described in Bass 
et al. (1991). A radix-4 pipelined CORDIC processor is presented in Bruguera 
et al. (1993). Mencer et al. (2000) discuss implementation of CORDIC with recon- 
figurable arrays. Numerical accuracy and hardware trade-offs are discussed in 
Kota and Cavallaro (1993). Graphics and robotics applications are the subject of 
Yang et al. (1987), Yoshimura et al. (1989), Krieger and Hosticka (1996), and Lang 
and Antelo (2001). CORDIC approach to decimal-binary conversion is presented 
in Daggett (1959). 
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[3:2] adder, 141 
[4:2] adder (module), 145 
[5:2] adder (module), 146 
[7:2] adder (module), 146 
[p:2] adder (module), 140 
(1,2,3:4] counter, 150 
(3:2] counter, 145 
(5,5:4] counter, 150 
(7:3] counter, 147, 150 
(p:q] counter, 144 
ABRE (absolute rounding error), 

409 
Absolute error, 

average, 409 
exponential, 592 

in digit-serial arithmetic, 518 
logarithm, 584 
maximum, 411 

Adder 
1-bit, 52 
[3:2], 100 
[4:2], 100 
asynchronous (self-timed), 91 
borrow save, 127 
carry-lookahead (CLA), 53, 

71 
carry-propagate, 52 
carry-ripple (CRA), 59 
carry-save, 53, 98 
carry-select, 53, 86 
carry-skip, 53, 65 
conditional-sum, 53 

conventional number 
system, 52 

fixed-time, 52 
hybrid, 53 
linear array, 151-152 
n-bit, 52 
ones' complement, 95 
pipelined, 91 
prefix, 53, 79 
redundant, 52-53, 97 
schemes, 52 
signed-digit, 53 
switched carry-ripple 

(Manchester), 53, 63 
delay, 64 

tree, 153-154 
two's complement, 95 
variable-time, 52, 91 

Addition in ones' complement 
system, 22 

Addition in true-and- 
complement system, 
19 

Addition in two's complement 
system, 20 

Addition of positive integers, 17 
Addition of signed integers, 18 
Addition 

algorithm, 51 
for positive fixed-point 

operands, 51 
two-operand, 51 

Addition/subtraction in 
sign-and-magnitude 
system, 25 

Alignment, 
in double-datapath 

implementation, 
430-431 

in floating-point addition, 
418,420, 422-424 

in floating-point 
multiply-add, 446-448 

Alternative floating-point 
addition 
implementations, 426 

CLOSE path, 431 
double datapath, 430 
FAR path, 431 
single path, 427 

Argument range reduction, 551 
Arithmetic unit (processor), 3 

functional description, 4 
arithmetic-algorithm level, 

4 
implementation level, 4 

Arithmetic processor, 4 
Arithmetic shifts, 27 
Arrays of smaller multipliers, 215 

Base, in floating-point, 398 
Binary code, 18 
Bipartite table method, 562 
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Bit-array (in combinational 
multiplication), 194, 
202 

pipelined, 207 
reduction by rows 

linear adder array, 205 
adder tree, 207 

reduction by columns using 
(p:q] counters 

Bit-arrays, 137 
unsigned operands, 137 
signed operands, 138 
sign extension, 138 

Bit-vectors, representation, 8-9 
Borrow-save adder, 127 

Canonical system 7 
Carries, 53 

alive, 55 
generate, 55 
kill, 54 
propagate, 55 

Carry chains, 55 
1-carry chain, 55 
0-carry chain, 55 

Carry-in, carry-out, 51 
Carry-lookahead adder (CLA), 

53,71 
carry-lookahead generator 

(CLG), 72 
delay (1-CLA), 72 
delay (2-CLA), 77 
delay (L-CLA), 77 
group size, 79 
number of levels, 77 
one-level (1-CLA), 75 
three or more levels CLA, 

77 
two-level (2-CLA), 75 

Carry-save adder (CSA), 98 
high radix carry-save, 101 

Carry-save adder, 141 
Carry-select adder, 86 

delay, 86 
Carry-skip adder, 53, 65 

delay, 66-67 
group size, 70 
multi-level, 71 
variable group size, 70 

Change-of-sign in ones' 
complement system, 
23 

Change-of-sign in true-and 
complement system, 
23 

Change-of-sign in two's 
complement system, 
24 

Choice of base, in floating-point, 
403-404 

Circular coordinates, 609 
Combination of division and 

square root, 343-345 
Combinational multioperand 

addition, 151 
Combinational multiplication 

with recoding, 193 
bit-array, 194,202 
generation of multiples, 194 
radix 2, two's complement, 

194 
sign extension, 197 

Combined division and square 
root, 343 

Compensation of scaling errors, 
619-620 

Complement forms, 11 
Complementation constant, 11 
Composite algorithm, 495-496 
Conditional adder 

(COND-ADDER), 
86 

Condition code, 416 

Conditional-sum adder, 87 
delay, 89 

Constant and multiple constant 
multipliers, 223-225 

Continuity condition, 348 
Converse mapping, 15-16 
CORDIC algorithm, 609, 611 

circular, 611 
convergence, 616 
error, 618 
high radix, 626, 631 
hyperbolic, 623 
implementation, 620 
range, 618 
redundant representation, 

627 
rotation mode, 612 
scaling factor, 619 
truncation error, 618 
unified description, 626 
vectoring mode, 614 

CORDIC implementations, 620 
pipelined, 621 
word-serial, 620 

Correct rounding and 
monotonicity, 
551-552,598 

Correcting-iterations approach, 
630-631 

Delay of adders, 
carry-lookahead, 72, 77 
carry-ripple, 59, 62 
carry-skip, 66-67 
switched carry-ripple, 64 
reducing, 63 

Denormals, 426 
Digit, 5 
Digit complement system (DC), 

11 
Digital representation, 11 
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Digit-recurrence, 
algorithm for, 249-259 
convergence of, 367 
division, method of, 

247-319 
rounding for, 453,478 
square root, method of, 

331-362 
Digit-selection function, 273 
Digit-serial arithmetic, 489 

algorithm and 
implementation 
model, 492 

composite algorithm, 495 
delay, 489 
initial delay, 492 

Digit-vector mapping, 8 
Digit-vectors, 

about, 4,5 
in mixed radix system, 7 
in nonredundant number 

systems, 6,8 
in redundant number 

systems, 6 
representation of, 6 

Digital arithmetic, 3 
Dividend x, 34,248 
Division (integer) algorithms, 34 

restoring division, 35 
nonperforming division, 37 
nonrestoring division, 38 

Division and square root, 
example of 
implementation 383 

Division by digit-recurrence, 247 
Division by iterative 

approximation, 367, 
380 

Division, 
algorithm radix-2, 266 
comparison of 

implementations, 277 

containment condition, 282 
continuity condition, 283 
convergence, 250 
definition, 248 
error bound, 250 
example of execution 

radix-2,267 
example of execution 

radix-4, 270 
fractional, 248, 249 
implementation, 259 
implementation of 

recurrence step, 
252 

initialization, 254 
integer, 248, 278 
integer example of 

execution, 280 
notation, 248 
number of iterations, 254 
overlap, 283 P-D diagram, 

283 
radix-2,264 
radix-4,264 
radix-8, 270 
radix-16, 273 
radix-16 with overlapped 

stages, 273 
radix-512 with scaling and 

selection by rounding, 
275 

range of estimate, 298 
recurrence step, 249 
residual, 251 
Robertson's diagram, 283 
SRT, 288 
selection function radix-2, 

266, 288, 302 
selection function radix-4, 

269, 294, 305 
selection intervals, 282 
selection constants, 287 

staircase selection function, 
289 

selection function with 
redundant adder, 296 

selection function with 
carry-save adder, 299 

selection function with 
signed-digit adder, 308 

termination, 254 
zero-remainder condition, 

263 
Division, comparison between 

digit recurrence and 
multiplicative 
methods, 463 

Divisor d, 34,248 
Double precision, 

in division and square root 
algorithms, 383 

for elementary functions, 
598 

in IEEE Standard 754, 415 
and lookup tables, 599 
in range extension, 26 
for transcendentals, 598 

Double-datapath 
implementation, 
430-434 

Double-rail coding, 92 
Double-rotation approach, 

629-630 

End-around carry, 22-23, 96-97 
Errors, 

absolute representation 
(ABRE), 409 

bias error (RB), 409-410 
in CORDIC algorithms, 

616, 624,631 
in division by digit 

recurrence, 250 
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Errors (continued) 
maximum absolute 

representation error 
(MABRE), 409 

in multiplicative 
normalization 
method, 377-378 

in Newton-Raphson (NR) 
method, 370 

in online arithmetic, 511 
in quotient-digit selection, 

299 
relative representation error 

(RRE), 410 
from scale factor 

compensation, 620 
from truncating multiplier, 

221 
types of, 409-410 

Estimate of residual, 297, 299, 
513,589 

Estimate of S[j], 349-350 
Exceptions (floating-point), 407 

division by zero, 417 
inexact, 417 
invalid, 417 
overflow, 407 
underflow, 407 

Exponent 
denormal and, 401,438 
in logarithms, 551 
overflow, 407, 420 
representation of, 405-407 

Exponential, 
by additive normalization, 

587-593 
algorithm, 589 
implementation, 590. 

Extended precision, 383 
Extension to hyperbolic and 

linear coordinates, 
623-626 

Final adder in multipliers, 
210-212 

Fixed radix number system, 6 
Fixed-point numbers, 3, 5 
Floating-point addition, 417 

alignment of significands, 
418 

alternative 
implementations, 426 

basic algorithm, 418 
basic implementation, 420 
delay and pipelining, 426 
denormals, 426 
effective operation, 419 
exceptions and special 

values, 420, 425 
guard bits, 422 
normalization of result, 419 
round to nearest (tie to 

even), 424 
round toward zero, 425 
round toward infinity, 425 
rounding, 420, 422 
sticky bit, 422 

Floating-point CORDIC, 641 
Floating-point division, 451 

comparison between digit 
recurrence and 
multiplicative 
methods, 463 

rounding for digit 
recurrence, 453 

rounding for iterative 
approximation, 457 

Floating-point multiplication, 
435 

alternative implementation, 
438 

basic algorithm, 435 
basic implementation, 435 
delay and pipelining, 438 
denormals, 438 

exceptions and special 
values, 437 

normalization, 436 
round to nearest (tie to 

even), 436 
round to zero, 437 
round toward infinity, 

437 
sticky bit, 436 

Floating-point multiply-add 
fused (MAF), 445 

Floating-point numbers 3,397 
Floating-point numbers, 397 

distribution of values, 402 
ranges of values, 402 

Floating-point operations, 416 
Floating-point representation, 

397 
base, 398 
biased exponent, 405 
choice of base, 403 
denormalized numbers 

(denormals), 401 
dynamic range, 398 
exponent, 398, 405 
normalized, 401 
range of significand, 400 
significand, 398, 404 
special values, 407 
ulp (unit in the last 

position), 400 
unnormalized, 401 

Floating-point square root, 461 
Floating-point standards, 477 
Fraction 

in fixed-point 
representation, 16 

in floating-point addition, 
420-421,426 

in IEEE Standard 754, 415 
Fractional operands, 247, 279, 

331,502 
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Full adder (FA), 51 
as counters, 159 
characteristics of, 62 
implementation, 60 
with self-timed carry 

circuit, 92 
Functional description, 4 
Function evaluation, 549 

exponential, 587 
linear convergence method, 

576 
logarithm, 584 
polynomial interpolation, 

557 
rational approximation, 

566 

Generated errors, 376-378 
Generation of adder input F[j], 

334-335 
Generation of multiples and bit 

array, 194-197 
Gradual underflow 

and denormals, 438 
in floating-point addition, 

420 
in IEEE Standard 754, 416 

Group size, 70, 79 
Guard bits, 422 

Half-adder (HA), 60 
as counters, 159 
in full-adder 

implementation, 60-62 
in reduction by columns, 

60-61, 175 
Hardware polynomial 

evaluators, 598 
Hidden bit, 405 
High-radix CORDIC, 631 

High-radix carry-save 
representation, 
101-102 

Hybrid adder, 112, 128, 211,236 
Hyperbolic coordinates, 623-624 

IEEE Standard 754, 414-417, 
425-426 

Implementation 
of (p:q] counters, 144-149 
of adders, 127 
of conversion, 257-259 
of division algorithm, 

259-278 
of exponential functions, 

590-592 
of floating-point division 

and square root, 478 
of floating-point multiplier, 

478 
of floating-point 

multiply-add fused 
(MAF), 446-450 

of full-adder, 60-62 
of linear interpolation, 

558-559 
of logarithm functions, 

585-587 
of multiplicative 

normalization 
method, 372-373 

of piecewise interpolation, 
562 

of rational functions, 
574-575 

of table methods, 563-564 
Infinite precision 

in IEEE Standard 754, 417 
of real numbers, 401,408 
and roundoff modes, 

408-410 

Infinite precision quotient, 457, 
459 

Initial approximation, 373-375, 
391 

Integer division, 247-248, 281 
Integer multiplier, 236 
Integer square root, 345 
Interpolation 

linear 558 
lookup tables, 599 
piecewise, 553, 557-560 
quadratic, 560 

Iterative approximation, 367 

Last digit adjustment, 454 
Latency, 167, 426, 438, 529, 534 
LOD (Leading-One-Detector), 

421 
LOP (Leading-One-Predictor), 

429 
LSDF 491,496 
LSDF addition, 496 
LSDF multiplication, 498 
LSDF subtraction, 496 
LZA (Leading-Zeros 

Anticipation), 434 
Leading-One-Detector (LOD), 

421 
Leading-One-Predictor (LOP), 

429 
Leading-Zeros Anticipation 

(LZA), 434 
Least-significant-digit-first 

(LSDF) 491,496 
Linear array 

adder organization, 
151-152, 198 

in digit-serial arithmetic, 514 
for multipliers, 235 
partitioned, 226 
pipelined, 207 . 
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Linear array multiplier, 207, 235 
Linear convergence method, 576 

exponential, 587 
logarithm, 584 
multiplicative 

normalization, 577 
selection by rounding, 581 

Linear coordinates, 625 
Logarithm, 584 

algorithm, 585 
implementation, 585 

Lookup tables, 599 

MABRE (maximum absolute 
rounding error), 409 

MAF (Multiply-add fused), 445 
MSDF 491,502 
MSDF addition, 503 
MSDF division, 519 
MSDF multiplication, 515 
MSDF polynomial/rational 

function evaluator, 567 
MSDF subtraction, 503 
MSDF, multioperand algorithm 

527 
Magnitude multiplier, 198 

with saturation, 232 
Manchester adder, 64 
Microrotation, 610 
Mixed radix system, 7 
Monotonicity, 552 
Most-significant-digit first 

(MSDF), 491 
Multicolumn counter, 149 
Multioperand addition, 137 
Multipartite table method, 565 
Multiple-constants multiplier, 

223 
Multiplication algorithms 

(positive and signed 
integers), 29 

Multiplication, 181 
add-and-shift algorithm, 

182 
composition of smaller 

multiplications, 182 
magnitudes, 195 
positive integers, 30-31 
sequential with recoding, 

182 
signed integers, 31-34 
sign-and-magnitude, 181 
two's complement, 181-182 

Multiplicative division 
algorithm, 386 

Multiplicative methods, 367 
Multiplicative normalization, 577 

for division, 381 
for reciprocal, 368, 371-373 
for square root, 382-383 

Multiplicative square root 
algorithm, 387 

Multiplier, combinational, 193 
rectangular, 221 
saturating, 219 
sequential, 182 
truncating, 219 

Multiply-Accumulate (MAC), 
217 

Multiply-add, 217 

NAN (not a number), 407 
Newton-Raphson method 

for reciprocal, 368 
for square root, 381 

Noncanonical system, 7 
Nonperforming division, 37-38 
Nonrestoring division, 38-40 
Normalized divisor, 248-249 
Number representation systems, 

binary (radix 2) number 
system, 7 

bit-vector representation, 
8 

canonical digit set, 7 
complement forms, 11 
complementation constant, 

11 
conventional number 

system, 7 
converse mapping, 15 
digit set, 5 
fixed-radix (number) 

system, 6 
hexadecimal (radix 16) 

number system, 7 
interpretation rule, 5 
mapping, 10 
mixed-radix (number) 

system, 7 
non-negative integers, 5 
noncanonical digit set, 7 
nonredundant, 6 
octal (radix 8) number 

system, 7 
ones' complement system, 

12 
quaternary (radix 4) 

number system, 7 
radix (number) system, 

6 
range complement system, 

11 
redundant, 6 
signed integers, 9 
sign-and-magnitude 

system, 10 
true-and-complement 

system, 10 
two's complement system, 

11 
true forms, 11 
weighted (number) systems, 

6 
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Ones' complement, 97, 376 
adders, 95-97 
representation, 95 

Online addition, 503 
Online arithmetic, 502 

addition, 503 
division, 519 
generic implementation, 

513 
method, 507 
multiplication, 515 
recursive algorithm, 529 
second-order IIR filter, 533 
subtraction, 503 
sum of squares, 528 

Online division, 519 
Online implementation, 

reduction of digit 
slices, 526 

Online multiplication, 515 
Online recursive algorithm, 529 
Online second-order IIR filter, 

533 
Online subtraction, 503 
Online sum of squares, 528 
On-the-fly conversion, 256 
Overflow detection for addition, 

25 

[p:2] adders, 141,153 
[p:2] modules, 142, 142 
[p:q] adder, 189 
(p:q] counters, 147 
P-D diagram, 283 
Parallel recoding, 198-201 
Partially combinational 

multioperand 
addition, 167 

Partially combinational 
multiplication, 212 

Perfect rotation, 610 

Piecewise interpolation, 557 
reduction, approximation, 

and reconstruction, 
56O 

Pipelined adder arrays, 166 
Pipelined adder, 91 
Pipelined multiplier, 235 
Pipelined sequential multiplier, 

215 
Polynomial approximation, 552, 

553 
Polynomial interpolation, 557 
Prefix adder, 53, 79 

number of cells, 85 
number of levels, 80 

Pseudo-sum, 98 

QM[j], 256 
Quadratic convergence, 367, 369, 

371 
Quotient conversion, 315 
Quotient rounding, 259 
Quotient-digit (redundant), 249 
Quotient-digit selection function 

with carry-save adder, 299 
with redundant adder, 296 
with signed-digit adder, 

308 
Quotient-digit selection function, 

251,280 

RB (rounding bias), 409 
RRE (relative rounding error), 

410 
Radix-2 division 

conventional number 
system, 27 

residual in carry-save form, 
264 

nonredundant residual, 288 

Radix-4 division, 
nonredundant residual, 

294-296 
residual in carry-save form, 

264-267 
Radix-8 divider, 315 
Radix- 16 divider, 273-274 
Radix-512 divider, 275-276 
Radix-8 multiplier, 204 
Radix-2 square root with 

carry-save adder, 
336-339 

Range complement system (RC), 
11 

Range extension, 26 
Rational approximation, 566 
Reciprocal square root, 381 
Reciprocal, 368 

implementation and 
additional errors, 375 

implementation with 
reduced multipliers, 
378 

multiplicative 
normalization, 371 

Newton-Raphson method, 
368 

Recoding, 184 
parallel implementation, 

201 
parallel radix 4, 198 
sequential implementation, 

188 
sequential radix 4, 185, 193 

Rectangular multiplier, 221 
Reduction by columns, 156 

number of counter levels, 
156 

systematic design method, 
158 

nonrectangular array 
(example), 162 
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Reduction by rows, 151 
linear array of adders, 151 
linear array of [p:2] adders, 

151 
adder tree, 153 
tree of adders, 153 
tree of[3:2] adders, 155 
tree of carry-save adders, 

155 
tree of[4:2] adders, 155 
tree of[p:2] adders, 154 

Reduction, 138 
Redundancy factor, 250 
Redundant CORDIC, 627 
Redundant adder, 52-53, 97 
Redundant quotient-digit set, 

247 
Residual (division), 251 
Rmode (rounding mode), 408 
Robertson's diagram, 283 
Rotation mode, 612 
Rounding 

floating-point addition 
420 

digit-recurrence division, 
453 

iterative division, 457 
Rounding errors, 409 

absolute error (ABRE), 409 
bias (RB), 409 
maximum absolute error 

(MABRE), 409 
relative error (RRE), 410 

Rounding modes, 408 
round to nearest (tie to 

even), 408, 410 
round toward plus/minus 

infinity, 409, 414 
round toward zero 

(truncation), 409, 412 
Roundoff (rounding), 397 

error, 399 

error analysis, 407 
modes, 407 

SRT division, 288 
Saturating multiplier, 219 
Selection by rounding, 581 
Selection intervals, 348-349 

overlap between, 297 
Self-timed carry-circuit, 92-94 
Sequential multioperand 

addition, 151 
Sequential multiplication with 

recoding, 182 
delay, 183 
radix 2, 184 
radix 4, 184 
sign-and-magnitude, 183 
two's complement, 192 
with higher radices, 189 
with redundant adder, 

184 
with [p:2] adder 

Serial 
adder, 128 
multiplier, 498 

Serial modes, 491 
least-significant-digit-first 

(LSDF), 491,496 
most-significant-digit first 

(MSDF), 491 
Serial-parallel multiplier, 500 
Sign detection algorithm, 15 
Signed-digit adder, 102 

bit-level implementation, 
110 

borrow-save adder, 127 
double recoding, 106 
interim sum, 103 
modified signed-digit 

addition, 106 
transfer, 103 

with one conventional and 
one signed-digit 
operand, 110 

with two signed-digit 
operands, 104 

with two conventional 
operands, 109 

Significand 
in floating-point, 398 
range of, 400 
representation of, 401, 

404-405, 415 
Special values (floating-point), 

407 
infinities, 407 
not a number (NAN), 

407 
Square root by iterative 

approximation, 381 
Square root selection, 347 

selection constants, 350 
selection intervals, 348 
staircase selection, 349 
radix-2 with carry-save 

adder, 354 
radix-4 with carry-save 

adder, 342, 355 
Square root, 331 

operands and result range, 
331 

algorithm, 337 
combined with division, 

343 
integer algorithm, 345 
radix-2 implementation, 

336 
radix-4 implementation, 

339 
recurrence and step, 331 
result-digit selection, 347 
selection function for radix 

4,342 
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subcomputations, 333 
summary of definitions, 

332 
timing, 342 

Square root, multiplicative 
normalization, 382 

Newton-Raphson method, 
381 

Squarers, 221 
Staircase selection function, 

289-294 
Sticky bit 

in floating-point addition 
and subtraction, 423, 
424,433 

in floating-point division, ' 
452,453,459, 460 

in floating-point 
multiplication, 435, 
436, 439, 440, 443 

in floating-point 
multiply-add fused 
(MAF), 448 

in square root algorithms, 
463 

Subtraction in 
true-and-complement 
system, 24 

Subtraction of positive integers, 
18 

Switched carry-ripple 
(Manchester) adder, 64 

Trigonometric and inverse 
trigonometric 
functions, 593 

True-and-complement 
representation, 10 

True-and-complement addition, 
19 

Truncating multiplier, 219 
Two's and ones' complement 

representation, 11 
Two's complement addition, 20 
Two's complement and ones' 

complement adders, 
95 

end-around carry, 96 

Two-operand addition, 51 

Unary code, 144 
Unit in last position (ulp), 248, . 

4O0 
Unnormalized representation, 

401-402 

Variable group size, 70 
Variable-time adder, 91 

actual delay, 93 
completion signal, 91 
with self-time carry circuit 

(Type-1), 92 
with parallel carry 

completion sensing 
(Type-2), 94 

Vector normalization, 495 
Vector rotation, 609 
Vectoring mode, 614 

Weighted number system, 6 
Weight-vector, 6 
Word-serial implementation, 

620-621 
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